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Abstract

Motion segmentation is one of the first steps in image
sequence applications. The problem has been extensively
studied and approached in several ways but it remains a dif-
ficult task even for sequences acquired by stationary cam-
eras. In this paper we propose a novel algorithm that is
based on Mathematical Morphology. The algorithm is sim-
ple to be implemented, less subject to lighting changes and
more robust to false positives. It has been tested in secu-
rity cameras’ image sequences showing promising results.
Some algorithms from literature have been implemented
and compared to the one described here.

1. Introduction

Motion segmentation is vital to several video applica-
tions because it will delimit regions of interest to the anal-
ysis phases. The problem has been approached extensively
in the last two decades but it remains a difficult task [23]
even when videos are acquired by stationary cameras.

There are basically four approaches to treat this prob-
lem [24]: 1) background modelling and subtraction, 2) sta-
tistical point analysis, 3) temporal differentiation and 4) op-
tical flow.

1. In videos generated by stationary cameras, motion seg-
mentation can be achieved by analyzing each new
frame in relation to a model of the scene background.
Usually, the symmetric difference operator [3] is used
because it detects pixels that changed in the current
frame in relation to the background model. For in-
stance, the pixels of a chair that was in the model
and is right shifted in the current frame. Some advan-
tages of this approach are its simplicity and the good
shape recovery of the moving objects. Some prob-
lems are the susceptibility to lighting changes and the
computational cost to create and keep the background

model [23]. A trivial solution to estimate the back-
ground is to film the scenery without moving objects
or to set a specific color to the background as in the
Chroma keying technique [7]. Both solutions are im-
possible in uncontrolled scenes. A more realistic so-
lution is using a subset of the initial frames of the im-
age sequence to estimate the background using some
statistics like mean or median. The mean is a simple
and efficient statistics, but the most susceptible to dis-
crepant values. The median is a more robust statis-
tics [24], however, median implies in more computa-
tional costs and memory usage. Adaptive mean has
already been tried [4] to reestimate the background at
each frame, and it is more robust to lighting changes.

2. In the statistical point analysis approach, statistics are
computed and maintained for each pixel based on an
interval of time of the video. The pixels are classi-
fied as background or foreground according to arbi-
trary thresholds or statistical hypothesis tests. One ex-
ample of this technique is the use of the Wiener filter
in Wallflower algorithm [23]. Techniques that use this
approach are very robust and popular nowadays.

3. In the temporal differentiation approach, the most used
technique is to compute the difference between two
consecutive frames. It is simple and robust to lighting
changes, but it recovers a very poor shape of the fore-
ground and it is very susceptible to noise. One way
to reduce noise is to use the information of three con-
secutive frames, as in [4]. The complete shape of the
target objects can be obtained by using a connected op-
erator [5].

4. Optical Flow is defined as a 2D distribution of ap-
parent displacement vectors among pixels of consec-
utive frames [21] and it is used to describe a coherent
movement of points or features in an image sequence.
The optical-flow-based segmentation uses features of
the vectors to find regions of similar displacement. A



problem in this approach is the computational cost that
inhibits its use in a real-time application without spe-
cialized hardware.

Combinations of the four approaches above have been
tried, for instance, in [4], the authors use a hybrid approach
mixing temporal differentiation and background subtraction
obtaining good results; in [1], the authors use temporal dif-
ferentiation between the gradient [9] of two consecutive
frames and a 3D human model is fitted into the result (to
obtain a real-time performance, specialized hardware has
been designed and used).

In this paper, the problem of motion segmentation is
treated by a novel algorithm based on the background mod-
elling and subtraction approach. The algorithm uses mainly
the geometrical information of the scene extracted by op-
erators defined by Mathematical Morphology (MM). The
algorithm has been tested on two different public video sets
of the CAVIAR project [10] in more than 38 video samples
showing good preliminaries results. The proposed approach
is simple (it uses very simple MM operations and opera-
tors), fast, robust to noise and most important, the results
are less susceptible to lighting changes.

After this Introduction, we review some basic Mathemat-
ical Morphology operations and operators used in this work
in Section 2. In Section 3, we present the proposed algo-
rithm. In Section 4, we present the experimental results and
in Section 5, we present some conclusions of this work.

2. Mathematical Morphology

Mathematical Morphology (MM) is a branch of nonlin-
ear image processing and analysis [5] developed initially
by Matheron [15] and Serra [20]. It is also a solid alge-
braic theory to study transformations between complete lat-
tices [2, 3]. In this section, we review the most important
MM concepts used in the proposed algorithm.

Let Z be the set of integers, k ∈ Z, k > 0, E be a subset
of Z2 and K be the interval [0, k − 1] ⊂ Z. A gray-scale
image f can be represented as an application from E to K,
f : E −→ K. The set of all images from E to K is also
denoted by KE . An image sequence V is an ordered list of
images, (f1, f2, ..., fn), where each item fi ∈ KE is the ith

frame in the image sequence.
Let B be a subset of E and b a function from B to Z. We

will call B a structuring element and b a structuring func-
tion. When the structuring function is defined from B to
{−∞, 0} it is called flat structuring element (in contrast to
non-flat structuring element) and it is denoted simply by B.
Structuring elements and functions play an important role in
the definition of dilations and erosions, two MM elementary
operators.

To define dilation and erosion by a structuring function
b, one needs to define the reflection, the dot sum and the dot

subtraction [3]. The reflection of b, denoted b̆, is given by
b̆(x) = b(−x). Let +̇ be an operation defined in K × Z to
Z, by, any t ∈ K and v ∈ Z:

t+̇v =




0 if t = 0,
0 if t > 0 and t + v ≤ 0,

t + v if t > 0 and 0 ≤ t + v ≤ k,
k if t > 0 and t + v > k.

(1)

Similarly, we can define the −̇ operation by:

t−̇v =




0 if t < k and t − v ≤ 0,
t − v if t < k and 0 ≤ t − v ≤ k,

k if t < k and t − v > k,
k if t = k.

(2)

The dilation of a gray-scale image f by the structuring func-
tion b is the function f ⊕ b defined for any x ∈ E as:

(f ⊕ b)(x) = max{f(y)+̇b(x − y) : y ∈ (B̆ + x) ∩ (E)}
(3)

Similarly, the erosion of a function f by the structuring func-
tion b is the function f � b defined for any x ∈ E:

(f � b)(x) = min{f(y)−̇b(x − y) : y ∈ (B + x) ∩ (E)}
(4)

Erosions and dilations can be combined in different man-
ners producing new operators [3]. Closings and openings
are the result of a trivial composition of a dilation and an
erosion by the same structuring function:

f ◦ b = (f � b) ⊕ b (opening) (5)

f • b = (f ⊕ b) � b (closing) (6)

Conditional erosion of a function f by a structuring element
bc subject to a marker g ∈ KE is the function f �g bc

defined as:
f �g bc = (f � bc) ∨ g, (7)

where ∨ is the union operation. Conditional dilation of f
by the structuring element bc conditioned to the marker g is
the function f ⊕g bc defined as:

f ⊕g bc = (f ⊕ bc) ∧ g (8)

where ∧ is the intersection operation. The structuring ele-
ment bc defines the connectivity to be used in the operation:
a 3×3 cross defines a 4-connectivity and a 3×3 box defines
a 8-connectivity [5]. A sequence of n conditional erosions
and dilations are defined respectively as:

(f�g bc)n = (((f�g bc)�g bc)�g ...�g bc), (n times) (9)

(f⊕gbc)n = (((f⊕gbc)⊕gbc)⊕g ...⊕gbc), (n times) (10)

The sup-reconstruction f∇bc
g and the inf-reconstruction

fbc
g operators of a image f by a marker g using connec-

tivity defined by bc are conditional erosions and dilations
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applied until the stability or the result of the ith application
is equal the previous result.

f∇bc
g = (g �f bc)∞ (sup-reconstruction) (11)

fbc
g = (g ⊕f bc)∞ (inf-reconstruction) (12)

The closing and opening by reconstruction are defined uti-
lizing sup- and inf-reconstructions in their implementation.

f •bc
g = (f • g)∇bc

f (closing by reconstruction) (13)

f ◦bc
g = (f ◦ g)bc

f (opening by reconstruction) (14)

The h-Min and h-Max operators eliminates basins and
peaks with contrast less then a specified parameter h. A
structuring element bc is used to specify the connectivity to
be used. These operators are also implemented using the
previous sup- and inf-reconstructions operators.

h-Minh,bc
(f) = (f + h)∇bc

f (15)

h-Maxh,bc
(f) = (f − h)bc

f (16)

Analogously, the v-Min and v-Max operators eliminates
basins and peaks with volumes less then a specified param-
eter v. They are also implemented using the previous sup-
and inf-reconstructions operators.

The edges of an object can be detected by morphological
operators. External gradient gradext

ge
produces a external

edges and is defined as:

gradext
ge

(f) = (f ⊕ ge) − f (17)

The internal gradient produces internal edges:

gradint
gi

(f) = f − (f � gi) (18)

And the morphological gradient is:

gradge,gi
(f) = (f ⊕ ge) − (f � gi) (19)

The opening top-hat operator extracts the peaks of an im-
age. It is defined by the morphological subtraction between
the image f and the opening of same f by the structuring
element b,

f ◦̂b = f − (f ◦ b). (20)

The opening by reconstruction top-hat operator also extracts
peaks of an image, but keeping the original contours. It is
defined by the morphological subtraction between the im-
age f and the opening by reconstruction of the same image
f by the structuring element bc,

f ◦̂bc
b = f − (f ◦bc

b), (21)

where bc is a structuring element that specifies the used con-
nectivity.

A connected operator is an operator that preserves the
edges in the result image, i.e., all the edges in the result im-
age were in the original image. It does not create new edges
in the original image. A flat-zone in an image is a connected
region with a constant gray-level. A connected operator al-
ways decrease the number of flat-zone in an image. This is
useful to the segmentation process.

3. The Proposed Algorithm

Algorithm 1 Motion Segmentation using MM.
1: Input: V , Statistics of the Background (SB)
2: Output: V ′

3: for all fi ∈ V do
4: Compute gradext

r (fi).
5: if SB is mean then
6: Compute bcki(fi). {using mean}
7: else if SB is median then
8: Compute bcki(fi). {using median}
9: end if

10: Compute fei(fi).{Targets’ edges}
11: Compute vresi(fi). {Volume filters are applied to

reduce noise}
12: Compute hresi(fi). {Contrast filters are applied to

reduce noise}
13: Compute thatresi(fi). {Peaks’ edges are en-

hanced}
14: Compute bwi(fi). {Thresholding}
15: Compute qti(fi). {Temporal coherence filter}
16: Add qti(fi) to V ′

17: end for

The proposed algorithm is based on the background
modeling and subtraction approach. Algorithm 1 shows a
high-level description of the proposed algorithm. It receives
as input a gray-scale image sequence V and saves an output
image sequence V ′ containing the foreground objects of the
input image sequence. The idea and its implementation are
straightforward and can be followed in the diagram of the
solution (Fig. 1). For each frame fi of V , the morpho-
logical gradient of the current frame is computed, the back-
ground model is estimated and a subtraction is performed to
get an approximation of the foreground. After that, the re-
sulting image is filtered using morphological filters, mainly
connected operators are applied to reduce noise. Connected
operators do not create new edges in the resulting image,
i.e, all the edges in the resulting images are in the original
image. Therefore, they are important to preserve the most
significant edges while filtering the irrelevant ones. Peaks
are enhanced, and a binary image of the last result is pro-
duced and, finally, regions that do not show a temporal co-
herence are eliminated. The result reveals an approximation
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Input Image Sequence Edges’ Background Estimated

Current Frame

External Gradient Subtraction

Volume/Contrast Filter

Peaks enhancement Filter

Thresholding

Intersection

Temporal coherence Filter

Output Image Sequence

Figure 1. Diagram of the solution.

of the foreground’s edges.
Let fi ∈ V be an image of the sequence and let r be the

non-flat structuring element represented in Table 1. From a
topographical perspective, dilating or eroding an image by r
will modify it in all the directions uniformly. So, the exter-
nal gradient using r produces a better model of the moving
borders than when using a flat-structuring element. Denot-
ing by bcki the background model based on the morpholog-
ical gradient, we compute the mean, or the median, of all
frames up to frame i (a variation that is being tested com-
putes the mean or the median from frame i0 to i, where
1 ≤ i0 < i). Formally, let I be the interval [1, i] and | I |,
the number of frames in the interval (in this case i),

bckm
i =

1
| I |

i∑
j=1

gradext
r (fi) (22)

bckM
i = Median(gradext

r (fI)), (23)

where gradext
r (fI) means we consider all the gradient re-

sults of the sequence up to frame i. Notice that we have
introduced a letter m or a letter M to the notation to dis-
tinguish mean and median, respectively. The median com-
putation is optimized by using a special data structure that
holds the histogram of each pixel.

To have an estimate of the moving objects, we compute
the morphological subtraction of the background model
from the gradient of the current frame denoted by fei.

1 2 1
2 3 2
1 2 1

Table 1. Non-flat structuring element.

fei = gradext
r (fi) − bcks

i (24)

where s can be the letter m or M .
To reduce noise, we first compose the morphological fil-

ters v-Min and v-Max to eliminate, respectively, basins and
peaks with a volume less than a specified argument Vmin.

vresi = v-MaxVmin,bc
(v-MinVmin,bc

(fei)) (25)

where the structuring element bc is a cross (3×3) meaning
that the operator uses a 4-connectivity.

Next, we compose the morphological filters h-Min and
h-Max to eliminate, respectively, basins and peaks with
contrast less than a specified parameter Hmin. The same
cross bc is used as the structuring element.

hresi = h-MaxHmin,bc
(h-MinHmin,bc

(vresi)) (26)

To enhanced the regions of the moving edges of the image,
an opening by reconstruction top-hat operator is used to ob-
tain the peaks of hresi. The structuring element used, d, is
a flat disk with radius 3 and the same structuring element
bc.

thatresi = hresi◦̂bc
d (27)

The result is finally converted to binary using a trivial
threshold 1.

bwi = Th(thatresi, 1) (28)

where Th represents the threshold operator [9].
For very low-quality videos, some edges that do not be-

long to the moving objects will be in bwi, for some i. A
possible solution to this problem is to use a heuristics based
on time coherence that helps to keep just the edges that
were approximately in the same position for some previous
frames. Because of the small displacement of the moving
objects between a frame and the previous, bwi−1 and bwi−2

are dilated by a flat disk with radius 3 and used as a pre-
vious information to keep the edges of bwi. The following
formula formalizes this coherence operator,

qti = bwi ∧ (bwi−1 ⊕ c) ∧ (bwi−2 ⊕ c), (29)

where ∧ is the intersection operation [5]. The final result
qti is added to the video output V ′.
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(a) Original Frame (b) Edges’ Background Esti-
mation

(c) Current Frame’s Edges (d) Subtraction of Back-
ground from the Current
Edges

(e) Resulted Image

Figure 2. The steps of the algorithm.

Figure 2 shows some steps of the proposed algorithm.
In 2(a) it is shown the original frame fi; in 2(b), the back-
ground’s model bcks

i ; in 2(c), the current frame’s edges
gradext

i (fi); in 2(d), the subtraction’s result fei and, in
2(e), the final result qti.

4. Experimental Results

The implementation has been done in Matlab with the
SDC Morphology Toolbox for Matlab [5]. The algorithm
was tested using the videos of the CAVIAR project [8].
These video sequences are divided in two sets. The first
set has been acquired with a wide angle camera in the en-
trance lobby of the INRIA Labs (France) in July, 2003. The
second set has been acquired in a mall in Portugal using a

wide angle camera. All the video sequences have a resolu-
tion of 384 x 288 pixels at 25 frames per second. The image
sequences have from 500 to 1400 frames in length and are
in MPEG format.

The first set shows actors walking alone, walking to-
gether in a group, meeting another person, a group of peo-
ple being split, simulating a fight, leaving a package in the
scene and falling in the ground. There are some challenging
features in the videos like a person behind plants in difficult
position to be seen and illuminated and dark regions. These
videos have low-quality with lots of noise.

The videos in the second set show real customers in a
mall. There are frontal and lateral views of a corridor and
the sequences show the same time frame in both views. In
these videos, people are walking in the mall, entering and
exiting shops, meeting another group, walking and stopping
suddenly, passing out and changing direction.

No information other than the sequences has been used
in the proposed algorithm. There are, of course, some basic
assumptions like the sequence being acquired by a single
and static camera implying that the background is static, no
zoom effects is being applied and etc. Our algorithm returns
almost complete edges of the moving objects in all videos.
The noise was almost completely eliminated in all videos,
even in the low-quality videos. Our algorithm is completely
operational since the beginning of the image sequence and
it has a 3-frames delay to detect a new object in the scene
due to the temporal coherence used in the algorithm.

To initially compare our results to the literature, we have
implemented four different algorithms:

a Two frames differentiation: this is an algorithm
based on the temporal differentiation algorithm ap-
proach. It computes the symmetrical difference among
the corresponding pixel values of two consecutive
frames and then applies a threshold. Pixels (values)
greater than the threshold belongs to the foreground.

b Two frames differentiation plus a morphological fil-
ter: this is the same of the algorithm a plus a connected
morphological filter that eliminates components with
area less than a specified threshold.

c Background subtraction: This is an implementation
of the background model subtraction approach. Our
implementation can estimate the model using mean,
median, mode or adaptive mean, as described in [4].
The foreground segmentation is the result of a thresh-
old of the symmetrical difference between the current
frame and the estimated model.

d Hybrid algorithm: it uses a hybrid approach [4]. The
algorithm implemented uses a three-frame differentia-
tion, an estimation of the moving areas and, finally a
subtraction of a background model, as proposed in [4].
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(a) Background Subtraction’s
Results

(b) Our Results

Figure 3. Shadows in Result.

The three-frame differentiation implements the for-
mula, Th(| fi − fi−1 |, h1) ∧ Th(| fi − fi−2 |, h1),
where h1 is a threshold empirically specified. The esti-
mation of the moving areas is done by computing, for
each connected component of the three-frame differ-
entiation result, the smallest rectangle that contains it.
Finally, the symmetrical difference between this area
and the background model is computed. The back-
ground model is similar to the one used before but now
it is adaptive and uses a learning parameter α that is
defined heuristically. Formally, it implements the for-
mula bcki+1 = α ∗ fi + (1 − α) ∗ bcki, where α is
usually 0.05 ≤ α ≤ 0.15. Connected components in-
side the area of interest that have pixel values similar
to the model are eliminated. The remaining pixels are
considered foreground.

The overall results of algorithm a show poor shape lat-
eral regions of the moving objects (due to the displacement
between consecutive frames). The first set of sequences are
very low-quality and lots of noise appear in the results. This
algorithm has the best time performance, mainly due to its
simplicity. The difference between algorithm a and b is the
noise reduction due to the connected filter.

The overall results of algorithm c have good shape recov-
ery. However, the approach is very sensible to the statistics
used in the estimation of the background. Median or mode
have shown to be more robust in the tested sequences. The
results are also very sensible to shadows cast that is a real
problem in the sequences taken in the mall.

The overall results of algorithm d, the hybrid algorithm,
have a good shape recovery with less noise. However, cast
shadows is still a problem in the results. The results in the
first set of videos are worse due to bad quality of them. One
difficult of this algorithm is to set a good value to the learn-
ing rate α. As some tested sequences shows many different
patterns of movement, a single learning rate does not work
well in some parts of the sequences.

The overall results of the proposed algorithm show al-

most all edges of the foreground objects. The noise is low,
even in the low-quality videos. As the algorithm uses the
edges of objects in the frames and not the pixels’ intensity,
it also shows a robustness to lighting changes. In some situ-
ations, like in indoor sequences, this robustness implied in a
desirable result: cast shadows do not appeared in the results.
Figure 3 illustrates this situation showing cast shadows in
the results of background’s subtractions 3(a) compared to
our results 3(b) in an indoor mall sequence. If Vmin and
Hmin are too high, parts of the real borders are eliminated .
If they are too low, noise is not adequately eliminated. The
parameters set used in the algorithm have been experimen-
tally chosen and they are robust in the sense that the same
parameters are used for all sequences in both sets. The re-
sults are very similar in quality for both video sets. The
algorithm is completely operational since the beginning of
the image sequence and it has a 3-frames delay to detect a
new object in the scene due to the temporal coherence used
in the algorithm. When the mean is used for the background
estimation, the time performance of the algorithm is about
40% better compared to median’s but this is compensated
by a result with little noise. If this is not a problem for the
application, mean background estimation can be a plus.

Another interesting part of the proposed algorithm is the
absence of false positives when objects that stay still for
long periods of time start moving again. Usually, all back-
ground subtraction methods fail with this situation because
the still object becomes part of the background and, when
it starts moving again, an artifact appears in the result (be-
cause it is the result of the symmetrical difference between
the new images and the old background). The artifact will
eventually disappear as the background will be updated.
The proposed algorithm has a different behavior, as it uses
a simple subtraction among the edges of the current frame
and the edges of the background model. The results will
not have false positives because of motionless objects that
start moving. Figure 4 shows the situation described above
comparing a background (estimated by median) subtraction
algorithm to the proposed algorithm. Figure 4(a) shows the
frame 101 of a tested sequence, Fig. 4(b) shows the back-
ground estimated by median of the same frame, Fig. 4(c)
shows the result of the background subtraction algorithm, a
false positive is in the result in the same place that the per-
son remained motionless for a long time, Fig. 4(d) shows
the background used by our algorithm, Fig. 4(e) shows the
edges of the same frame and Fig. 4(f) shows our result
without the false positive.

Figure 5 shows our results compared to another tested
algorithms. Figure 5(a) shows the original frame, Fig.
5(b), the results of the algorithm b, Fig. 5(c) shows re-
sults of the background’s subtraction, Fig. 5(d) shows the
hybrid’s results and, finally, in Fig. 5(e) our results are
shown.
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(a) Frame 101 original (b) Background estimated by
median

(c) Targets in background
subtraction

(d) Our background

(e) Edges of frame 101 (f) Our result

Figure 4. Showing the absence of false posi-
tives in our result.

All results reported here are available at
http://www.vision.ime.usp.br/nonlinear/demos/segmm/.

5. Conclusion

We have proposed a new algorithm based on Mathemat-
ical Morphology to segment moving objects in an image
sequence. The algorithm is simple to implement and the
overall performance results are promising. In terms of ro-
bustness, results are similar in both video sets tested [10],
independently of the video’s quality. The algorithm is also
robust to lighting changes as it uses the edges of objects in
the scene and not the pixels’ intensity. In some situations,
the results have almost no cast shadows. When compared

(a) Original Frame (b) 2-Frames Differentiation

(c) Background’s Subtraction (d) Hybrid

(e) Our Result

Figure 5. Comparing algorithms.

to other algorithms, our algorithm has shown a good noise
reduction.

Another advantage of our algorithm is that there is no
distinction among training and running sets as some algo-
rithms reported in the literature. The algorithm is opera-
tional since the firsts frames of the image sequence, it is not
necessary to have an initial period to train the algorithm.
This makes the algorithm more robust and it can also be
used in uncontrolled scenes where there is no way to have a
sequence without target objects like in a train station or in a
full-crowded corner (results shown in our website).

When compared to the background’s subtraction algo-
rithms, our algorithm shows an interesting result that is the
absence of false foreground, a situation that can happen
when a person or an object is motionless (becoming part
of the background) and suddenly starts moving.

Using just the edges of the frames, the obtained results
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are encouraging. The next steps will be to implement a
complete shape recovery of the foreground’s objects. Af-
ter that, we are planning to test our results in video sets with
challenging situations as exemplified in [23] and to measure
the error found in that situations.
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