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Abstract 
 

Statistical discrimination methods are suitable not 
only for classification but also for characterisation of 
differences between a reference group of patterns and 
the population under investigation.  In the last years, 
statistical methods have been proposed to classify and 
analyse morphological and anatomical structures of 
medical images.  Most of these techniques work in 
high-dimensional spaces of particular features such as 
shapes or statistical parametric maps and have 
overcome the difficulty of dealing with the inherent 
high dimensionality of medical images by analysing 
segmented structures individually or performing 
hypothesis tests on each feature separately.  In this 
paper, we present a general multivariate linear 
framework to identify and analyse the most 
discriminating hyper-plane separating two 
populations.  The goal is to analyse all the intensity 
features simultaneously rather than segmented 
versions of the data separately or feature-by-feature.  
The conceptual and mathematical simplicity of the 
approach, which pivotal step is spatial normalisation, 
involves the same operations irrespective of the 
complexity of the experiment or nature of the data, 
giving multivariate results that are easy to interpret.  
To demonstrate its performance we present 
experimental results on artificially generated data set 
and real medical data. 
 
1. Introduction 
 

In the generic discrimination problem, where the 
training sample consists of the class membership and 
observations for N  patterns, the outcome of interest 
fall into g  classes and we wish to build a rule for 
predicting the class membership of an observation 
based on n  variables or features.  However, statistical 

discrimination methods are suitable not only for 
classification but also for characterisation of 
differences between a reference group of patterns and 
the population under investigation.  For example, in 
clinical diagnosis we might want to understand 
underlying causes of medical data by exploring the 
discriminating hyper-plane found by a statistical 
classifier using image samples of patients and controls. 

In the last years, statistical pattern recognition 
methods have been proposed to classify and analyse 
morphological and anatomical structures of magnetic 
resonance (MR) images [4, 6, 8].  Most of these 
techniques work in high-dimensional spaces of 
particular features such as shapes or statistical 
parametric maps and have overcome the difficulty of 
dealing with the inherent high dimensionality of 
medical data by analysing segmented structures 
individually or performing hypothesis tests on each 
feature separately.  Unfortunately, in such approaches 
changes that are relatively more distributed and involve 
simultaneously several structures of the pattern of 
interest (i.e., ventricles and corpus callosum of the 
brain) might be difficult to detect, despite the 
possibility of some methods [6, 8] of extracting 
statistically multivariate differences between image 
samples of patients and controls. 

In this work, we present a general multivariate 
statistical framework to identify and analyse the most 
discriminating hyper-plane separating two populations.  
The goal is to analyse all the intensity features 
simultaneously rather than segmented versions of the 
data separately or feature-by-feature.  We use a novel 
method proposed recently [10], called Maximum 
uncertainty Linear Discriminant Analysis (MLDA), to 
overcome the well-known instability of the within-class 
scatter matrix in limited sample size problems and to 
increase the computational efficiency of the approach.  
The approach is not restricted to any particular set of 



features and describes a simple and straightforward 
way of mapping multivariate classification results of 
the whole images back into the original image domain 
for further interpretation. 

The remainder of this paper is divided as follows.  
In section 2 we describe the main parts of the 
multivariate linear framework and its design.  This 
section includes a brief review of Principal Component 
Analysis (PCA) and the novel MLDA method used.  
Section 3 presents experimental results of the approach 
and demonstrates its effectiveness on a simple 
artificially generated data set and on a real medical 
data.  In the last section, section 4, the paper concludes 
with a short summary of functionalities that form the 
basis for this methodology of discriminating and 
analysing the patterns of interest. 
 
2. A Multivariate Linear Approach 
 

Our main concern here is to describe a multivariate 
framework that highlights the most discriminating 
differences between two populations when the number 
of examples per class is much less than the dimension 
of the original feature space.  This problem is indeed 
quite common nowadays, especially in medical image 
analysis.  For instance, patients and controls are classes 
defined commonly by a small number of MR images 
but the features used for recognition may be millions of 
voxels or hundreds of pre-processed image attributes. 
 
2.1. Principal Component Analysis (PCA) 
 

There are a number of reasons for using PCA to 
reduce the dimensionality of the original images.  PCA 
is a linear transformation that is not only simple to 
compute and analytically tractable but also extracts a 
set of features that is optimal with respect to 
representing the data back into the original domain.  
Moreover, using PCA as an intermediate step will 
reduce dramatically the computational and storage 
requirements for the subsequent LDA-based covariance 
method.  Since in our applications of interest the 
number of training patterns N  (or images) is much 
smaller than the number of features n  (or instance:  
voxels), it is possible to transform data in a way that 
patterns occupy as compact regions in a lower 
dimensional feature space as possible with far fewer 
degrees of freedom to estimate. 

Although much of the sample variability can be 
accounted for by a smaller number of principal 
components, and consequently a further dimensionality 
reduction can be accomplished by selecting the 

principal components with the largest eigenvalues, 
there is no guarantee that such additional 
dimensionality reduction will not add artefacts on the 
images when mapped back into the original image 
space.  Our aim is to map the classification results back 
to the image domain for further visual interpretation.  
For that reason, we must be certain that any 
modification on the images, such as blurring or subtle 
differences, is not related to an “incomplete” or 
perhaps “misleading” feature extraction intermediate 
procedure.  For example, Figure 1 illustrates on the top 
a reference image (shown on the left) reconstructed 
using several principal components and on the bottom 
the corresponding differences between these 
reconstructions to the original image.  The values in 
parentheses represent the number of principal 
components used and corresponding total variance 
explained.  We can see clearly that even when we use a 
set of principal components that represents more than 
90% of the total sample variance we still have subtle 
differences between the reconstructed image and the 
original one. 

Therefore, in order to reproduce the total variability 
of the samples we have composed the PCA 
transformation matrix by selecting all principal 
components with non-zero eigenvalues.  To avoid the 
high memory rank computation of the possibly large 
total covariance matrix and because the MLDA 
approach deal with the singularity of the within-class 
scatter matrix, we have assumed that all the N  training 
patterns are linearly independent.  In other words, we 
have assumed that the rank of the total covariance 
matrix is 1−N  and the number of PCAs selected is 

1−= Nm . 
 

Original (2, 80%) (10, 84%) (50, 92%) (all, 100%) 

 
Fig. 1.  Reconstruction of a reference image (shown on the 
top left) using several principal components.  The row on the 
bottom illustrates the corresponding differences between the 
reconstructions to the reference image.  The number of 
components retained and the corresponding total sample 
variance explained are shown in parentheses.  We can see 
modifications on the reconstructed images where all principal 
components with non-zero eigenvalues are not selected. 



2.2. Maximum Uncertainty LDA (MLDA) 
 

The primary purpose of LDA is to separate samples 
of distinct groups by maximising their between-class 
separability while minimising their within-class 
variability.  LDA’s main objective is to find a 
projection matrix ldaP  that maximizes the following 
ratio (Fisher’s criterion): 
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The vector jix ,  is the n-dimensional pattern j  from 
class iπ , iN  is the number of training patterns from 
class iπ , and g  is the total number of classes or 
groups.  The vector ix  and matrix iS  are respectively 
the unbiased sample mean and sample covariance 
matrix of class iπ [5].  The grand mean vector x  is 
given by 
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where N  is the total number of samples, that is, 

gNNNN +++= L21 .  The Fisher’s criterion 
described in equation (1) is maximised when the 
projection matrix ldaP  is composed of the eigenvectors 
of bw SS 1−  with at most )1( −g  nonzero corresponding 
eigenvalues.  This is the standard LDA procedure. 

It is well known, however, that the performance of 
the standard LDA can be seriously degraded if there 
are only a limited number of total training observations 
N  compared to the dimension of the feature space m .  
Since the within-class scatter matrix wS  is a function 
of )( gN −  or less linearly independent vectors, where 
g  is the number of groups, its rank is )( gN −  or less.  
Therefore in recognition problems where the number of 
training patterns is comparable to the number of 
features, wS  might be singular or mathematically 
unstable and the standard LDA cannot be used to 
perform the task of the classification stage. 

In order to avoid both the singularity and instability 
critical issues of the within-class scatter matrix wS  
when LDA is used in limited sample and high 
dimensional problems, we have used a maximum 

uncertainty LDA-based approach (MLDA) based on a 
straightforward covariance selection method for the wS  
matrix.  In an earlier study [10], Thomaz and Gillies 
compared the performance of MLDA with other recent 
LDA-based methods, such as Chen et al.’s LDA [2], 
direct LDA [14], and Optimal Fisher Linear 
Discriminant [13], with application to the face 
recognition problem.  Since the face recognition 
problem involves small training sets, a large number of 
features, and a large number of groups, it has become 
the most used application to evaluate such limited 
sample size approaches.  The experimental results 
carried out have shown that the MLDA method 
improved the LDA classification performance with or 
without an intermediate dimensionality reduction and 
using less linear discriminant features. 

The MLDA algorithm can be shortly described as 
follows: 

i.Find the Φ  eigenvectors and Λ  eigenvalues of pS , 
where ][ gNSS wp −= ; 

ii.Calculate the pS  average eigenvalue λ , that is, 
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iii.Form a new matrix of eigenvalues based on the 
following largest dispersion values 
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iv.Form the modified within-class scatter matrix 

))(()( *** gNgNSS T
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The maximum uncertainty LDA (MLDA) is 
constructed by replacing wS  with *

wS  in the Fisher’s 
criterion formula described in equation (1).  As pointed 
out by Thomaz and Gillies [TG05], it is based on a 
maximum entropy covariance selection idea developed 
to improve the performance of Bayesian classifiers on 
limited sample size problems [11]. 
 
2.3. Framework Design 
 

We can divide the design of the PCA+MLDA 
multivariate framework into two main tasks: 
classification (training and test stages) and visual 
analysis. 



In the classification task the principal components 
and the maximum uncertainty linear discriminant 
vector are generated.  As illustrated in Figure 2, first a 
training set is selected and the average image vector of 
all the training images is calculated and subtracted 
from each pre-processed image vector.  Then the 

training matrix composed of zero mean image vectors 
is used as input to compute the PCA transformation 
matrix.  The columns of this n  x m  transformation 
matrix are eigenvectors, not necessarily in eigenvalues 

descending order.  Recall, from section 2.1, that we 
have retained all the PCA eigenvectors with non-zero 
eigenvalues.  The zero mean image vectors are 
projected on the principal components and reduced to 
m-dimensional vectors representing the most 
expressive features of each one of the pre-processed n-

dimensional image vector.  Afterwards, the N  x m  
data matrix is used as input to calculate the MLDA 
discriminant eigenvector.  Since we are assuming only 
two classes to separate, there is only one MLDA 

CLASSIFICATION - TRAINING STAGE 

- x x 
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Average image 

Training images: each row is a 
n-dimensional image vector 

(N x n) data matrix 

Training images with zero mean: 
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m principal components: each 
column is an eigenvector in 
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Fig. 2. Design of the multivariate linear framework. 



discriminant eigenvector.  The most discriminant 
feature of each one of the m-dimensional vectors is 
obtained by multiplying the mN x  most expressive 
features matrix by the 1 x m  MLDA linear discriminant 
eigenvector.  Thus, the initial pre-processed training set 
consisting of N  measurements on n  variables, is 
reduced to a data set consisting of N  measurements on 
only 1  most discriminant feature. 

The other main task that can be implemented by this 
two-stage multivariate statistical approach is to visually 
analyse the most discriminant feature found by the 
maximum uncertainty method.  According to Figure 2, 
more specifically from right to left in its Visual 
Analysis frame, any point on the most discriminant 
feature space can be converted to its corresponding n-
dimensional image vector by simply: (1) multiplying 
that particular point by the transpose of the linear 
discriminant vector previously computed; (2) 
multiplying its m most expressive features by the 
transpose of the principal components matrix; and (3) 
adding the average image calculated in the training 
stage to the n-dimensional image vector.  Therefore, 
assuming that the clouds of the classes follow a 
multidimensional Gaussian distribution and applying 
limits to the variance of each cloud, such as s3± , 
where s  is the standard deviation of each group, we 
can move along this most discriminant feature and map 
the result back into the image domain.  This mapping 
procedure provides an intuitive interpretation of the 
classification experiments and, as we will show in the 

experimental results of real medical data, biologically 
plausible results that are often not detectable 
simultaneously. 
 

3. Experimental Results 
 

To illustrate the performance of the multivariate 
linear approach we present in this section experimental 
results of the framework based on a simple artificially 
generated data set and on a real medical data. 
 
3.1. A Synthetic Data Example 
 

We have chosen a very simple artificial data set 
composed of 8 binary images of circles (ellipses) and 8 
binary images of squares (rectangles).  Figure 3 shows 
both samples of images composed of 70 x 70 pixels. 

As described in the previous section, we use such 
training examples (without any spatial normalisation) 
to construct the multivariate linear classifier for 
labelling new examples and identifying the most 
discriminating hyper-plane separating circles (or 
ellipses) from squares (or rectangles).  Since those 
samples are very simple and easily separable, the 
classifier achieved 100% of leave-one-out accuracy.  
Figure 4 presents the PCA+MLDA most discriminant 
feature of the synthetic database using all the 16 
examples as training images.  It displays the image 
regions captured by the classifier that change when we 
move from one side (squares or rectangles) of the 

        

        

 
 

Fig. 3. A synthetic data set. 

squares3−  squarex  squares3+  boundary circles3−  circlex  circles3+  

 

 

Fig.4. Image display of the regions captured by the classifier that change when we move from one side (squares or rectangles) of 
the dividing PCA+MLDA hyper-plane to the other (circles or ellipes), following limits of 3±  standard deviations for each sample 
group. 



dividing hyper-plane to the other (circles or ellipes), 
following limits to the variance ( s3± standard 
deviations) of each sample group. 

Despite the changes due to misalignments of the 
images, Figure 4 shows clearly that the statistical 
mapping effectively extracts the group differences.  It 
is important to note that these differences could be very 
subtle on samples that are very close to the dividing 
boundary and consequently difficult to characterise as 
belonging to one of the groups. 
 
3.2. A Real Data Example 
 

In order to demonstrate the effectiveness of the 
methodology on medical data, we have used an 
Alzheimer MR brain data set that contains images of 14 
patients and 14 healthy controls.  All these images were 
acquired using a 1.5T Philips Gyroscan S15-ACS MRI 
scanner (Philips Medical Systems, Eindhoven, The 
Netherlands), including a series of contiguous 1.2mm 
thick coronal images across the entire brain, using a 
T1-weighted fast field echo sequence (TE = 9ms, TR = 
30ms, flip angle 30o, field of view = 240mm, 256 x 256 
matrix).  All images were reviewed by a MR neuro-
radiologist.  Ethical permission for this study was 
granted by the Ethics Committee of the Clinical 
Hospital, University of Sao Paulo Medical School, Sao 
Paulo, Brazil. 
 
3.2.1. Mass-univariate Statistical Analysis 
 

For comparison purpose, Statistical Parametric 
Mapping (SPM, version SPM2) [4] analyses were 
conducted using an optimised Voxel-based 
Morphometry (VBM) protocol [7].  In contrast to the 
multivariate approach, SPM has been designed to 
enable voxel-by-voxel inferences about localised 
differences between the groups and, consequently, does 
not characterise interregional dependencies between 
the structures of the brain [3]. 

A standard template set selected by the psychiatrists 
was created specifically for this study, consisting of a 
mean T1-weighted image, and a priori gray matter, 
white matter and CSF templates based on the images of 
all AD (Alzheimer Disease) and healthy control 
subjects.  Initially, images were spatially normalized to 
the standard SPM T1-MRI template [9], using linear 
12-parameter affine transformations.  Spatially 
normalized images were then segmented into gray 
matter, white matter and cerebrospinal fluid (CSF) 
compartments, using a modified mixture model cluster 
analysis technique [7].  The segmentation method also 

included: an automated brain extraction procedure to 
remove non-brain tissue and an algorithm to correct for 
image intensity non-uniformity.  Finally, images were 
smoothed with an isotropic Gaussian kernel (8mm 
FWHM), and averaged to provide the gray, white 
matter and CSF templates in stereotactic space. 

To boost the signal-to-noise ratio, the image 
processing of the original images from all AD patients 
and controls was then carried out, beginning by image 
segmentation.  The segmented images were spatially 
normalized to the customized templates previously 
created by using 12-parameter linear as well as non-
linear (7 x 9 x 7 basis functions) transformations.  The 
parameters resulting from this spatial normalization 
step were reapplied to the original structural images.  
These fully normalized images were re-sliced using tri-
linear interpolation to a final voxel size of 2 x 2 x 2 
mm3, and segmented into gray matter, white matter and 
CSF partitions.  Voxel values were modulated by the 
Jacobian determinants derived from the spatial 
normalisation, thus allowing brain structures that had 
their volumes reduced after spatial normalisation to 
have their total counts decreased by an amount 
proportional to the degree of volume shrinkage [7].  
Finally, images from AD patients and controls were 
smoothed using a 12mm Gaussian kernel and compared 
statistically between the two groups using unpaired 
Student’s t-tests at 01.0<p  (level of significance). 

Figure 5 illustrates the locations where significant 
differences between the groups were detected.  The 
underlying image is the reference template used in the 

 
Fig. 5.  Brain regions where significant differences in 
Alzheimer patients relatively to controls were detected by 
the SPM voxel-wise statistical tests at 01.0<p .  We can see 
between-group differences in the occipital, parietal and 
frontal lobes, inter-hemispheric fissure, and corpus callosum.



spatial normalisation of all MR images.  As can be 
seen, there are some localised differences in the 
Alzheimer patients relatively to controls in the 
occipital, parietal and frontal lobes, in the inter-
hemispheric fissure, and corpus callosum.  These 
structures, especially where significant gray matter 
changes were observed, are among the regions thought 
to be the most prominently affected by atrophic 
changes in Alzheimer disease [1]. 
 
3.2.2. Multivariate Statistical Analysis 
 
Evaluating the classifier’s performance. In order to 
evaluate the PCA+MLDA classification’s rule, we have 
used the Bhattacharyya bound to estimate the error 
probability of the multivariate statistical framework. 

For two-class problems, the upper bound of the 
error probability ue is defined as [5] 

)exp()( 2
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1π  and 2π  respectively, and d  is the Bhattacharyya 
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where the notation “|.|” denotes the determinant of a 
matrix.  As described previously, the vector ix  and 
matrix iS  are respectively the unbiased sample mean 
and sample covariance matrix of class iπ  ( 2,1=i ). 

Since the dataset under investigation comes with the 
same proportion of patient images relatively to 
controls, we have assumed that the prior probabilities 
of both groups are equal.  Thus, assuming 

5.021 == pp  and calculating the Bhattacharyya 
distance d  using all the patient and control samples, 
the multivariate statistical classifier achieves the value 
of 1.56%.  This result confirms the classifier’s ability 
of discriminating the brains of controls from those of 
patients with a successful classification rate of 98.44%, 
using the closed-form method for the error probability. 
 
Visual Analysis of discriminative information.  The 
visual analysis of the linear discriminant feature found 
by the multivariate approach is summarised in Figure 6.  
As mentioned earlier, the one-dimensional vector found 
by the PCA+MLDA approach corresponds to a hyper-
plane on the original image space which direction 
describes statistically the most discriminant differences 

between the control and patient images used for 
training. 

Figure 6 shows the differences between the control 
(on the left column) and patient (on the right column) 
images captured by the multivariate statistical classifier 
using MR intensity features as inputs.  These images 
correspond to one-dimensional points on the 
PCA+MLDA space projected back into the image 
domain and located at 3 standard deviations of each 
sample group.  We can understand this mapping 
procedure as a way of defining intensity changes that 
come from “definitely control” and “definitely patient” 
samples captured by the statistical classifier.  We can 
see the following brain differences in the Alzheimer 
patients relatively to the controls: (1) enlargement of 
the ventricular system, (2) atrophy of the hippocampus, 
(3) cortical degeneration of the occipital, parietal, and 
frontal lobes, (4) enlargement of the inter-hemispheric 
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Fig. 6.  Statistical differences between the control (on the 
left) and Alzheimer patient (on the right) images captured by 
the multivariate statistical classifier.  We can see the 
following brain differences in the Alzheimer patients 
relatively to the controls: (1) enlargement of the ventricular 
system, (2) atrophy of the hippocampus, (3) cortical 
degeneration of the occipital, parietal, and frontal lobes, (4) 
enlargement of the inter-hemispheric fissure, and (5) atrophy 
of corpus callosum. 



fissure, and (5) atrophy of the corpus callosum.  These 
multivariate results are consistent with the SPM 
between-group differences presented previously and 
with other common findings of patients who have 
developed the pathology [12], such as the enlargement 
of the ventricular system.  Therefore, the use of the 
multivariate approach has allowed not only the 
simultaneous identification of localised between-group 
differences but also distributed ones that are often 
measured separately in the voxel-wise statistical 
approaches. 
 
4. Conclusion 
 

We have presented a general PCA+MLDA 
multivariate linear framework to identify and analyse 
the most discriminating hyper-plane separating two 
populations.  The statistical analysis generates a 
detailed description of the neuroanatomical changes 
due to diseases and can facilitate the studies of the 
brain disorders, such as Alzheimer, through 
understanding of the captured anatomical changes. 

The idea of using PCA plus an LDA-based 
approach to discriminate patterns of interest is not new.  
In this paper we have added to the functionality of this 
approach the following important points for medical 
image analysis.  The use of full rank version of PCA 
transformation matrix that allows valuable low 
representation of high dimensional data, providing 
optimal reconstruction of the most discriminant 
intensity features without adding any artefacts on the 
patterns when mapped back into the original image 
space.  By selecting a slightly biased within-class 
scatter matrix composed of the most informative 
dispersions we resolve not only the LDA singularity 
problem but also we stabilise the maximisation of the 
Fisher’s criterion on limited sample size problems.  
The conceptual and mathematical simplicity of the 
approach, which pivotal step is spatial normalisation, 
involves the same operations irrespective of the 
complexity of the experiment or nature of the data, 
giving multivariate results that are easy to interpret. 

Although the approach has been demonstrated in 
two-class problems, it is extensible to several classes.  
The only difference is the visual analysis of the 
discriminant features, which might be performed pair-
wisely. 
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