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Abstract

This paper proposes a new Tensorial Representation of
HSI color images, where each pixel is a 2× 2 second order
tensor, that can be represented by an ellipse. A proposed
tensorial morphological gradient (TMG) is defined as the
maximum dissimilarity over the neighborhood determined
by a structuring element, and is used in the watershed seg-
mentation framework. Many tensor dissimilarity functions
are tested and other color gradients are compared. The
comparison uses a new methodology for qualitative evalu-
ation of color image segmentation by watershed, where the
watershed lines of the n most significant regions are over-
laid on the original image for visual comparison. Exper-
iments show that the TMG using Frobenius norm dissim-
ilarity function presents superior segmentation results, in
comparison to other tested gradients.

1. Introduction

The edge enhancement of an image by gradient com-
putation is an important step in morphological image seg-
mentation via watershed [3, 17]. For grayscale images, the
morphological gradient [14] is a very good option and its
computation is simple: for each point in the image, a struc-
turing element is centered to it and the difference between
the maximum and the minimum graylevels inside the struc-
turing element is computed. Here, the dissimilarity infor-
mation exploited is the intensity difference among pixels
inside the structuring element.

Such concept does not extends naturally to color images.
Although the dissimilarity information is richer in color im-
ages than in grayscale ones, the design of methods to edge
enhancement in color images is complex. Note that the met-
ric that measures the natural dissimilarity information of

color images is unknown. Also note that if one considers
the color space as a complete lattice [18, 6], the order rela-
tion is not total and even if a total order is imposed in this
space, it will be not natural for the human eye.

One option to construct color gradients relies on the de-
sign of metrics to compute them [12, 11]. Such metrics ex-
ploit the dissimilarity information in color images, usually
collected from each band, and then compute the gradient
based on the distance of the colors inside a given connected
region: the higher the dissimilarity among the colors inside
this region, the higher its gradient. The dissimilarity met-
rics impose a total order relation and the gradient may be
computed.

An alternative metric is the one based on tensorial alge-
bra [7, 5]. Using tensors to represent colors in images bring
us the possibility to make use of all the tensor theory. Given
a tensorial representation of colors, it is possible to compute
the gradient of a color image by computing the dissimilarity
among the tensors. Some approaches of color representa-
tion based on tensors can be found in the literature. Most
of them utilizes the Structure Tensor (or a modified version
of it) to represent RGB color images and uses this represen-
tation to comply different tasks, such as: feature extraction
[19, 20], computation of optical flow [4] and segmentation
[8].

This paper proposes a new color representation given by
the correspondence between the HSI color model and ten-
sors. The tensorial morphological gradient(TMG) for color
images is also a new proposal to compute color gradients
based on tensorial algebra. Several ways to compute the dis-
similarity between tensors have been published [1, 2, 21].
Three of them are used in this work to compute the tensorial
morphological gradient. In order to analyze the proposed
gradient, it is compared to some classical color gradients
applied to segmentation of the n most significant regions of
an image.



This paper is organized as follows: Section 2 describes
an existing tensorial representation of color images and a
new representation scheme is proposed. Section 3 presents
dissimilarity measures commonly used to compare tensors
and introduces the TMG, based on tensors and their dissim-
ilarities. Section 4 describes the methodology utilized to
compare segmentation results obtained by each tested gra-
dient. Section 5 shows the segmentation results obtained
by watershed applied on some color image gradients, in-
cluding the TMG proposed in this paper. Finally, Section 6
concludes the paper.

2. Tensorial representation of color images

2.1. Tensors

Tensor is an abstract object, expressing some definite
type of multi-linear concept. Their well-known properties
can be derived from their definitions, as linear maps or more
generally; and the rules for manipulation of tensors arise as
an extension of linear algebra to multilinear algebra [7].

In practice a bi-dimensional second order tensor is de-
noted by a 2 × 2 matrix of values:

T =
(

T11 T12

T21 T22

)
, (1)

and can be reduced to principal axes (eigenvalue and eigen-
vector decomposition) by solving the characteristic equa-
tion:

T − (λ · I)e = 0, (2)

where I is the identity matrix, λ are the eigenvalues of the
tensor and e are the normalized eigenvectors. If the tensor
is symmetric,i.e., T12 = T21, the eigenvalues will always be
real. Moreover, the corresponding eigenvectors are perpen-
dicular [5]. In this case, the tensor can be represented by
an ellipse, where the main axes lengths correspond to the
eigenvalues and their direction to the respective eigenvec-
tors (Fig. 1).
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Figure 1. Ellipse representing a tensor

2.2. Structure tensor representation

Structure tensor (or second-moment matrix) [19] is a
matrix representation of partial derivative information. In
the field of image processing and computer vision, it is typ-
ically used to represent the gradient or to find features such
edges and corners. The color structure tensor describes the
bi-dimensional first order differential structure at a certain
point in the image. The structure tensor matrix is formed
as:

sT =
(

f2
x fxfy

fxfy f2
y

)
, (3)

where fx and fy denote the partial derivatives of the
grayscale image f along the x and the y axis, respectively.
Also here eigenvalues (λ1, λ2) and eigenvectors (e1, e2) can
be calculated by decomposition. These new gradient fea-
tures allow a more precise description of the local gradient
characteristics.

DiZenzo introduced the idea of using a Color Structure
Tensor [22], given by:

sT=
(

R2
x+G2

x+B2
x RxRy+GxGy+BxBy

RxRy+GxGy+BxBy R2
y+G2

y+B2
y

)
,

(4)
where R, G and B are the three color components of the
RGB color image f = (R,G,B) and the subscripts denote
the partial derivatives. In this case, after eigenvalue and
eigenvector decomposition, e1 is a unit vector that indicates
the prominent local orientation, which is equal to the orien-
tation in the image with maximum color change.

2.3. Proposed tensorial representation

One way to describe an ellipse is to define its minor and
major semiaxes and its rotation. Another possibility is to
chose the ellipses attributes from the tensor represented by
it. The ratio between eigenvalues determines the shape of
the ellipse (eccentricity), their sum defines the scale of the
ellipse (also called Trace) and its principal eigenvector di-
rection defines the rotation of the ellipse:

Shape =
λ2

λ1
. (5)

Trace = (λ1 + λ2), (6)

By establishing a relation between these attributes and the
attributes of the HSI color model: Hue, Saturation e Inten-
sity, it is possible to represent a color in terms of a tensor. In
other words, interpreting the Hue of a color as the direction
of the principal eigenvector of the tensor, the Saturation as
the shape of the ellipse and the Intensity as the trace, for
each color of the HSI model there will be a tensor describ-
ing it. This representation proposal can be seen in Fig. 2.



Fig. 2(a) shows different colors (0 � H � π/2), with
same saturation (S = 0.5) and same intensity (I = 1).
Similarly to the HSI model, changing the color without
changing saturation and intensity causes changes only in the
direction of the ellipse. Fig. 2(b) shows one color (H = 0)
with same intensity (I = 1) and different saturation values
(0 � S � 1) . In this case, changes in saturation determine
changes in the shape of the ellipse. More saturated is the
color, more elliptical is its tensor. In one extreme (S = 1),
the color is represented by a line segment. In the other ex-
treme, color with no saturation is represented by a circle.
Finally, Fig. 2(c) presents the same color (H = 0) with one
fixed saturation (S = 0.5) and intensity varying between
0 and 1 (0 � I � 1). Colors with null intensity are rep-
resented by a point. As the intensity rises, the size of the
ellipse also grows (without changing its shape).

3. Tensorial morphological gradient (TMG)

One way to compute the gradient of an image is via ap-
plication of a dissimilarity function. Usually, the exploited
dissimilarity information is the intensity difference among
pixels inside the structuring element. This section proposes
a color gradient that makes use of tensorial dissimilarity
functions applied to the tensor representation described in
Subsection 2.3.

Given two tensors Ti e Tj , there are some dissimilarity
measures that might be used to compare them [1]. The
simplest one is the dot product between the principal eigen-
vector directions:

d1(Ti, Tj) = |e1,i · e1,j |, (7)

where e1,i and e1,j are the principal eigenvectors of tensors
Ti e Tj , respectively. The absolute value of the dot product
solves the problem with the sign ambiguity of the eigen-
vectors. Another simple comparison between two tensor
quantities is the tensor dot product:

d2(Ti, Tj) = λ1,iλ1,j(e1,i · e1,j)2 + λ2,iλ2,j(e2,i · e2,j)2.
(8)

It uses not only the principal eigenvector direction, but
the full tensor information. Another dissimilarity measure
that uses the full tensor information is the Frobenius norm:

d3(Ti, Tj) =
√

Trace((Ti − Tj)2), (9)

Let E = × be the set of all points in the image.
Let f be a color image under the HSI color model. The
proposed (TMG) based on the tensorial representation of
Subsection 2.3 is defined by

∇T
B(f)(x) =

∨
y∈{Bx−{x}}dn(Tx, Ty) (10)

(a) Hue variation

(b) Saturation variation

(c) Intensity variation

Figure 2. Tensorial representation of HSI
color information



∀x ∈ E, where dn represent any of the three dissimilar-
ity functions presented above (d1 , d2 or d3 ), B ⊂ E is
a structured element centered at the origin of E, Tx is the
tensor that represents the color f(x), and Ty is the tensor
that represent the color located in y (in the neighborhood
of x, defined by E). ∇T

B is the proposed TMG. Because
the chosen metrics are already comparisons between neigh-
bors, the proposed gradient is not the difference between the
maximum and the minimum values, but only the maximum
value. In other words, the computed gradient in a neigh-
borhood given by an structuring element is the maximum
dissimilarity between the neighbors of the given point.

An example of segmentation based on the proposed ten-
sorial morphological gradient (TMG) can be seen in Fig. 3.
Fig. 3(a) shows the original image, Fig. 3(b) presents the
TMG calculated using the Frobenius norm dissimilarity
function (Eq. 9 and Eq. 10) and Fig. 3(c) shows the seg-
mentation result obtained applying the watershed transform
on the proposed TMG.

(a) Original Image (b) TMG (c) Segmentation

Figure 3. An example of segmentation using
the tensorial morphological gradient (TMG)

4. Comparison methodology

An usual comparison of color gradient metrics is made
by quality assessment of the segmentation results provided
by applying the watershed transform [16, 17]. The water-
shed segmentation are done by manual markers imposition
and compared by analyzing how well the objects of interest
are segmented. Another common methodology is to choose
a set of parameters in watershed, specific for each gradient
and for each image, in order to get the best segmentation re-
sult for that gradient. In both cases, the obtained watershed
lines are then overlaid on the original image or on a mo-
saic image created from the segmentation result in order to
allow this evaluation. The weakness of these kind of com-
parison methodology, it is not only the subjectiveness, but
also the fact that the segmentation results that are compared
are dependent of a good choice of parameters or markers.

An alternative to do the assessment of the segmentation
results is to segment the color image in a fixed number of
regions. By imposing markers to the basins with the great-

est volume dynamics [13, 10], it is possible to evaluate how
the watershed operator will segment the n most significant
regions in the image. The least important basins in each
gradient will be filtered and their borders suppressed; the
way such least important basins are suppressed defines the
accuracy of the segmentation result. The difference to the
common used segmentation comparisons method is that the
proposed methodology does not search for good segmenta-
tion results in order to compare them, but imposes restric-
tions (in this case, number of regions) and compares the
performance of each gradient under such restrictions.

The watershed lines are then overlaid on the original im-
age, instead on a mosaic image, in order to compare the
results subjectively. It is done because it is harder to assess
the results on mosaic images, since there are many ways to
compute them and they interfere significantly in the visual-
ization of the final result.

5. Experimental results

This section presents several experiments done in order
to show the accuracy of the TMG. The first experiment
compared several tensorial metrics in order to choose the
most suitable metric to be applied in the TMG computa-
tion. The second experiment compared the TMG with other
color gradients found in literature. In both experiments, the
comparison methodology described in the Section 4 was ap-
plied. The images used in the experiments were obtained
from “The Berkeley Segmentation Dataset and Benchmark”
[15]. The watershed transform and other morphological
functions used can be found in the “SDC Morphology Tool-
box for MATLAB” [9].

5.1. Comparison of TMGs using different dissimi-
larity functions

The first experiment was done in order to compare the
segmentation results given by the three TMGs: dot product,
tensor dot product and Frobenius norm. Several images and
different numbers of regions were tested. Fig. 4 presents the
image of parrots segmented using each TMG. In all cases,
the color image was partitioned in 50 regions. Fig. 5 (a-
c) shows, respectively, the TMGs computed by dot product
metric, tensor dot product and Frobenius norm. The gra-
dients were negated for a better presentation. The compu-
tation of the first two gradients provided smoother borders
and it was expected that the segmentation result provided by
them would not be good. The borders in the TMG Frobe-
nius were stronger and should provide a better result.

It is evident the superiority of the segmentation result us-
ing the TMG from the Frobenius norm dissimilarity func-
tion, compared to the other two metrics. The blue wing



(a) Original Image (b) TMG - Dot product

(c) TMG - Tensor dot product (d) TMG - Frobenius norm

Figure 4. Watershed segmentation of the
“parrots” image with 50 regions using TMGs

of the first parrot, for example, was merged with the back-
ground in the dot product (Fig. 4(b)) and tensor dot product
(Fig. 4(c)). It did not occured when the Frobenius norm
metric was applied (Fig. 4(d)). This was observed also in
other important regions of the image.

5.2. Comparison of the Frobenius norm TMG with
other color gradients

Several gradients are used in color image processing to
detect edges. One of them is called the morphological gra-
dient, that depends on the size and shape of the chosen
structuring element. Using a flat structuring element at
each point the morphological gradient yells the difference
between the maximum and the minimum values over the
neighborhood at the point determined by the flat structuring
element [14]:

∇M
B (f) =

∨
{∇B(f1),∇B(f2),∇B(f3)}, (11)

where B ⊂ E is the structuring element and ∇B is the
morphological gradient. The resulting gradient is an image
containing the supremum among the maxima differences in
each band of f .

Another color image gradient is the weighted gradi-
ent [12, 11]. This operator is a transformation from a color
image under the HSI color space to a grayscale one, by the
linear combination of the gradients from each band. It is
defined as follows:

∇W
B (f) = [ω1∇B(f1), ω2∇Θ

B(f2), ω3∇B(f3)], (12)

(a) TMG - Dot product (b) TMG - Tensor dot product

(c) TMG - Frobenius norm (d) Structure tensor

(e) Morphological gradient (f) Weighted gradient

Figure 5. Compared gradients

where B ⊂ E is the structuring element, f1 , f2 and f3 rep-
resent respectively the intensity, hue and saturation color
bands, ω1, ω2, ω3 ∈ + are their respective weights esti-
mated by a distance function, B ⊂ E is a structured element
centered at the origin of E. ∇B is the classical morpholog-
ical gradient and ∇Θ

B is the angular gradient.
The second experiment had the purpose to compare the

segmentation results obtained using the Frobenius norm
TMG to the segmentation results provided by the morpho-
logical gradient, the weighted gradient and the structure ten-
sor. Fig. 6, Fig. 7 and Fig. 8 show results obtained for three
different number of regions: 100, 50 and 25.

Fig. 5 (c-f) shows, respectively, the Frobenius norm
TMG, the structure tensor, the morphological gradient and
the weighted gradient. The gradients were negated for a
better presentation. Structure tensor had strong borders and
it was expected that it would provide good segmentation
results in the next experiments, but it did not occur. Mor-
phological and weighted gradients provided well enhanced
borders, but the suppression of some important borders led
to a bad segmentation in a few points. In overall, all gradi-
ents provided good segmentation results, specially for big-
ger numbers of regions (Fig. 6). Unless for small details,
like the red parrot wing, the eyes or some spots in the back-
ground, their performance were comparable. As the number



(a) TMG (b) Structure Tensor

(c) Morphological Gradient (d) Weighted Gradient

Figure 6. Watershed segmentation of the
“parrots” image with 100 regions using dif-
ferent color image gradients

of regions becomes lower, their performance started pre-
senting more perceptible differences. Fig. 7 shows that the
structure tensor (Fig. 7(b)) was not able to segment impor-
tant regions of the parrots, like the blue parrot’s head or its
neck. The weighted gradient (Fig. 7(d)) missed small parts,
like the blue parrot’s beak.

Fig. 8 shows the most substantial result, when the im-
age was reduced to 25 regions. It is possible to perceive
the degradation of the performance of both structure ten-
sor and weighted gradient in Fig. 8(b) and Fig. 8(d). Their
segmentation results show that important parts of the parrot
were merged with the background. Also the morphological
gradient (Fig. 8(c)) started missing some details, like the
blue parrot’s head. In this case, the Frobenius norm TMG
(Fig. 8(a)) was the only one to preserve all the most impor-
tant regions of the original image. The structure tensor in
all cases provided the worst segmentation results (Fig. 6(b),
Fig. 7(b) and Fig. 8(b)).

Another two images were also reduced to 25 regions us-
ing the four different gradients (TMG, structure tensor, mor-
phological Gradient and weighted gradient): the airplane
image shown in Fig. 9 and the peppers image shown in
Fig. 10. In the experiment with the airplane image the struc-
ture tensor provided again the worst result (Fig. 9 (b)), seg-
menting badly the aeroplane, the shadow, the man and the
ground. Weighted gradient provided a better result (Fig. 9
(d)) but several parts of the image were not correctly seg-
mented.

Both morphological gradient and TMG provided good
results (Fig. 9 (c) and (a), respectively), but the result pro-

(a) TMG (b) Structure Tensor

(c) Morphological Gradient (d) Weighted Gradient

Figure 7. Watershed segmentation of the
“parrots” image with 50 regions using differ-
ent color image gradients

(a) TMG (b) Structure Tensor

(c) Morphological Gradient (d) Weighted Gradient

Figure 8. Watershed segmentation of the
“parrots” image with 25 regions using differ-
ent color image gradients

vided by the morphological gradient failed to preserve a few
important lines that appeared in the result provided by the
TMG. Again, TMG provided the best result.

In Fig. 10(b) is possible to see that the structure tensor
was not able to segment the original image at all. The seg-
mented regions do not correspond to any object contained
in the original image and most of watershed lines do not co-



incide with any border from the original image. The other
three gradients were able to segment the most important re-
gions, and is not possible to judge which presented the best
result. While the TMG (Fig. 10(a)) inserted a useless line in
the biggest red bell pepper, both morphological (Fig. 10(c))
and weighted gradients (Fig. 10(d)) segmented it as one sin-
gle object. In the other hand, the TMG was the only gra-
dient that was able to segment correctly the biggest green
bell pepper. It missed only a small portion in the back of
the pepper, while the morphological gradient missed a big
portion of the bottom and the weighted gradient missed the
upper right contour of it. In summary, Fig. 10 shows that all
gradients (except the structure tensor) obtained equivalent
segmentation results.

6. Conclusions

This paper brings three main contributions: (i) a new
tensorial representation of a color image; (ii) the Tensorial
Morphological Gradient (TMG); (iii) a new methodology
for comparing segmentation results.

The new tensorial representation was obtained by estab-
lishing a relation between the attributes of the ellipse and
the attributes of the HSI color model. Although in this pa-
per segmentation was chosen to exemplify the utility of the
tensorial representation of color images, several other ap-
plications could make use of it. Adopting the tensorial rep-
resentation for color images allows one to apply tensorial
techniques to solve a great variety of color images prob-
lems.

Based on this new tensorial representation and using ten-
sor dissimilarity functions, a Tensorial Morphological Gra-
dient (TMG) was proposed. Different tensorial dissimilarity
functions were implemented (the dot product, the tensor dot
product and the Frobenius norm) and the resulting TMGs
were evaluated when applied on segmentation by the water-
shed transform.

For this evaluation, a new comparison methodology was
proposed, where segmentation is done by applying the wa-
tershed transform and imposing the markers to the n basins
with the greatest volume dynamics. As consequence, the
proposed methodology does not search for good segmenta-
tion results in order to compare them, but imposes restric-
tions (in this case, number of regions) and compares the
performance of each gradient under such restrictions.

Segmentation experiments were conducted according to
the proposed methodology. The TMG based on the Frobe-
nius norm dissimilarity function presented the best segmen-
tation results, in comparison to the other tensor dissimilarity
functions. It also obtained better segmentation results when
compared to other color image gradients.

(a) TMG (b) Structure tensor

(c) Morphological gradient (d) Weighted gradient

Figure 9. Watershed segmentation of the “air-
plane” image with 25 regions using different
color image gradients

(a) TMG (b) Structure tensor

(c) Morphological gradient (d) Weighted gradient

Figure 10. Watershed segmentation of the
“peppers” image with 25 regions using dif-
ferent color image gradients
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