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Abstract 
 

FingerCode is a fingerprint correlation matching 
scheme that relies on texture information. In this 
scheme, the oriented components are extracted from a 
fingerprint image using a bank of Gabor filters, and a 
directional texture feature vector is computed for each 
oriented component. The feature vectors from the input 
and template images are compared and a matching 
score is obtained. Here we explore ways to improve the 
matching score for the FingerCode method by using 
more complex matching functions. The best results 
were obtained by applying a nonlinear function to the 
texture values and weighting the texture vectors based 
on the spatial distribution. 
 
1. Introduction 
 

The use of biometric systems, in particular 
fingerprint-based systems, is increasing. Because 
fingerprints are unique, permanent, and easy to collect 
identifiers of individuals, systems based on fingerprint 
patterns show good performance and reliability [1]. 
These characteristics, which underpin the push towards 
exploiting fingerprint systems in civilian applications, 
are the same as have been used for more than a century 
in forensic applications. 

A fingerprint is the pattern of alternating ridges and 
valleys on the finger surface. At the global level this 
pattern has distinct shapes and characteristics called 
singularities, such as high curvature and predominant 
orientation. At the local level, anomalies in the pattern, 
called minutiae, can be found; examples of minutiae 
are terminations and bifurcations. Fingerprint systems 
can be broadly categorized into correlation-based 
techniques [2-4] and minutiae-based techniques [5-6] 
depending on whether they consider singularities or 
minutiae respectively. The majority of fingerprint 
applications use minutiae in the matching process, 
while the correlation-based technique is mostly used to 
classify fingerprints [7-9].  Each of these techniques 

does not account for information on the other level: 
minutiae based methods do not utilize the full 
information from the global level and correlation based 
methods do not use the detailed local level information. 
Hence, systems that combine the two techniques could 
potentially be of great utility [9]. 

Based on a model for iris recognition [11-13], Jain 
et al. [14] developed a texture-based method for 
fingerprint recognition called FingerCode. In their 
method, the pair of fingerprints under consideration is 
first aligned according to their core points, then 
oriented texture vector sets are extracted by a bank of 
Gabor filters, and finally the Euclidean distance of the 
oriented texture vector sets is computed. Subsequently, 
Jain et al. [15] proposed a hybrid FingerCode method 
that combines minutiae and texture (i.e. local and 
global information). In this variation, the minutiae 
points are used to align the fingerprints and the texture 
vector sets are used to obtain the final match score 
[16]. 

Motivated by our perception from past work that 
certain aspects of fingerprints have greater 
discriminating power than others, in the present study 
we explored the use of more complex FingerCode 
matching functions. The best results were obtained 
using two types of function: a nonlinear function (e.g., 
an exponential) as a substitute for the texture values; 
and applying weights to the texture vectors using 
statistical measures extracted from the set of texture 
vectors (e.g., mean and standard deviation) based on 
the spatial distribution. The statistical measures were 
obtained in two ways: from an area around a cell in a 
specific oriented component, or from a cell in the same 
position in all oriented components. 

In our experiments, we use the hybrid FingerCode 
of Ross et al. [16] because it is more accurate than the 
FingerCode method alone. This paper is organized as 
follows: Section 2 presents the FingerCode method and 
its hybrid variation; the alternative matching score 
functions are described in Section 3; the experimental 
results obtained using the new matching score 



functions are given in Section 4; and finally, our 
conclusions are presented in Section 5. 
 
2. FingerCode 
 

The FingerCode method is a correlation based 
technique, where a small circular area around the core 
point is tessellated in an arc fashion and filtered by an 
oriented Gabor filter bank. For each cell in the oriented 
components, a value is computed that constitutes the 
texture feature vector. Two fingerprints are aligned by 
their core points and their texture vectors are 
compared, generating a score that indicates whether 
they belong to the same finger. The FingerCode hybrid 
variation differs from the FingerCode method in that it 
uses the entire fingerprint area, which is tessellated in a 
square rather than an arc fashion, and, most 
importantly, the minutia points are used to align the 
fingerprints. 

In the hybrid variation, the fingerprint image is 
tessellated in rectangular cells. The block size used in 
the present work was 16x16 pixels, which corresponds 
to approximately 1.5 times the width of the ridge-
valley structure in a 500 dpi image. Then, the 
fingerprint is separated from the background in the 
segmentation process, while avoiding extraction of 
features from invalid cells (cells in which one or more 
pixels belong to the background). In this process, a 
morphological scheme is used to establish the 
fingerprint mask. To reduce intensity variations due to 
differences in finger pressure, the fingerprint image is 
normalized using the approach presented in [17]. 

After extracting the minutiae points from the input 
image, the rotation and translation parameters are 
generated that give the best correspondence with the 
set of minutiae points from the template image. The 
aligned image is filtered by an oriented Gabor filter 
bank. The Gabor filter is frequency- and orientation-
selective and consists of a sinusoidal wave modulated 
by a Gaussian envelope. The bank is formed by eight 
Gabor filters in directions Θ = {0°, 22.5º, 45º, 67.5º, 
90º, 112.5º, 135º, 157.5°}. The chosen frequency (f0 = 
0.1 pixel-1) was based on the mean inter-ridge distance 
of approximately 10 pixels for a 500 dpi image. The 
real part of the Gabor filter is given by: 

( ) ( )0

2 2

2 2, exp cos

sin cos

cos sin

1
2 x y

G x y x

x x y

y x y

x y
θ

θ

θ

θ θ ω

θ θ

θ θ

σ σ
=

= +

= −

  
− +      

 
(1) 

 

where σx and σy are the standard deviations of the 
Gaussian envelope along the x- and y-axes 
respectively, θ is the direction of the filter, and ω0 = 
2πf0. The filtering extracts eight oriented image 
components in each direction. For each cell, C, the 
feature value, Fρθ, is computed: 
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where Cρθ is the cell at position ρ in the oriented 
component θ, Cρθ(x,y) is the pixel value at position 
(x,y) in cell Cρθ, Kρθ is the number of pixels from cell 
Cρθ, and Cρθ  is the mean value of the pixels from cell 

Cρθ. FingerCode is the set of eight feature vectors 
composed of all cell values, Fρθ. The difference vector, 
E, is formed by the absolute difference between 
corresponding cells from the input, F, and template, T, 
FingerCode feature vectors: 

E F Tρθ ρθ ρθ= −  (3) 
 
where Eρθ, Fρθ and Tρθ are the cell values at position ρ 
in direction θ from the difference, input and template 
feature vectors, respectively. The matching score S is 
expressed as the sum of all differences normalized by 
the number of valid cells, V, given by the intersection 
of the two fingerprint masks: 

1
S V E

V ρθ ρθ
ρ θ∈Ρ ∈Θ

= ∑∑  (4) 

 
where Vρθ indicates whether the cell at position ρ in 
direction θ is valid (Vρθ = 1) or invalid (Vρθ = 0), and Ρ 
is the set of all cell positions in one oriented 
component. If the score S is below a predetermined 
threshold, the two fingerprints are considered to belong 
to the same finger; otherwise they are considered to 
belong to different fingers. 
 
3. Matching Functions 
 

The use of more complex functions to compute the 
difference feature vector can improve the 
discrimination of fingerprint matching. In preliminary 
testing, we found that among the various approaches 
that can be used to calculate the matching score, the 
best results were obtained by the following two 
methods: replacing the difference feature cell values 
with new values given by a nonlinear function; and 



applying weights to the texture or difference feature 
cells using statistical measures extracted from them. In 
the second case the statistical measures pick up 
characteristics of spatial distribution of the feature 
vector. 
 
3.1. Nonlinear Functions 
 

One way to improve the matching score is to apply 
a nonlinear function, fα, to the difference feature values 
so as to create new ones. The new matching score is:  

( )1
fS V f E

V ρθ α ρθ
ρ θ∈Ρ ∈Θ

= ∑∑  (5) 

 
The functions chosen give more importance of 

differences than of similarities between the features 
vectors. Two of the best functions, fα, identified in the 
present work were a polynomial function of the form: 

( )f x xα
α =  (6) 

where α is the polynomial degree; and an exponential 
function of the form: 
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where α is the coefficient degree. In these equations, 
fα(x) gives the new values from the difference cells. 
 
3.2. Statistical Weighting 
 

Statistical measures were used to weight the feature 
vectors based on the spatial distribution of the features. 
These measures can be extracted from and applied to 
each of the difference feature vector, Equation (8). 

E R F Tρθ ρθ ρθ ρθ
′ = −  (8) 

 
Two ways to extract the measures from the features 

vectors were explored: from the neighborhood of a cell 
in a specific oriented component, or from cells in the 
same position across all oriented components. The 
neighborhood, Nρ, of cell ρ is given by the eight cells 
surrounding that cell and by cell ρ itself in a specific 
oriented component θ ∈ Θ. Thus, as shown in Figure 
1, the neighborhood of a cell is Nρ = {ρ, ρ1, ρ2, ρ3, ρ4, 
ρ5, ρ6, ρ7, ρ8}. The measures extracted from cells at the 
same position across all directions are obtained from 
the values of Ρρ, where Ρρ = {ρθ1, ρθ2, ρθ3, ρθ4, ρθ5, ρθ6, 
ρθ7, ρθ8} as shown in Figure 2. 
 

 
Figure 1. Neighborhood of cell ρ, Nρ = {ρ, ρ1, ρ2, 
ρ3, ρ4, ρ5, ρ6, ρ7, ρ8}. 
 

 
θ1 = 0 °  θ2 = 22.5 ° .... θ8 = 157.5 ° 

Figure 2. All cells ρ across all directions θ, Ρρ = 
{ρθ1, ρθ2, ρθ3, ρθ4, ρθ5, ρθ6, ρθ7, ρθ8}. 
 

The weights, R, can be given by the mean or 
standard deviation of the feature values from the 
neighborhood of a cell (Equations (9) and (10), 
respectively); or the mean or standard deviation of the 
feature values from the cells in the same position 
(Equations (11) and (12), respectively). 

1

9 r
r N

R E
ρ

ρθ θ
∈

= ∑  (9) 

( )21ˆ
9 r r

r N

R E R
ρ

ρθ θ θ
∈

= −∑  (10) 

1

8 q
q

R Eρ ρ
∈Θ

= ∑  (11) 

( )21ˆ
8 q

q

R E Rρ ρ ρ
∈Θ

= −∑  (12) 

 
Other measures tested were the median, maximum, 

minimum, and combinations of two of these measures. 
When the measures are extracted from cells in the 
same position across all directions, the weight R is the 
same for all oriented components. 
 
4. Experimental Results 
 

We used the databases of the Fingerprint 
Verification Competition 2002 (FVC2002) to test the 
gain obtained using the proposed matching functions. 
The FVC2002 databases consist of four distinct 
databases (Db1–Db4), each of which contains data 
collected using a different sensor/technology. 

Each database contains 8 fingerprint samples for 
each of the 100 distinct fingers. In the present work, 
we compared the eight samples of the same finger with 



each other, and also compared the first sample of each 
finger with the first sample of all others fingers. These 
combinations result in 2800 comparisons between 
different samples of the same finger and 4950 
comparisons between the pairs of first samples of 
different fingers. 

To compare the new matching functions, we used 
the Receiver Operating Characteristic curve (ROC), 
which took the form of a plot of the False Accept Rate 
(FAR) against the False Reject Rate (FRR) for various 
thresholds. The FAR is given by the percentage of 
comparisons between different fingers where the 
matching score is below the threshold, i.e., false 
matching. The FRR is given by the percentage of 
comparisons between different samples of the same 
finger where the matching score is above the threshold, 
i.e., false non-matching. The matching scores were 
normalized to [0 1]. The equal error rate (EER) is the 
point where the FRR and FAR are equal. 

The first experiment replaces the difference cell 
values using nonlinear functions. Among the various 
functions tested, the best results were obtained using 
functions for which the effective replacement values 
had an exponential shape. These functions emphasize 
the contrast of the difference feature vector. Table 1 
shows the Equal Error Rate (EER) for the hybrid 
FingerCode method, as well as for the polynomial and 
exponential replacing functions (Equations (6) and (7), 
respectively). Figure 3 shows the ROC curves obtained 
for the functions listed in Table 1. 

 
Table 1. Equal Error Rate (EER) for non-linear 
functions, where α is the polynomial degree or 
exponential coefficient degree used. 
 Original Polynomial Exponential 
Db1 2.12% 1.17% (α = 4) 1.19% (α = 17) 
Db2 1.76% 0.99% (α = 3) 1.01% (α = 14) 
Db3 3.43% 3.04% (α = 4) 3.05% (α = 14) 
Db4 3.06% 2.66% (α = 3) 2.67% (α = 12) 
 

 
(a) 

 
(b) 

 
(c) 



 
(d) 

Figure 3. ROC curves for non-linear functions: (a) 
Db1; (b) Db2; (c) Db3; and (d) Db4. 
 

In the second experiment, we tested several 
approaches to weighting the cells using statistical 
measures extracted from the texture or difference 
feature vectors: mean, standard deviation, median, 
maximum, minimum, and combinations of two of 
these measures. These measures were used directly, 
either by giving more weight to cells with high values 
of the measure, or inversely, giving more weight to 
cells with low values. For Db1, Db2, and Db3, the 
statistical measures for cell weighting that gave the 
best responses were the standard deviation of the 
neighborhood around a cell in a specific oriented 
component (Equation 10) and the standard deviation of 
the cells in the same position across all oriented 
components (Equation 12), extracted from and applied 
to the difference feature vector (Equation 8), used in 
the direct way. The first one analyzes the uniformity of 
the surrounding area of the point, while the second one 
analyzes the direction force in the point. Table 2 shows 
the EERs for the hybrid FingerCode method (Original), 
the standard deviation of the neighborhood of a cell in 
a specific direction (Neighborhood), the standard 
deviation of the cells in the same position across all 
directions (Across Directions). Figure 4 shows the 
ROC curves for the cases listed in Table 2. 
 
Table 2. Equal Error Rate (EER) for statistical 
weighting. 
 Original Neighborhood  Across Direction 
Db1 2.12% 1.19% 1.35% 
Db2 1.76% 0.99% 1.01% 
Db3 3.43% 2.69% 3.11% 
Db4 3.06% 3.17% 2.61% 
 

 
(a) 

 
(b) 

 
(c) 



 
(d) 

Figure 4. ROC curves for statistical weighting: (a) 
Db1; (b) Db2; (c) Db3; and (d) Db4. 
 

In Db4, the Neighborhood case worsened the 
response, and only the Across Directions case worked 
well. For Db4, the best results (EER = 1.80%) were 
obtained by weighting the cells using the maximum 
cell value from the neighborhood of a cell in a specific 
direction, which was extracted from and applied to 
each of the texture vectors; by contrast, the gain 
obtained using this measure was very small for the 
other databases. However, given that Db4 is composed 
of synthetic fingerprints, we do not recommend the use 
of this measure. 
 
5. Conclusions 
 

In the present work we have established that using 
more complex functions to match the texture feature 
vectors can improve the discrimination of the 
FingerCode method. A large range of matching 
functions could potentially be used for this purpose; 
here we have presented two such functions: replacing 
the cell values of the difference vector by a non-linear 
function; and weighting the cells using statistical 
measures extracted from the feature vector. 
Application of the method to the four data sets within 
the FVC2002 database showed that the gain achieved 
depends on the database used. Db1 and Db2 (optical 
sensors) showed the greatest gain (~40% improvement 
in the EER) for both approaches. Db3 (capacitive 
sensor) showed a lower gain than Db1 and Db2 (~10% 
improvement in the EER). Db4 (synthetic fingerprints) 
showed behavior that was very different from that 
observed for the other databases in the experiments 
using statistical measures. 

The process of replacing cell values with new 
values given by a nonlinear function is faster and easier 

than the process of weighting cells based on statistical 
measures. In the nonlinear function approach, however, 
it is necessary to find the optimum parameters of the 
function to be used, which requires a good 
representative sample of the database. If new input 
fingerprints diverge from this representative sample, 
the response of the function will diminish. Here we 
found that the best fitting functions had exponential-
like characteristics that cause low values to be 
decreased to near zero, and high values to be markedly 
increased. 

Compared to the nonlinear function approach, the 
use of statistical measures has the advantage of being 
less sensitive to the specifics of the database. The same 
measures work well for almost all types of fingerprints. 
Here we found that the two best statistical measures 
were the standard deviation from the neighborhood of 
a cell in a specific direction, and the standard deviation 
from the cells in the same position across all oriented 
components, extracted from and applied to the 
difference feature vector. The former measure gave 
superior results for all databases except the database of 
synthetic fingerprints. The gain achieved using a 
combination of statistical measures was small 
compared to that achieved using a single measure, and 
the use of multiple measures has the disadvantage of 
being more complex. 
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