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Abstract

Recent statistics show that breast cancer is a major
cause of death among women in all of the world. Hence,
early diagnostic with Computer Aided Diagnosis (CAD)
systems is a very important tool. This task is not easy due
to poor ultrasound resolution and large amount of patient
data size. Then, initial image segmentation is one of the
most important and challenging task. Among several meth-
ods for medical image segmentation, the use of entropy for
maximization the information between the foreground and
background is a well known and applied technique. But, the
traditional Shannon entropy fails to describe some physical
systems with characteristics such as long-range and long-
time interactions. Then, a new kind of entropy, called non-
extensive entropy, has been proposed in the literature for
generalizing the Shannon entropy. In this paper, we pro-
pose the use of non-extensive entropy, also called q-entropy,
applied in a CAD system for breast cancer classification in
ultrasound of mammographic exams. Our proposal com-
bines the non-extensive entropy, a level set formulation and
a Support Vector Machine framework to achieve better per-
formance than the current literature offers. In order to val-
idate our proposal, we have tested our automatic protocol
in a data base of 250 breast ultrasound images (100 benign
and 150 malignant). With a cross-validation protocol, we
demonstrate system’s accuracy, sensitivity, specificity, posi-
tive predictive value and negative predictive value as: 95%,
97%, 94%, 92% and 98%, respectively, in terms of ROC
(Receiver Operating Characteristic) curves and Az areas.

1 Introduction

As per American Cancer Society [1], breast cancer ranks
second in the list of women’s cancer. Even though the rate

of breast cancer has risen since 1980, the mortality rates
have declined by 2.3% since 1990. The reduction in mor-
tality rate is due to early detection and improvement in tech-
nology for treatment. Under this context and due to amount
of patient data size, CAD systems has become fundamental
for ultrasound exams of breast cancer. CAD systems are a
set of tools with the goal of helping the diagnostic of hard
lesions. These systems are built based on several steps, each
one with different techniques, however, interdependent.

In a general manner, the images are acquired with a 2D
or 3D US (Ultrasound) scanners and then the lesion is ex-
tracted from its background so that the probability of being
malignant or benign will be evaluated. The lesion extraction
is one of the most important task as it is an early process.
Then CAD systems generally need the user intervention in
order to correctly extract the lesion boundary.

However, a totally automatic process is still not a reality
and so much work is necessary, mainly in the early steps
which may involve segmentation, recognition and extrac-
tion of lesion from its background. Specifically speaking, in
the case of ultrasound images, the initial segmentation is a
complex process since the images have a low SNR (Sign to
Noise Ratio), low resolution, low contrast and several small
and spurious regions. There are several challenges in all
steps yet. Particularly, the initial segmentation is a funda-
mental task since the success of the remainder ones depends
on it.

Traditional algorithms for image segmentation such
as fuzzy c-means (FCM), k-means (KM), Self-Organized
Maps (SOM) and Bootstrap have been used in this task and
generally give good results as they can achieve several clus-
ters adequately. Nonetheless, they have high computational
time as they generally use procedures with some kind of
energy minimization, generally in an iterative loop. Other
algorithms, such as those based on watershed, may also get
several regions but their disadvantage is the oversegmenta-



tion. Since algorithms based on thresholding do not have
such problems, they may be a good alternative. On the
other hand, the choice of the threshold is not always an easy
task as they are generally based on some kind of contrast
enhancement between the background and the foreground.
Since in the narrow boundary around the lesion the thresh-
old is not simple to compute and these algorithms generally
do not get a good boundary location.

Regarding that patterns of ultrasound images are proba-
bility distributions of gray scales, the entropy associated to
these distributions may be measured in order to maximizes
the differences inter-clusters composed by the foreground
and background’s pixels. In this direction, algorithms of
Pun [6], Kapur et al. [7], Pal [8] and Sahoo et al. [9] may
be used to achieve the desired threshold. These traditional
form of entropy has been applied based on the assumption
that the probability distribution of the gray scale image rep-
resent extensive systems, which means that there is short-
time and short-range interactions between the states. How-
ever, recent developments in statistical mechanics have been
shown that, when these interactions are of long-time and
long-range type, this traditional formalism fails to describe
the physical system. Then, another formalism, called non-
extensive entropy, has been proposed [10].

This paper proposed the use of non-extensive entropy in
a CAD system for breast cancer mammography in ultra-
sound exams. Our paper has the following contributions. a)
we proposed a natural extension to the algorithm proposed
in [11] for segmentation of ultrasound images with a non-
extensive approach. Our algorithm is a recursive version of
[11] and achieves more than two regions in ultrasound im-
ages besides having a low computational time. b) The pro-
posed algorithm, called Non-Extensive Segmentation Re-
cursive Algorithm (NESRA) is a first step for a five-step
methodology for a CAD system for breast lesion classifi-
cation. c) This methodology uses a SVM (Support Vector
Machine) framework in order to classify the breast regions
between malignant or benign lesion.

The paper is organized as follows. In the next section we
treat of related works. In Section 3 we present the theoreti-
cal background underlining the non-extensive entropy. The
proposed method are outlined in Section 4. In Section 5 we
show the practical results and its analysis and offer some
discussion in Section 6.

2 Related Works

The process of breast lesion classification and efficient
CAD-based methods from utlrasound is generally catego-
rized into several techniques such as: Bootstrap [2], SVM
[3] and Neural Networks [4, 12]. On these lines, Sawaki
et al. [13] proposed a CAD system using fuzzy inference
for breast sonography and adopted six different criteria to

classify lesions such as: lesion shape, border, edge shad-
ows, internal echoes, posterior echoes, and halo. However,
their system accuracy, sensitivity and specificity were only
60.3%, 82.1% and 42.9%, respectively. Garra et al. [14]
analyzed the breast lesions in ultrasound images using a co-
occurrence matrices of ultrasound images to represent their
texture information. Chen et al. [4] proposed an autocorre-
lation coefficients to analyze the texture information. Since
a CAD system trained by images from one ultrasound ma-
chine needs to be trained again for a different ultrasound
machine due to different image resolution and image qual-
ity, Chen et al. [12] proposed nearly setting-independent
features based on shape information. Their system was very
robust and powerful because the statistical data using ROC
curve were all greater than 0.95.

Recently, 3-D ultrasound (Chang et al. [15], Chen et al.
[16] and Chen et al. [5]) has shown promising signs that
overcome the limitations of traditional 2-D ultrasound, al-
lowing physicians to view the anatomy in 3-D interactively,
instead of assembling the sectional images in their minds.
However, this texture-based CAD is highly machine depen-
dent and utilizes these machine settings all the time.

The five step methodology proposed in this paper is the
following: (a) application of non-extensive entropy for ini-
tial segmentation, (b) morphologic cleaning and (c) accu-
rate region and boundary extraction in level set framework,
(d) extraction of five lesion features such as area, circularity,
protuberance, homogeneity, and acoustic shadow; (e) appli-
cation of a SVM classifier with a B-Spline kernel for breast
cancer classification between malignant and benign cases.

In our experiments, the accuracy of our proposed pro-
tocol for classify malignancies is 95%, specificity is 97%,
positive predictive value is 94% and negative predictive
value is 92%. Besides, we have an Az area of 92%.

3 Theoretical Background

3.1 Tsallis Entropy

The traditional equation for entropy is defined as:

S = −
∑

i

pi ln(pi) (1)

Generically speaking, systems which can be described by
Equation (1) are called extensive systems and have the
following additive property: Let P and Q be two ran-
dom variables, with probability densities functions P =
(p1, . . . , pn) and Q = (q1, . . . , qm), respectively, and S be
the entropy associated with P or Q. If P and Q are inde-
pendent, under the context of the Probability Theory, the
entropy of the composed distribution1 verify the so called

1we define the composed distribution, also called direct product of P =
(p1, . . . , pn) and Q = (q1, . . . , qm), as P ∗ Q = {piqj}i,j , with 1 ≤



additivity rule:

S(P ∗Q) = S(P ) + S(Q) (2)

This traditional form of entropy is well known and
for years has achieved relative success to explain several
phenomenon if the effective microscopic interactions are
short-ranged (i.e., close spatial connections) and the ef-
fective spatial microscopic memory is short-ranged (i.e.,
close time connections) and the boundary conditions are
non(multi)fractal. Roughly speaking, the standard formal-
ism are applicable whenever (and probably only whenever)
the relevant space-time is non(multi)fractal. If this is not the
case, some kind of extension appears to became necessary.

Then, recent developments, based on the concept of non-
extensive entropy, also called Tsallis entropy, have gener-
ated a new interest in the study of Shannon entropy for In-
formation Theory [10, 17]. Tsallis entropy (or q-entropy) is
a new proposal for the generalization of Boltzmann/Gibbs
traditional entropy applied to non-extensive physical sys-
tems.

The non-extensive characteristics of Tsallis entropy has
been applied through the inclusion of a parameter q, which
generates several mathematical properties and the general
equation is the following:

Sq(p1, . . . pk) =
1−

∑k
i=1 pq

i

q − 1
(3)

where k is the total number of possibilities of the whole sys-
tem and the real number q is the entropic index that charac-
terizes the degree of non-extensiveness. In the limit q → 1,
Equation (3) meets the traditional BGS entropy defined by
Equation (1). These characteristics give to q-entropy flex-
ibility in explanation of several physical systems. On the
other hand, this new kind of entropy does not fail to explain
the traditional physical systems since it is a generalization.

Furthermore, a generalization of some theory may sup-
pose the violation of one of its postulates. In the case of the
generalized entropy proposed by Tsallis, the additive prop-
erty described by Equation (2) is violated in the form of
Equation (4), which apply if the system has a non-extensive
characteristic. In this case, the Tsallis statistics is useful
and the q-additivity describes better the composed system.
In our case, the experimental results (Section 5) show that
it is better to consider our systems as having non-extensive
behavior.

Sq(P ∗Q) = Sq(P ) + Sq(Q) + (1− q)Sq(P )Sq(Q)
(4)

In this equation, the term (1 − q) stands for the degree of
non-extensiveness. Note that, when q → 1, this equation
meets the traditional Equation 2.

i ≤ n and 1 ≤ j ≤ m

Albuquerque et al. [11] proposes an algorithm using the
concept of q-entropy to segment US images. Since this con-
cept may be naturally applied over any statistical distribu-
tion, in this paper we propose a natural extension of the al-
gorithm proposed by Albuquerque et al. [11]. Our proposal
is a recursive procedure of [11] as, for each distribution
P and Q, we applied again the concept of q-entropy. We
named our extended algorithm as NESRA (Non-Extensive
Segmentation Recursive Algorithm) and also propose to ap-
ply it in an initial segmentation of our proposed five step
methodology for CAD systems.

The motivations to use the q-entropy are: 1) managing
only a simple parameter q yields to a more controllable sys-
tem; 2) as suggested in [11], the mammographic images and
possible several others natural images have a non-extensive
profile 3) it is simple and makes the implementation easy,
having a low computational overload.

In the following section, we fully describe the NESRA
proposal.

3.2 The Non-Extensive Segmentation Re-
cursive Algorithm (NESRA)

Suppose an image with k gray-levels. Let the probability
distribution of these levels be P = {pi = p1; p2; . . . ; pk}.
Then, we consider two probability distribution from P , one
for the foreground (PA) and another for the background
(PB). We can make a partition at luminance level t be-
tween the pixels from P into A and B. In order to maintain
the constraints 0 ≤ PA ≤ 1 and 0 ≤ PB ≤ 1 we must
re-normalize both distribution as: PA : p1

pA
, p2

pA
, . . . , pt

pA

and PB : pt+1
pB

, pt+2
pB

, . . . , pk

pB
, where pA =

∑t
i=1 pi and

pB =
∑k

i=t+1 pi.
Now, following the Equation (3), we calculate the

a priori Tsallis entropy for each distribution as SA =
1−

Pt
i=1(

pi
pA

)q

q−1 and SB =
1−

Pk
i=t+1(

pi
pB

)q

q−1 . Allowing the
pseudo-additive property given by Equation (4), for two sta-
tistically independent systems, we can compute the pseudo-
additive property of systems A and B as:

SA+B(t) =
1−

∑t
i=1(

pi

pA
)q

q − 1
+

1−
∑k

i=t+1(
pi

pB
)q

q − 1

+(1− q)
1−

∑t
i=1(

pi

pA
)q

q − 1

1−
∑k

i=t+1(
pi

pB
)q

q − 1

(5)

To accomplish the segmentation task, in [11] the infor-
mation measure between the two classes (foreground and
background) is maximized. In this case, the luminance level
t is considered to be the optimum threshold value (topt),
which can be achieved with a cheap computational effort of

topt = argmax[SA(t)+SB(t)+(1− q)SA(t)SB(t)] (6)



Note that the value t which maximizes Equation (6) de-
pends on mainly the parameter q. This is an advantage due
to its simplicity. Furthermore, the value of q which gener-
ates topt is not explicitly calculated and, in this work, it was
empirically defined as that which generates the best CAD
system performance. Since q = 1 when the system be-
havior is extensive, in our experiments we have achieved a
non-extensive system behavior for our data base since the
better results, in terms of precision of classification, were
obtained for q < 1. An example of application of q 6= 1
(non-extensive system) against q = 1.0 (traditional exten-
sive system) is showed in the Figure 1.

(a) original US image (b) q = 1.0

(c) q = 6.0 (d) q = 10.0

Figure 1. Original ultrasound benign image
(a) and the non-extensive entropy segmenta-
tion results for different q values: (b) 1.0, (c)
6.0 and (d) 10, respectively.

Among the results presented in Figure 1, only the (c) and
(d) seems to be useful in a post-processing module. With
(c) we can extract the central region and used its boundary’s
curve to initialize some deformable model framework (level
set, snake, dual snake, etc.) in order to get a better tumor’s
boundary location. Since in the ultrasound images we have
several important regions, an image binarization does not
guarantee an accurate analysis of these regions. For this
reason we create an extension of the algorithm proposed by
Albuquerque et al. [11] which is able to obtain the same
result as in Figure 1 but with more levels of segmentation.
This is a multi-segmentation algorithm.

Following the definitions above, we can take each dis-
tribution PA and PB and subdivide them into two news
distribution, PA1, PA2, PB1 and PB2, as following. PA1 :
p1

pA1
, p2

pA1
, . . . , pt

pA1
, PA2 : pt+1

pA2
, pt+2

pA2
, . . . ,

p%

pA2
, PB1 :

p%+1
pB1

,
p%+2
pB1

, . . . , pυ

pB1
and PB2 : pυ+1

pB2
, pυ+2

pB2
, . . . , pk

pB2
, hav-

ing the constraints pA1 =
∑t

i=1 pi, pA2 =
∑%

t+1 pi,
pB1 =

∑υ
%+1 pi, pB2 =

∑k
υ+1 pi. For each one of

these four distributions we can compute its respective non-

extensive entropy as follows: SA1 =
1−

Pt
i=1(

pi
pA1

)q

q−1 ,

SA2 =
1−

P%
i=t+1(

pi
pA2

)q

q−1 ,SB1 =
1−

Pυ
i=%+1(

pi
pB1

)q

q−1 and

SB2 =
1−

Pk
i=υ+1(

pi
pB2

)q

q−1 .
Then, computing S(A) = S(A1 + A2) and S(B) =

S(B1 + B2), as the same way as Equation (5), we have a
new additive property, which, to find the optimal luminance
level, such as the equivalent in the Equation (6), we take the
argument that maximizes the following expression:

topt = argmax[(SA1 + SA2 + (1− q) · SA1 · SA2)·
(SB1 + SB2 + (1− q) · SB1 · SB2) · (1− q) · (SA1 + SA2+

(1− q) · SA1 · SA2) · (SB1 + SB2 + (1− q) · SB1 · SB2)]
(7)

In this case, instead of Equation (6), topt =
{topt1, topt2, topt3} is a set of threshold values for
two recursions, where topt1 is the first threshold and topt2

and topt3 are new thresholds for PA and PB distributions,
respectively.

At each iteration the NESRA generates 2r+1 regions,
where r is the number of recursions. Note that for r = 0,
the NESRA is the simple image binarization algorithm.

After this segmentation, it is necessary to extract from
the background the tumor’s boundary. To accomplish this
task, we apply a mathematical morphology approach. Since
this approach may generate a coarse contour of the tumor,
we apply a level set framework to smooth the contour. In the
next section, we describe our proposed protocol for breast
cancer classification.

4 The Proposed Five Steps Methodology

As outlined, we put all the above theoretical background
together to generate a five step protocol in order to classify
3D breast images. After application of NESRA algorithm,
we extract the lesion area from the background. The Fig-
ure 2 shows an original benign image example (left) and the
NESRA result (right). This result was obtained with one
NESRA recursion only, which means that the gray scale
distribution was partitioned into two new distributions and
each one was partitioned into two others, generating four
distinct regions. Although we wish to split the image into
two regions only – and in this case no recursion will be
needed – the use of 1 (one) recursion in this case helps to
delimit a tumor’s nucleus and also a boundary as a narrow
region around the nucleus. Note in the Figure 2 the white
region around the image center (tumor) and the intermediate
gray-level region around the tumor’s region (the transition



(a) (b)

Figure 2. Original ultrasound benign image
(left) and the NESRA results (right) with two
recursions and q = 0.5.

region between the tumor’s region and background). This
transition region can be isolated and helps to delimit accu-
rately the lesion boundary. Generally, this transition region
is made of a mixing of dead and alive cells. These dead cells
are generally swallowed to inside the lesion region as tumor
growing. For the result of Figure 2-b we used q = 0.5. In
this case, the ROI (Region Of Interest) is both, the tumor’s
nucleus and its transition region.

In the second step we use a morphological chain ap-
proach to extract the ROI from the background. This is
accomplished through the following rule. Considering the
binary image (tumor’s nucleus) generated by NESRA (e.g
Figure 2-b), let α and β be the total ROI’s area and the to-
tal image area, respectively. If α ≥ ξβ an erosion is car-
ried out; and if α <≤ δβ a dilation is carried out. After,
assuming that the ROI has a geometric center near to the
image center, we apply a region growing algorithm which
defines the final ROI’s boundary. In our experiments, we
fixed ξ = 0.75 and δ = 0.25 to correctly extract most of all
ROIs. The result of this morphological rule applied in the
image of Figure 2-b is shown in Figure 3-a.

(a) (b)

Figure 3. (a) ROI after morphological chain
application. (b) ROI after level set applica-
tion.

The region generated by the morphological chain rule is
a coarse representation of the lesion region. Then, as a third

step of our method, we apply a level set framework using as
initialization this region’s boundary [18]. However, since
this initial ROI is near to the real boundary, there is no need
for several iterations, as normally occurs in several level set
applications. Then, in our experiments, we have applied ten
iterations only. It was sufficient to get good results, which
generates low computational overhead. The Figure 3-b is
the final lesion boundary after the level set computation,
which is a more smoothing boundary for the lesion than that
in Figure 3-a.

After the above boundary tracing, the next step is the fea-
ture extraction of the ROI. Three radiologists have defined
five features which have high probability to work well as a
discriminator between malignant and benign lesions. In our
work, we have used these five features and tested them in
order to achieve some combination which yields to a good
empirical result.

• AR: The first feature is the lesion area. Since malig-
nant lesions generally have large areas in relation to be-
nign ones, this characteristic is a power discriminant.
We have normalized it by the total image area.

• CT: The second characteristic is related to the region
circularity. Since benign lesions generally have more
circular areas compared with the malignant ones, also
this can be a good discriminant. Then, we take the
ROI’s geometric center (GC) point and compute the
distance from each boundary point (xi, yi) to the GC.
Malignant lesions tend to have high standard devia-
tions of the average distances in relation to the benign
ones. Also, this feature is normalized by total image
area.

• PT: The third feature is the size distribution of the
lobes in a lesion. A boundary’s lobe is a protuberant
region on the boundary. We compute the convex hull
of the ROI and the lobe as a protuberance between two
valleys. The lobe areas are computed and only those
greater tham 10% of the lesion area are considered.
This feature is taken as the average area of the lobes.
Malignant lesions have high average area in relation to
benign ones.

• HT: The next feature is related to the homogeneity of
the lesion. Malignant lesions tend to be less homo-
geneous than benign ones. Then, we take the BGS
entropy – taken over the gray scale histogram – rela-
tive to the maximum entropy as the fourth discriminant
feature. As higher the relative entropy more homoge-
neous is the lesion region and, consequently, higher is
the chance to be a benign lesion.

• AS: The last feature is related with an interesting char-
acteristic of the lesions: the acoustic shadow. When



benign lesions have many water particles, the forma-
tion of an acoustic reinforcement below it is more
probable. On the other hand, when the lesion is more
solid (a malignant characteristic), there is a tendency
in forming an acoustic shadow. Then, by comparing
the lesion region and the region below the lesion may
give an idea if the lesion is a benign or malignant one.
If the region has acoustic shadow it tends to be more
white than if it has an acoustic reinforcement. Then,
we compute the gray scale histograms of both regions
and compare them. When more darkness is the region
below the lesion more is the acoustic reinforcement
and, consequently, higher is the probability to have a
benign lesion. We have computed the relative dark-
ness between both areas (tumor’s area and area below
the tumor) and take it as the fifth lesion feature.

These five features are combined into a 5-dimensional
feature vector. The space of all feature vectors are, finally,
input for a Nonlinear Support Vector Machine (SVM) [19]
in order to classify the lesion area as a being or a malig-
nant region. SVM is very good discriminant tool, mainly
when we do not have a linear separation between the data.
Since this feature space does not have a linear separation,
we have used a B-Spline curve as a kernel. Since some
characteristics are better discriminant than others, we also
have combined them into the SVM framework. To justify
that using a B-Spline as a kernel for the SVM improves the
classification under this non-linear space, we compare in the
Figure 4 the performance of our proposal under three differ-
ent kernels: B-Spline, polynomial and exponential. In this

Figure 4. ROC curves for the proposed CAD
System for three different kernel functions
used in the SVM classifier.

figure, the area under the ROC curve (92% of the total) is
clearly superior when the kernel is polynomial (area 84%)
and exponential (area 65%). Also, we show in Figure 5 how
a polynomial kernel separates our feature space for two fea-
tures only: AR and HT. On the other hand, when we use

Figure 5. SVM output with a polynomial ker-
nel. The white line is the polynome separat-
ing malignant tumors (gray circles) from be-
nign ones (black circles). The circles with
white boundaries are those inside confident
region.

a B-Spline kernel instead of polynomial, we have the as-
pect shown in Figure 6. In the case of B-Spline kernel, we
can note in Figure 6, a better separation of the feature space
compared with the polynomial-kernel shown in Figure 5.

In the Figure 7 we show five ROC curves for five differ-
ent combinations of the defined tumor’s features. Accord-
ing to these curves, the best performance is reached when
it is combined area (AR) + heterogeneity (HT) + acoustic
shadow (AS). This combination generated an Az = 92%.
All other combinations have resulted in similar performance
behavior and an Az inferior to AR + HT + AS combination.
In the next section, we offer a better discussion of these re-
sults.

5 Performance Evaluation

In order to test our proposed method we used a 50
pathology-proven cases data base – 20 benign and 30 ma-
lignant –. Each case is a sequence of 5 images of the same
lesion. Then, we tested 100 images of benign lesion and 150
of malignant ones. Since the detection of a malignant lesion
between five images of the same case indicates a malignant
case, it is reasonable to consider 250 different cases.



Figure 6. SVM output with a bspline ker-
nel. The white line is the polynome separat-
ing malignant tumors (gray circles) from be-
nign ones (black circles). The circles with
white boundaries are those inside confident
region.

Since our data base is small we have improved the results
through a cross-validation method. Then, these ultrasonic
images are randomly divided into five groups. We first set
the first group as a testing group and use the remaining four
groups to train the SVM. After training, the SVM is then
tested on the first group. Then, we set the second group as
a testing group and the remaining four groups are trained
and then the SVM is tested on the second. This process is
repeated until all five groups have been set in turn as testing
group.

To estimate the performance of the experimental result,
five objective indices are used. These indices are accu-
racy, sensitivity, specificity, positive predictive value and
negative predictive value. In our experiment, accuracy of
SVM with B-Spline kernel for classification malignancies
is 95.2% (238/250), the sensitivity is 97% (97/100), the
specificity is 94% (141/150), the positive predictive value
is 91.51% (97/106) and the negative predictive value is
97.92% (141/144)2.

In Figure 7 we show the complete SVM classification
output for our methodology in terms of ROC curves.

2TP = True Positive; TN = True Negative; FP = False Positive; FN
= False Negative; Accuracy = (TP+TN)/(TP+TN+FP+FN); Sensitivity
= TP/(TP+FN); Specificity = TN/(TN+FP); Positive Predictive Value =
TP/(TP+FP); and Negative Predictive Value = TN/(TN+FN).

Figure 7. ROC curves for the proposed CAD
System for several combinations of tumor
features.

6 Conclusions

Geometrical and Textured information from lesion area
in ultrasound images provide important discriminant for
computer-aided diagnosis systems. Since ultrasound im-
ages generally have complex characteristics between pix-
els it is interesting to study them from the point of view of
non-extensive entropy. Since that the traditional Shannon
entropy has provided the image segmentation between fore-
ground and background only, it does not guarantee that all
regions will be adequately analyzed. Then, our proposed
algorithm is a good option to initial segmentation. This
NESRA algorithm includes the same result as the traditional
entropy, but with the improvement that it is able to isolate
intermediate regions, such as the lesion’s boundary transi-
tions. This is one of the advantages of the NESRA when
applied on this kind of image. A CAD system can decide if
the transition area will be included or not in the ROI based
on a careful analysis.

On the other hand, the use a level set framework helps
to find the correct boundary position without, however, in-
creasing the computational time, but improving the system
precision.

Regarding the chosen features, this work does not is-
sue why some feature combination, such as AR + HT +
AS, generates better CAD System performance than others.
Then, we choose to test empirically which combination is
better, which can be seen in the graphic of Figure 7.

Besides the NESRA algorithm, our work proposes
a SVM diagnostic system which uses as input a five-
dimensional feature space characteristics. These character-



istics are based on geometrical and textured information and
should be combined in order to tuning the system. In our
experiments, the best combination was achieved when area,
heterogeneity and shadow were used only. All these fea-
tures are affected by the segmentation process. The use of
a B-Spline as SVM kernel is one of the main contributions
of our paper and one of the main responsible by the system
performance (up to 92%), since that this kind of curve al-
lows more flexibility over our feature space, as can be seen
in Figure 6. The use of a B-Spline clearly improve the clas-
sification as can be seen in Figure 4.

Now, as a future work, we are investigating our proposed
approach under ultrasound images of several lesion regions.
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