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Abstract

The notion of skeleton plays a major role in shape anal-
ysis since the introduction of the medial axis. The continu-
ous medial axis is a skeleton with the following character-
istics: centered, thin, homotopic, and reversible (sufficient
for the reconstruction of the original object). The discrete
Euclidean medial axis (MA) is also reversible and centered,
but no longer homotopic nor thin. To preserve topology and
reversibility, the MA is usually combined with homotopic
thinning algorithms. Since there is a robust and well de-
fined framework for fast homotopic thinning defined in the
domain of abstract complexes, some authors have extended
the MA to a doubled resolution grid and defined the dis-
crete Euclidean Medial Axis in Higher Resolution (HMA),
which can be combined to the framework defined on ab-
stract complexes. Other authors gave an alternative defini-
tion of medial axis, which is a reversible subset of the MA,
and is called Reduced Discrete Medial Axis (RDMA). The
RDMA is thinner than the MA and can be computed in opti-
mal time. In this paper we extend the RDMA to the doubled
resolution grid and we define the High-resolution RDMA
(HRDMA). The HRDMA is reversible and it can be com-
puted in optimal time. The HRDMA can be combined with
the algorithms in abstract complexes, so a reversible and
homotopic Euclidean skeleton can be computed in optimal
time.

Key Words: medial axis, skeleton, Euclidean distance,
shape representation

1 Introduction

The notion of skeleton plays a major role in shape anal-
ysis since Blum introduced the concept of medial axis in
1967 [1]. The Euclidean medial axis is the set of centers
of maximal Euclidean balls in the object, where a maximal
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ball is a ball contained in the object and not contained in
any other ball in the object. The Euclidean medial axis of a
continuous shape is a skeleton with the following character-
istics: centered, thin, homotopic, and reversible (sufficient
for the reconstruction of the original object). In the dis-
crete case, the Exact Euclidean Medial Axis (MA) is also
reversible and centered, but it no longer preserves topology,
and it is no longer thin.

For reversible, homotopic, and centered skeletons, the
MA can be combined with a homotopic thinning algorithm.
There are several proposals of homotopic thinning algo-
rithms for digital images, but some proposals are not cor-
rect [2]. One of the most robust and well defined frame-
works for homotopic thinning, the critical kernels frame-
work [3], is defined in the domain of abstract complexes,
where an image must be represented in a doubled resolu-
tion.

A simple translation of the discrete MA to abstract com-
plexes leads to undesirable thickness of the resulting skele-
ton. To solve this problem, Sadde et al. [4] have de-
fined a discrete Euclidean Medial Axis in Higher Resolution
(HMA). Such definition is a generalization of the MA defi-
nition, and it is also based on the concept of maximal balls.
The combination of the HMA with the homotopic thinning
based on critical kernels have resulted in satisfactory Eu-
clidean homotopic skeletons.

The drawback of the HMA is its computational time
complexity. The algorithm that computes the HMA is
based on the algorithm proposed by Rémy and Thiel for
the MA [5], which is not O(n). So, since the homotopic
thinning based on critical kernels is O(n), the HMA is the
bottleneck of the skeletonization process.

There are other definitions of Euclidean skeletons which
are not based on maximal balls. Saito and Toriwaki [6] have
explored the upper envelope skeleton. By this concept, the
authors compute a set of paraboloids based on the Euclidean
distance transform, and they get the centers of paraboloids
in the upper envelope of all paraboloids as an Euclidean
skeleton. We explain better this concept in Section 3.1.



The advantage of Saito and Toriwaki’s skeleton, if com-
pared to the MA, is computation time. The authors have
proposed a fast algorithm to compute the upper envelope
skeleton, and later some authors have optimized the algo-
rithm [7]. The upper envelope skeleton can be computed in
O(n). In the other hand, the upper envelope skeleton has
a great drawback. Although the continuous upper envelope
skeleton is a subset of the continuous MA, its discrete ver-
sion is not a subset of the discrete MA, and it can not be
used in practice.

Recently, Coeurjolly and Montanvert [8] have corrected
the upper envelope skeleton for the discrete case, and they
have proposed the Reduced Discrete Euclidean Medial Axis
(RDMA). The authors prove that the RDMA is a reversible
subset of the MA, and it can be computed by a O(n) sepa-
rable algorithm.

In this paper we extend the RDMA to the higher resolu-
tion, so it can be combined with thinning algorithms on the
domain of abstract complexes, and we define the Higher-
resolution Reduced Euclidean Medial Axis (HRDMA). The
HRDMA is reversible, and it can be computed in O(n). It
can be used in place of the HMA in most practical applica-
tions.

This paper is organized as follows. In Sections 2 and
3 we recall the basic notions about Euclidean medial axes,
necessary for the comprehension of this paper. In Section 4
we present our novel contribution, the HRDMA, and we
show some results. In Section 5 we conclude with a dis-
cussion about discrete Euclidean medial axes and how the
HRDMA fits in the current state of the art scenarium. We
thank other contributors in Section 6.

2 Exact discrete Euclidean medial axes

In this section we recall the definitions of the Exact Dis-
crete Euclidean Medial Axis (MA) and the Exact Higher-
resolution Discrete Euclidean Medial Axis (HMA), which
are based on maximal balls.

We denote by Z the set of integers, and by N the set of
nonnegative integers. For a set X, we denote by X the com-
plement of X. We denote by (y —z)? the squared Euclidean
distance between two points x € Z™ and y € Z".

The basis of the most part of MA algorithms is the Eu-
clidean distance transform. A good survey on Euclidean
distance transform algorithms is given in [9]. Let X C Z",
the squared Euclidean distance transform of X, denoted by
D%, associates to each point x € X its squared Euclidean
distance to the nearest point in X: D%(z) = min{(y —
z)% y € X}.

Fix ¢ € Z" and R € N, we denote by B(z, R) the
Euclidean ball centered in x with (squared) strict radius R,
where B(z, R) = {y € Z", (x — y)* < R}.

2.1 Classical discrete FEuclidean medial
axis

We give the definition of the discrete medial axis in terms
of the notion of maximal balls.

Definition 1 (Maximal Ball). Let X C Z", x € X, R € N,

A ball B(x, R) C X is the greatest inside ball for = in X
if it is the largest ball centered in x and included in X.

A ball B(z, R) C X is a maximal ball for X if it is not
strictly included in any other ball included in X.

Observe that B(x, D% (z)) is equal to the greatest inside
ball for z in X. Also, any maximal ball is also a greatest
inside ball. We recall the definition of the medial axis.
Definition 2 (Medial Axis). Let X C Z", the medial axis
of X, denoted by MA(X), is the set of the centers of all the
maximal balls for X. In other words, let R € N, MA(X) =
{z € X, B(x, R) is maximal for X}.

Although the medial axis has been studied since the six-
ties [1], efficient algorithms for the computation of the ex-
act Euclidean medial axis remained undiscovered until the
nineties. A very efficient algorithm for the MA has been
proposed only in 2003 [5, 10], and no better algorithm has
appeared since then.

2.2 Discrete Euclidean medial axis in
higher resolution

Medial axes in doubled resolution are useful because
they can be combined with thinning algorithms which are
defined on the domain of the abstract complexes [3, 4, 11].
Remember that, since the discrete medial axis does not pre-
serve topology, and since the skeletons resulted from homo-
topic thinning may not be reversible, these two techniques
are usually combined, so a homotopic and reversible skele-
ton is produced.

The use of the classical medial axis (MA) on the do-
main of abstract complexes is not recomended. Satde et.
al [4, 11] show the drawbacks of such use, and they de-
fine the Higher-resolution Euclidean Medial Axis (HMA),
which gives better results when combined to thinning algo-
rithms on abstract complexes.

The definition of the HMA is similar to that of the MA.
The HMA takes an object in Z" and represents it in [Z]™
by a transformation to the higher resolution. For the HMA
definition, a ball in the higher resolution can be centered at
any point of [$7Z]", but contains only points of Z". Let us
call such balls the H-balls.

Definition 3 (H-ball). Let 2 € [3Z]", R € N, we denote
by Bp(x, R) the H-ball centered in = with (squared) strict
radius R, where

B(z,R) = {y € Z",(2y — 22)* < R}.



The factor 2 in 2y and 2x assures that the distances in

[1Z]™ are equal to distances in Z".

We can also define maximal /-balls by the same terms
of the maximal balls.
Definition 4 (Maximal H-ball). Ler X C Z", z € [1Z]",
ReN,

A H-ball By (z, R) C X is the greatest inside H-ball for
x in X if it is the largest H-ball centered in x and included
in X.

A H-ball By, (z, R) C X is a maximal H-ball for X if it
is not strictly included in any other H-ball included in X.

Finally, the HMA is defined by the same terms of the
MA, but based on H-balls.
Definition 5 (Higher-resolution Medial Axis). Let X C
7", the Higher-resolution Medial Axis of X, denoted by
HMA(X), is the set of the centers of all the maximal H-
balls for X. In other words, let R € N, HMA(X) = {z €
[2Z]", By(z, R) is a maximal H-ball for X}.

Some important points about the HMA:

e The set of maximal H-balls covers the entire origi-
nal object, so the object can be reconstructed from the
HMA. The HMA is reversible.

e The HMA is a generalization of the MA. The HMA
takes on account a larger set of Euclidean balls, includ-
ing the set of Euclidean balls considered by the MA.
Such balls are illustrated in Figure 1. The black points
in Figure 1 represent points in H-balls, which are all
in Z2. The center of the H-balls are represented by the
crossing point of two perpendicular axes. The ball in
(a) is a H-ball centered in Z2, and the H-balls (b-d)
are centered outside Z2. The HMA takes on account
all the types of balls in Figure 1, while the MA consid-
ers only the type of balls represented in Figure 1(a).
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Figure 1. H-balls in Z2. See text.

Although the HMA definition is a simple generalization
of the MA definition, the efficient algorithm that computes
the MA, proposed by Rémy and Thiel [5], cannot be directly
generalized for two reasons:

1. The original algorithm is based on the distance trans-
form of the object, which is defined in Z™. In the

higher resolution, one must compute another distance
transform, in [%Z]”, and the usual distance transform

is proven to be sufficient in 2D and 3D, but not in nD.

2. The original algorithm is based on look-up tables, and
take profit of the symmetries of the Euclidean balls.
The H-balls have some asymmetries which are not
present in the Euclidean balls.

Despite the above difficulties, the algorithm by Rémy
and Thiel was generalized in [4], but the time complexity,
although similar, is greater than the time complexity of the
original algorithm, and the algorithm was proved only to
2D and 3D. In a recent short communication [12], Saide
and Couprie have presented an nD version of their algo-
rithm, which could be achieved by the use of an alternative
distance transform.

In this work we show that the same alternative distance
transform can be applied to the computation of another Eu-
clidean medial axis in higher resolution, based on the up-
per envelope approach. Let us describe such alternative dis-
tance transform.

2.3 Distance transform to seeds

As stated before, the distance transform (DT) of an ob-
ject gives the radii of the greatest inside balls for each point
in the object. The algorithm by Rémy and Thiel use the DT
to obtain such radii. For the higher-resolution, the values
of the Euclidean DT are sufficient to determine the radii of
maximal H-balls in 2D and 3D, but they are not sufficient
in nD. To determine the radii of maximal H-balls in nD, a
specific distance transform to seeds must be used.

The distance transform to seeds (DTS) is a generaliza-
tion of the DT. It maps to each point of the object, its dis-
tance to the nearest point in a selected set of seeds. So, the
DT is a special case of the DTS, where the set of seeds is
the whole set of background points. Some DT algorithms
based on distance propagation [13, 14] are already defined
as DTS.

The Euclidean DTS can be computed by any Euclidean
DT algorithm in two steps. Let X be the object and .S be the
set of seeds, do: i) compute the DT on S; and ii) set to zero
the points not in {X N S}.

We give an example of the DTS in Figure 2. The black
points, with value zero, are the points of the background.
The circled points are the seeds. Values greater than zero are
represented on the object points, and such values are equal
to the distance of each object point to the nearest seed.

For an object X € [3Z]", if we choose the set S = X N
Z"™ as seeds, the values of the DTS from X to the seeds S are
equal to the radii of the greatest inside H-balls of X in nD.
The DTS illustrated in Figure 2 is exactly this specific DTS.
The algorithm of the HMA works on nD if this specific DTS
is used instead of the usual DT.

In Section 3 we recall the definition of a medial axis
based on upper envelopes.
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Figure 2. Distance transform to seeds.

3 Reduced discrete Euclidean medial axis

As stated in Section 2, the value of the distance transform
(DT) in a point x gives the radius of the greatest inside ball
for x. In fact, in digital spaces, the DT is the basis for most
medial axis extraction algorithms, even the algorithms not
based on the maximal balls approach. However, until the
nineties, there were fast DT algorithms for other metrics
(discrete distances) but not for the Euclidean metric.

In 1994, Saito and Toriwaki [6] have provided a fast (but
not optimal) algorithm for the Euclidean DT. Hirata [7] was
the first to provide an optimized version of such algorithm.

We explain the concept introduced by Saito and Tori-
waki [6]. Consider that we want to compute the Euclidean
DT of an object X € Z". We take one point x € X and we
compute P, which is an unbounded image whose values
are the distances from z to every point in Z". In 1D, P, is
a parabola; in 2D, P, is a paraboloid; in nD, P, is a hyper-
paraboloid. Let S, = {P,,y € X}, which is the set of all
hyperparaboloids centered in points y € X. To find an ef-
ficient algorithm for the Euclidean DT, Saito and Toriwaki
have exploited three important observations about .S,:

1. The value of the DT in a point w € X is the minimum
value given (to the point w) by all hyperparaboloids in
Sp. If we take all w € X, the DT is the lower envelope
of Sp.

2. A hyperparaboloid can be constructed by the follow-
ing separable algorithm: 1) construct a parabola; ii)
from each point of the parabola, construct a parabola
in a higher dimension; iii) do so for all the dimensions.
Saito and Toriwaki prove that the lower envelope of .S,
can also be computed by a separable algorithm, and the
challenge is to find an efficient algorithm to compute
the lower envelope in 1D.

3. Finally, in 1D, there are fast algorithms to compute

the lower envelope of the parabolas. Saito and Tori-
waki did not propose an optimal in time computation
of the 1D problem. That was the problem solved by
Hirata [7]. Since 1996 the Euclidean distance trans-
form can be computed in linear time.

We illustrate the above concept in Figure 3. Note that the
values in the centers of the parabolas are not zero, which
means that such parabolas have been constructed based on
parabolas resulted from a previous dimension.
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Figure 3. Lower envelope of parabolas.

In the following sections we show how this concept of
lower envelope can be used to compute skeletons.

3.1 Upper envelope skeleton

Saito and Toriwaki have also proposed a fast algorithm
for the reverse Euclidean distance transform [15]. The re-
verse transform is used to reconstruct objects from its me-
dial axis. If we take one point z in an object X, we conclude
that all points {y € Z", (z — y)?> < D%(x)} are also in the
object X, so we can reconstruct them from z and D% (z).
Note that the set {y € Z", (x — y)? < D%(x)} is exactly
the ball B(z, D% (x)).

Based on the idea of the distance transform described
above, let us compute P., which is an unbounded image
whose values are equal to D% (z) — (z — y)2. P. is also
a hyperparaboloid in nD, but with a reverted concavity if
compared to the hyperparaboloid used to compute the DT.
Note that B(z, D% (z)) is the intersection of P/ with the
hyperplane 0. Thus, the reconstruction of Euclidean balls
can be performed by a reconstruction of hyperparaboloids.

The most important property proved by the authors

in [15], however, is that the whole object can be recon-
structed by the upper envelope of the set S;, = { P, }, where
P! are the hyperparaboloids with reverted concavity de-
scribed above. Moreover, we are able to define a skeleton
as:
Definition 6 (Upper envelope skeleton). Let X C Z",
r € X,y € Z" P.(y) = D%(z) — (z — y)? the upper
envelope skeleton of X, is the set of the centers of all the
hyperparaboloids that compose the upper envelope of the
set {P}.



The upper envelope skeleton is reversible, and it can re-
place the classical MA in several applications. Furthermore,
Saito and Toriwaki prove that the upper envelope skele-
ton is a subset of the MA in the continuous space, which
means that the intersection of the hyperplane 0, and a hy-
perparaboloid composing the upper envelope, is a maximal
ball. The converse is not true since there are maximal balls
that are not the intersection of the hyperplane 0 and a hy-
perparaboloid composing the upper envelope.

The strong point of the upper envelope skeleton is that
the computation of an upper envelope is done by the same
means of the computation of a lower envelope. In conse-
quence, the linear time Hirata’s algorithm can be easily ma-
nipulated to become a linear time algorithm that computes
an Euclidean medial axis. This is a great advantage over the
MA, because there is not such efficient algorithm to com-
pute the MA.

The drawback of the upper envelope skeleton is due to
discretization. The discrete upper envelope skeleton, un-
fortunately, is not a subset of the discrete MA. The upper
envelope skeleton has many additional points when com-
pared to the MA, and it is not used in practice. This prob-
lem was solved some years later by Coeurjolly and Montan-
vert [8], when they proposed the Reduced Euclidean Medial
Axis (RDMA).

3.2 RDMA

Coeurjolly and Montanvert [8] have proposed the Re-
duced Euclidean Medial Axis (RDMA), which is a discrete
version of the upper envelope skeleton. The authors give
an algorithmic definition to the RDMA, which is in fact a
correction of the algorithm proposed by Saito and Toriwaki
in [15].

The problem of the discrete implementation of the upper
envelope skeleton is illustrated in Figure 4.
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Figure 4. Continuous and discrete parabolas.

When comparing hyperparaboloids in a separable ap-
proach, the processing in the second or higher dimen-
sion may present situations like the one in Figure 4. The
parabola in the left does not cover the parabola in the right.

Thus, the hyperparaboloid that owns the parabola in the left
does not cover the hyperparaboloid that owns the parabola
in the right. In consequence, the same occurs with the pro-
jections of the parabolas on the hyperplane 0, which are the
balls. These projections are represented by the dotted seg-
ments in Figure 4. However, the set of discrete points under
the left parabola contains the set of discrete points under the
right parabola, which means that, in the discrete case, the
left parabola covers the right parabola. This is illustrated
by the straight segments represented below the dotted seg-
ments.

The authors in [8] point the problem above, and they
modify the upper envelope skeleton proposed by Saito and
Toriwaki by two means:

1. The 1D scans are implemented using the optimized
version of the algorithm [7].

2. The algorithm does no longer test if one parabola cov-
ers another parabola. It tests if the the set of discrete
points under one parabola contains the set of discrete
points under the other parabola.

The RDMA is the skeleton resulted by this modified ver-
sion of the upper envelope skeleton algorithm. This simple
modification is sufficient for much better results. As dis-
cussed before, the upper envelope skeleton is a subset of
the MA in the continuous case, but this property does not
hold in the discrete case. The authors in [8] prove that the
RDMA is a subset of the discrete MA. This property makes
the RDMA more useful in practice than the original upper
envelope skeleton.

Moreover, the test applied to the discrete case, as well
as the test done by the original upper envelope algorithm, is
performed in constant time. The 1D scan, in its optimized
form, takes linear time. The algorithm for the RDMA is
thus linear.

Finally, in most practical applications the RDMA can be
used in place of the MA. When it is possible, the RDMA
is recommended because the algorithm that computes it is
faster than the algorithm that computes the MA.

In Section 4 we show a generalization of the RDMA, so
it can be applied to the higher resolution, as an alternative
to the HMA.

4 Higher-resolution reduced discrete Eu-
clidean medial axis

The correction of the 1D parabola covering test proposed
by Coeurjolly and Montanvert [8] can be extended to other
square discrete grids. In this section we extend this concept
to the doubled resolution grid, in order to define an upper
envelope skeleton in a higher resolution.



The Higher-resolution Euclidean Medial Axis (HMA)
described in Section 2.2 is defined in terms of maximal H-
balls, which are Euclidean balls containing only points in
Z™. The points in [1Z]" are not part of the H-ball. By
the same idea, we can extract a discretized version of the
upper envelope, based on the idea of Coeurjolly and Mon-
tanvert [8], where the discrete segments which are under
the continuous parabolas contain only points of Z™ and no
points of [3Z]".

One way to represent the object in the doubled resolution
grid [2Z]™ is to expand the object by a factor of 2, so it fits
exactly on the grid Z". By this representation, the original
points (of the normal resolution) will be placed on the points
where all the coordinates are even. Every point with at least
one odd coordinate is a point that appears only on the higher
resolution.

If we represent our image this way, we need a simple
adaptation of the algorithm in Section 3 to compare parabo-
las that cover discrete objects in higher resolution. This dif-
ferent 1D correction is illustrated in Figure 5.
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Figure 5. Continuous, discrete and higher
resolution discrete parabolas.

Suppose that the situation in Figure 5 occurs while
extracting the upper envelope in higher resolution. The
parabola in the left does not cover the parabola in the right,
as we can see by the dotted segments that represent their
projection. The thin straight segments represent the dis-
cretized version of the parabolas as proposed by Coeurjolly
and Montanvert [8]. The left parabola results in a segment
on the interval [2, 10] and center on point 6, while the right
parabola results in a segment on the interval [7, 11] and cen-
ter on point 9. Remembering that the odd coordinates are
representing points on [37Z]", the center of the right seg-
ment is on [3Z]". There is no problem on it, and in fact
it is desirable, so we can exploit a larger number of hyper-
paraboloids on the image (just like the H-balls centered on
[1Z]™). However, the points on the extremities of the right
segment, those placed on the odd coordinates 7 and 11, are
not necessary, since they are not in Z™. Thus, we can still
reduce the size of the segments so we get segments that can
be compared in the higher resolution. The thick straight

lines represent such reduced segments. Notice that in the

higher resolution the left parabola covers the right parabola.

A discretized upper envelope skeleton in higher resolu-
tion should be a subset of the HMA, so to be a real exten-
sion of the RDMA, which is a subset of the discrete MA.
This property will be achieved only if the correct distance
transform is used. As stated in Section 2.3, the values of
the classical DT applied to the object in higher resolution
are proved to be radii of greatest inside H-balls only in 2D
and 3D. The distance transform to seeds presented in Sec-
tion 2.3 is obligatory.

Now we are able to define an upper envelope skeleton in
higher resolution. Such definition must be given in an algo-
rithmic form, like the definition of the RDMA. The Higher-
resolution Reduced Euclidean Medial Axis (HRDMA) is
computed by the following steps:

1. The original object is transformed to the doubled reso-
lution grid.

2. The distance transform to seeds described in Sec-
tion 2.3 is computed.

3. The 1D parabola inclusion test performed by the
RDMA algorithm is modified as proposed in this sec-
tion, so the parabola inclusion test will work with seg-
ments as illustrated in Figure 5.

4. The above modified RDMA algorithm is applied to the
distance transform to seeds computed in step 2.

In an extended version of this paper we will show if the
HRDMA is a subset of the HMA. The method used by
Coeurjolly and Montanvert [8] to prove that the RDMA is
a subset of the MA does not seem to work directly to prove
that the HRDMA is a subset of the HMA. We need to go
deeper on the studies.

In the following section we show some practical results
of the HRDMA in 3D objects.

4.1 Results

The main contribution of the HRDMA for practical ap-
plications is to allow programmers to tackle different kind
of problems by the use of a single skeleton definition, which
can be computed by a fast algorithm. The advantadges of
the HRDMA are not easily detected by visual inspection, so
we present the results as measurements.

We have computed the classical MA, the RDMA, the
HMA and the HRDMA for ten similar but different 3D
objects. The original object mean size was 3435 vox-
els, and its increased resolution version was 34269 vox-
els mean size. To estimate thinness, we have measured
the ratio between the number of points in the medial axis
and the number of points in the object, for all the ob-
jects in the set. The MA resulted in a mean ratio r =



1230/3436 = 0.3581. The RDMA resulted in a mean ratio
r = 873/3436 = 0.2541. The HMA resulted in a mean
ratio r = 2532/34269 = 0.0739. The HRDMA resulted in
amean ratio r = 2510/34269 = 0.0732.

In [4] the authors have measured the ratios for the MA
and the HMA for a larger number of objects. We expect to
do so in an extended version of this paper.

The results we have obtained are following an expected
tendency: HRDMA thinner than HMA thinner than RDMA
thinner than MA. We discuss the results in the following
section.

5 Discussion

In this paper we have extended the definition of the
RDMA [8] to the doubled resolution grid and we have
defined the Higher-resolution Reduced Discrete Euclidean
Medial Axis ( HRDMA).

The main motivation for extending the RDMA is the
same motivation given by Satide et al. [4] to define the
Higher-resolution Euclidean Medial Axis (HMA): medial
axes in the doubled resolution grid can be combined with
thinning algorithms which are defined in the domain of ab-
stract complexes. We have cited a robust framework defined
by Bertrand and Couprie [3]: the framework of critical ker-
nels. It allows correct homotopic thinning algorithms to be
optimal in time, and leads to unique results.

Since there is already the HMA to be combined with the
critical kernels, the strongest need for the HRDMA is com-
putation time. Compared to the available algorithms that
compute the classical MA, the RDMA algorithm has two
important characteritics for computation: i) linear in time
(O(n)) and ii) separable (in consequence, easy to be paral-
lelized). We have the same advantage for HRDMA when
compared to the HMA. A second need is thinness. Both the
RDMA and the MA are reversible, but the RDMA has less
points than the MA and produces thinner skeletons. Sim-
ilarly, both the HRDMA and the HMA are reversible, but
the HRDMA has less points than the HMA.

It is worth being aware that a small irregularity in the ob-
ject’s shape may generate important skeleton branches. The
usual workaround for such undesired branches is skeleton
pruning. There are several skeleton pruning algorithms in
the literature and such algorithms could be applied to any of
the four medial axes discussed in this paper, or to any other
skeleton resulted from the combination of medial axes with
homotopic thinning. Skeleton pruning is out of the scope of
this paper.

Finally, let us give a more detailed comparison between
the four medial axes discussed in this paper.

5.1 Comparison between Euclidean me-
dial axes

Different medial axes can be compared in analytical and
practical viewpoints. From the analytical viewpoint, notice
first that all four definitions are unique, and all of them are
n-dimensional. In addition:

e Definition. The MA and the HMA are defined in terms
of maximal balls. The RDMA and the HRDMA are
defined in terms of upper envelopes.

e Thinness. The HMA has more points than the MA
but the HMA is thinner because the ratio between the
number of points in the medial axis and the number
of points of the object is inferior. The same situation
was observed for the HRDMA, which has more points
than the RDMA, but has an inferior ratio. Coeurjolly
and Montanvert [8] claim that the RDMA is a subset of
the MA, thus the RDMA is thinner than the MA. We
have observed in tests that the HRDMA has less points
than the HMA, but no property has been proven.

e Centeredness. Since the RDMA and the HRDMA def-
initions are based on upper envelopes and not on max-
imal balls, there is no proof that the resulting medial
axis is well centered in the object according to the Eu-
clidean distance. Only the MA and the HMA can be
said centered.

In practice, the use of one definition or another will de-
pend on the application. We describe below some observa-
tions we have had about the practical use of each of the four
medial axis definitions:

e [mplementation. About the four medial axes consid-
ered in this paper, the easier algorithms to implement
are the RDMA and the HRDMA. The fastest algorithm
(to our knowledge) for the MA [5] presents some diffi-
culties in implementation. Yet more difficult to imple-
ment is its generalization that computes the HMA [4].

e Computation time. The computation time of the MA
(by our fastest known algorithm) depends on the size
of the treated object. The biggest is the object, the
more complex is the computation time function. The
HMA has the same behaviour. The RDMA and the
HRDMA have linear time algorithms.

e Thinness. We have measured the ratio between the
number of points in the medial axis and the number
of points of the object for some objects. The ratios
obtained suggest that the order of the medial axes,
from the thickest to the thinner is MA, RDMA, HMA,
HRDMA.



e Centeredness. Although not proved to be centered, in
practice the results of the RDMA and the HRDMA are
satisfactory.

In conclusion, after analyzing the above comparisons
and the state of the art on homotopic thinning algorithms,
one could note that the HRDMA is the best choice of medial
axis in most of the practical cases where homotopic thin-
ning is needed. Since the homotopic thinning algorithms
are usually not so simple to implement, the simplicity of
the algorithm for the HRDMA is very important. However,
the most important characteristics of the HRDMA are the
computation time of its algorithm and its (empirically mea-
sured) thinness.

If homotopic thinning is not needed, the RDMA can be
used in place of the HRDMA. The MA or the HMA are
required only if centeredness is essential.

5.2 Future works

In an extended version of this paper we will combine
the HRDMA with a homotopic thinning algorithm based
on critical kernels, to obtain a reversible Euclidean homo-
topic skeleton in linear time. We will compare the four me-
dial axes in other real applications. We will study if the
HRDMA is a subset of the HMA.
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