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Abstract

This work describes a new framework for automatic ex-
traction of 2D branching structures images obtained from
3D shapes, such as neurons and retinopathy images. The
majority of methods for neuronal cell shape analysis that
are based on the 2D contours of cells fall short of properly
characterizing such cells because crossings among neu-
ronal processes constrain the access of contour following
algorithms to the innermost regions of the cell. The frame-
work presented in this article addresses, possibly for the
first time, the problem of determining the continuity along
crossings, therefore granting to the contour following algo-
rithm full access to all processes of the neuronal cell un-
der analysis. First, the raw image is preprocessed so as to
obtain an 8-connected, one-pixel wide skeleton as well as
a set of seed pixels for each subtree and all the branch-
ing/crossing regions. Then, for each seed pixel, the algo-
rithm labels all valid neighbors, until a branching/crossing
region is reached, when a decision about the proper contin-
uation is taken based on the tangent continuity. The algo-
rithm has shown robustness for images with parallel seg-
ments and low densities of branching/crossing densities.
The problem of too high densities of branching/crossing re-
gions can be addressed by using a suitable data structure.
Successful experimental results using real data (neural cell
images) are presented.

1. Introduction

One of the most important implications of the intensive
investigations in genetics and biomolecular sciences along
the last decades has been the realization that more complete
understanding and control of phenotipic features of individ-
uals can not be fully achieved without effective characteri-
zation of such features as well as the consideration of influ-
ences of the external and internal environment where cells

and tissues develop (e.g. [4]). Whole new areas, including
post-genomics, neuroinformatics, and systems biology have
ultimately derived from the intensifying efforts in investi-
gating such fundamental questions.

Few biological systems provide such a challenging and
rich laboratory for relating phenotypic characteristics to ge-
netics and animal development as the nervous system. In-
deed, the ever changing shapes of neurons are closely re-
lated not only to the genetic cell content, but also to external
stimuli and internal biochemical and anatomical changes.
Already important as a subsidy for diagnosis, the character-
ization of neuronal shape has progressively established it-
self as a key resource for several investigations in biology
and neuroscience. Indeed, it is only by obtaining a precise
and comprehensive representation and characterization of
the shapes of the neuronal cells under analysis that more ob-
jective and quantitative efforts can be made so as to relate
neuronal phenotype with genetics, phylogenetics, compar-
ative neurology and animal development. Another impor-
tant problem related to neuronal shape concerns the shape-
function paradigm (e.g. [5]), which addresses how the struc-
ture of neuronal cells would be related to their respective
function. By being prototypically complex, neuronal cell
shapes also constitute a particularly interesting type of data
for shape analysis.

Despite its key role in so many areas, it was only more
recently that the endeavor of neuronal cell shape analysis
started to establish itself as an important research area on
itself. The intensification of related research efforts along
the last years has significantly contributed to formalizing
and developing a large number of measurements and mod-
els of neuronal shape, to the point that it becomes difficult to
provide a comprehensive review of this area in the current
work. Among the several approaches aimed at characteriz-
ing the geometry and connectivity of neuronal cells [2, 8, 9],
those based on the contours of the cells provide particu-
larly effective means for measuring and characterizing the
respective shape as a consequence of the mapping from the



2D (or 3D) spaces where the cells were imaged into 1D
parametric curves describing the outline of the cells (Fig-
ure 1). Among other possibilities, such curves can be used
in order to infer the normal and/or tangent orientation fields
along the cell contours, as well as the estimation of the re-
spective curvature (e.g. [3]), which can provide particularly
valuable information about the local degree of bending of
the curve as well as its concavity. However, such approach
is often limited by the presence of crossings between the
neuronal processes, implying some regions of the cell to be-
come inaccessible for contour extraction.

Figure 1. Example of neuron image consid-
ered in this work.

Usually, the contour [7] obtained from a shape is under-
stood as a parameterized curve, from which several mea-
surements, such as curvature, can be obtained. A typical
shortcoming in extracting contours from branching struc-
tures consists in the fact that the chain-code-based con-
tour following algorithm (Figure 2) can not traverse regions
delimited by crossings (due to the 3D to 2D projection).
As a result, only the outer contour of the cell is obtained,
while the innermost structures remain unaccessible (fig 3).
In other words, the contour following algorithm based in the
chain-code can not deal with non-Jordan curves [1].

The current work is aimed precisely at solving such
a problem, so that more complete parametric representa-
tions of the cell shape can be obtained and analyzed. This
is achieved through the incorporation of several criteria,
with particular emphasis given to ensuring the continuity of
the tangent orientation as the means to identify the proper
continuation of the neuronal processes as they go through
crossing-points. The introduced algorithm represents the
main original contribution of the present paper. To circum-
vent the aforementioned shortcoming in branching struc-
tures contour following, we propose an algorithm devised

Figure 2. Chain-code illustration. The neigh-
borhood of the pixel c is scanned according
to the increasing sequence 1..8.

to separate crossing branches within a branching structure,
namely the Branch Tracking Algorithm (BTA), so allow-
ing the chain-code contour following algorithm to yield a
proper contour for most neuronal shapes.

Figure 3. Neuron skeleton (black) and re-
spective contour (dark gray). The light gray
shaded areas are unreachable for the contour
following algorithm based on the chain-code.

This paper is organized as follows. Section 2 presents
an overview of the proposed framework, which is subse-
quently detailed in Section 3. Experimental results obtained
from the application of the proposed algorithm to images of
real neural cell are presented in Section 4. The paper is con-
cluded with some discussion on the obtained results and our
ongoing work in Section 5.



2. Concepts and Overview

In general, an image obtained by means of an imaging
device such as a photograph camera is a two-dimensional
projection from a three-dimensional shape, hence lack-
ing information regarding depth. Particularly, when dealing
with complex shape images, such as neurons and reti-
nal images, depth information becomes crucial to set apart
branches that seem to intersect one another. This is the
main problem addressed in the present paper.

A branching structure is a binary image of the 8-
connected one-wide pixel skeleton, obtained from a shape
image, where bifurcation regions and crossing regions are
present. A branch is the binary image comprised of a set
of pixels starting from either the soma up to its termination
or a bifurcation/crossing region up to its termination, whose
object pixel coordinates may be parameterized as a smooth
curve. A bifurcation region is the set of pixels where an in-
ward branch splits into two outward branches, one of them
in quite a distinct orientation. A crossing region is the set
of pixels where an inward branch splits into N > 2 out-
ward branches, with N − 1 outward branches in quite dis-
tinct orientations.

The proposed approach involves two main steps:

• Preprocessing the original image through mathe-
matical morphology transformations, yielding its
8-connected one-wide pixel skeleton image, its cross-
ing regions image and a queue containing the ori-
gins of the branches, to be taken as the seeds for the
BTA;

• Calling the BTA for each source point (i.e. each seed).
Starting by the current seed, the algorithm labels itera-
tively its valid neighboring pixels, i.e still non-labeled
pixels, whose vicinity equals two pixels until a cross-
ing/bifurcation region is reached. The algorithm takes
a decision to continue with the tracking procedure for
the current branch. The branching structure topology
itself provides the algorithm with proper information
to decide among several possible outward branchings.

These steps are detailed in next section.

3. General Framework

3.1. Preprocessing

Firstly, the following preprocessing algorithm is per-
formed in order to achieve the desired branching struc-
ture to be labeled:

BTA:Preprocessing
begin

(a) (b)

Figure 4. (a) Structuring Element for Hit-
or-Miss filtering the prunned skeleton to
yield an 8-connected one-pixel wide skeleton
(b)Light gray pixels at the left hand should be
removed yielding the non-redundant struc-
ture at the right hand.

• Thresholding the original gray level image to binarize
it;

• Eroding the binary image by a disk structuring element
to get rid of dendrites;

• Area Filtering the eroded image to segment only the
neuron soma;

• Dilating the filtered neuron soma to retrieve its origi-
nal size;

• Dilating the binary image in order to merge branch
portions which are too close and almost parallel;

• Skeletonizing the binary image by morphological thin-
ning [6];

• Pruning the skeleton (Figure 5-a) to get rid of noise
structures [6];

• Building a 3 × 3 mask template for the Hit-or-Miss
operation (Figure 4-a) to eliminate redundant informa-
tion (Figure 4-b) and achieve an 8-connected one-pixel
wide skeleton structure (Figure 5-b);

• Subtracting the soma from the 8-connected one-pixel-
wide skeleton;

• Detecting end points twice. First in the 8-connected
one-pixel wide skeleton structure along the soma seg-
mented previously and then in the 8-connected one-
pixel wide skeleton structure without the soma seg-
mented previously. The difference between these two
images should ultimately yields only the origin points
to be used as source or seeds to feed the BTA, as de-
picted in (Figure5-c).

• Creating a neighborhood image, where each pixel
value represents the number of object pixels in its
8 neighborhood. Henceforth this image will be re-
ferred to as Crossing regions image. (Figure 5-d).



end
It is worth mentioning that structure elements size for

all morphological operations were empirically found for
the set of processed images. Different sized images may re-
quire different structure element sizes.

3.2. Branches Tracking

For the branch tracking step, it is introduced the Branch
Tracking Algorithm (BTA) to segment, that is to label, each
neuron branch as a distinct object on its own. Roughly
speaking, the BTA is comprised of two great loops, the out-
ermost one associated to a Queue for seeds (source points),
while the innermost one manages a Stack for valid neigh-
bors, neighbors of neighbors and so forth. Objects, i.e. non-
labeled and non-crossing pixels, are considered as being
valid. Thus, for each dequeued seed, the BTA is called for
a partial branch tree, by stacking all valid pixels pertain-
ing to the same branch. These stacked pixels will be sub-
sequently labeled until either the current branch termina-
tion pixel or a branching/crossing region is reached. Every
time a branching/crossing region is reached, the BTA iden-
tifies the best branch to continue the labeling process, while
enqueueing seeds for partial branch trees to be labeled in
a recursive-like fashion, until no more branches stemming
from a branch within the tree rooted at the current source
seed is found.

In order to determine the branch to continue the label-
ing past a branching/crossing region, a breadth-first search
has been adopted, which works by enqueueing all the pix-
els into an auxiliary queue while getting across the just de-
tected branching/crossing region. This breadth-first search
takes place until a stability condition is achieved, i.e. there
are only non-crossing pixels enqueued, for a consecutive
number C of times. This process is illustrated in figure 6
and table 1.

Notice that scanning the neighborhood of the pixel a
(state 0 in table 1) according to the chain-code defined in
figure 2, we obtained the state 1. By setting the stability
condition parameter C to 8, this procedure is repeated until
state 22, when Σ equals C. At this point, the remaining pix-
els in the auxiliary queue, y, w and z, provide us with the ter-
minations of the desired outward direction vectors. Strictly
speaking, each corresponding direction vector origin should
fulfill two requirements simultaneously: (i) be neighbor of
the nearest crossing region pixel and (ii) have an existing
path of valid pixels between it and the respective termina-
tion. For images presenting low branching/crossing region
densities, the second requirement might be ignored, but not
in the case of the figure 6-a. Figure 6-b shows the vectors
obtained by considering both conditions (i) and (ii). All the
vectors are then normalized and dot products between the

state current queue B Σ
0 ∅ a 1 1
1 a b 0 0
2 b c d ǎ 0 0
3 c d e ďb̌ 0 0
4 d e č f b̌ 1 1
5 e f g č 1 2
6 f g ď h 1 3
7 g h i ě 0 0
8 h i j f̌ 0 0
9 i j l m ǧ 0 0

10 j l m n ȟ 0 0
11 l m n o p m̌ǐ 0 0
12 m n o p ľp̌̌i 0 0
13 n o p q ǰ 0 0
14 o p q r ľ 0 0
15 p q r ľ s m̌ 1 1
16 q r s ň t 1 2
17 r s t u ǒ 1 3
18 s t u p̌ v 1 4
19 t u v q̌ x 1 5
20 u v x y ř 1 6
21 v x y š w 1 7
22 x y w ť z 1 8

Table 1. States of the auxiliary queue. B is 1
if all pixels in a given state are non-crossing
and 0 otherwise. Σ is increased by one if
the respective B is on, and zeroed otherwise.
Notice the check marks on some enqueued
pixels; these checked pixels will be ignored,
thus removed from the queue, as they have
already been considered before.

inward direction vector v0 and each outward direction vec-
tor are computed. Obviously, the outward vector for which
the dot product result is maximum gives the proper direction
to continue with the labeling, therefore the next pixel to be
stacked. The remaining vectors are taken as side branches
seeds to be enqueued for further processing. In the example
described in table 1 and figure 6, the vector v3 would give
the direction toward which to continue the labeling, while
vectors v1 and v2 would give directions for future consider-
ation.

In brief, the BTA might be described as follows:
BTA:LabelTree

begin

• Initialize a stack for valid branch pixels and a queue
for seeds.

• While queue is not empty



(a) (b)

(c) (d)

Figure 5. Preprocessing results: (a)Pruned skeleton. (b)The darkest pixels were removed by the Hit-
or-Miss filtering yielding the 8-connected one-pixel wide skeleton shown in lighter gray level. (c)
Soma (light gray), seed (dark gray) and skeleton(black). (d)Crossing regions (light gray) and skele-
ton (black).

– Call BTA:LabelBranch.

• Check conditions to stack only valid neighbor pixels,
that is object and non-labeled pixels.

end

The BTA:LabelTree algorithm makes a call to the
BTA:LabelBranch procedure, which is defined be-
low:

BTA:LabelBranch
begin

• Pop the current pixel.

• Keep track of the jth preceding pixel to compute
the inward direction vector when arriving at a cross-

ing/bifurcation region, where j may be a parameter.
Usually, it suffices to take the 4th pixel, that is j = 4 .

• If the current pixel is valid, i.e. it is an object, non-
labeled and outside a crossing region, then label it.

• Probe the current pixel neighborhood to check if there
is a crossing/bifurcation region.

• In case there is any inward crossing region pixel in
the neighborhood, compute the inward normal direc-
tion vector.

• In case there is any inward crossing region pixel in the
neighborhood, enqueue all neighbors iteratively, until
reaching a number of non-crossing pixels outward the
branches for a consecutive number c of times, thus pro-
viding a stability condition.



(a) (b)

Figure 6. A typical critical region and the corresponding direction vectors obtained from it. (a) Close
critical regions (light gray). The breadth-first search starts as the pixel a is reached and stops when
only pixels y, w and z remain in the auxiliary queue. (b) the obtained direction vectors.

• These just reached non-crossing pixels will be the ter-
minations of our outward direction vectors.

• For each termination pixel, take its nearest pixel in-
side the crossing/bifurcation region and compute the
respective normalized direction vector.

• Now calculate the dot product between each outward
direction vi vector and the inward direction vector v0

and take the kth index related to the vector vk that gives
rise to the largest dot product result, i.e:

k = argmaxi(< v0, vi >) (1)

• If there are only two outward branches, push the pixel
related to the kth outward normal direction vector onto
the stack and enqueue the other.

• Reinitialize the auxiliary variables in order to retrieve
the ante-penultimate valid pixel coordinates for the
next inward direction vector.

• If there are more than two outward branches, push the
pixel related to the kth outward normal direction vec-
tor onto the stack and enqueue all the remaining non-
crossing vectors that are not in opposite orientations.

end

4. Results

The algorithms described so far have been im-
plemented as Matlab scripts. The mathematical
morphology operations have been applied using

the Mathematical Morphology Toolbox by SDC
(http://www.mmorph.com/). The method has
been evaluated and results obtained by labeling rat hip-
pocampal cells from public available Southampton Archive
(http://www.compneuro.org/CDROM/nmorph/
index/topindex_tn.html). Some results are pre-
sented in figure 7. The left column shows the original
images while the right column presents the respec-
tive labeling results, shown as connected components
with the same gray-level as label. New labels are as-
signed to dendrite segments born from branches. The
algorithm is able to distinguish branches from cross-
ing, which is reflected by the correct assigned labels for the
outward segments from such structures. Notice how par-
allelism and high densities of branching/crossing regions
imply the BTA to label the same branch with different la-
bels.
For the 3 test images shown in figure 7, it has been vi-
sually identified 40 bifurcations and 3 clear-cut cross-
ings. All the bifurcations were correctly labeled and
so were the 3 crossings without parallelism occurren-
cies.

5. Concluding Remarks

The proposed approach starts by extracting the skele-
ton of the 2D projection of a 3D branching structure. Any
skeletonization method may be applied to obtain the skele-
ton and incorporated (e.g. morphological thinning, exact di-
lations, medial axis transform). The important issue is to



(a) (b)

(c) (d)

(e) (f)

Figure 7. Results. Original images (a), (c) and (e). Labeled images (b),(d) and (f). A different gray level
value has been used to label each different segment in (b),(d) and (f). The set of used gray level val-
ues was chosen so as to enhance the contrast among segments. Also, these images have been di-
lated by a 1-sized cross structuring element in order to improve their visualization.



have a suitable skeleton as input to the method. The prepro-
cessing parameters have been empirically chosen and de-
pend on the adopted skeletonization algorithm.
Despite the good results presented in the previous section,
there are still some pending cases deserving special atten-
tion in future research. In general, the major pitfalls encoun-
tered during BTA running were related to different particular
structure topologies, leading to high crossing/bifurcation re-
gions densities, superposition of branches and/or branches
parallelism.

As pointed out in the BTA description, in case of images
with high crossing/bifurcation regions density, both condi-
tions should be accomplished in order to get the direction
vectors origins, otherwise shortcomings may occur, such as
missing some branches. In the example presented in fig-
ure (6), notice that for all the termination pixels y, w and z
the nearest branching/crossing region pixel is p. Hence, by
considering only the proximity condition, instead of the ob-
tained vectors v1, v2 and v3, all vectors origins would lie in
s, i.e. the nearest non-crossing pixel which is neighbor of p.
It is plain to see that, as a consequence, only pixel s would
be stacked for continuing the labeling process. However
there are not valid paths between s and y and between s and
z. For this reason, the incoming branch would have its con-
tinuation from pixel s on, instead of pixel f as expected. As a
result, the BTA would miss two branches. This is a straight-
forward consequence of the breadth-first search agglutinat-
ing effect, since the breadth-first search has been imple-
mented by using a queue data structure, which is memory-
less regarding the shape topology. In an effort to accomplish
the stability condition, the algorithm has clumped both bi-
furcation/crossing regions (Figure 8-(a)) into only one (Fig-
ure 8-(b)). A possible solution for this problem is to imple-
ment the breadth-first search by using a tree data structure,
so as to keep memory of the topology at the critical region.
As soon as the stability condition would be accomplished,
the BTA would just get the tree leaves, which would host the
direction vectors terminations, and ask the tree for the direc-
tion vectors origins by climbing the tree from each termina-
tion up its nearest non-crossing bifurcation/crossing neigh-
bor. The tree itself would provide us properly with the valid
paths between terminations and origins.

Particularly, it has been observed in rat hippocam-
pal cells that too close branches parallelism may oc-
cur with high frequencies. This might create short cycles
along the structure leading to the BTA incorrectly label-
ing the branches. As a solution, the image has been dilated
just before it has been skeletonized. By doing so, short cy-
cles would be shrunk into a branching/crossing region.
In future works, we intend to proceed a multiscale analy-
sis to circumvent this shortcoming.

(a) (b)

Figure 8. (a) Two separate regions (b) Two re-
gions clumped into one.
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