
Density-Guided Rank Correlation Graphs for Graph
Convolutional Networks in Image Classification

Gabriel Maia Brito∗ and Lucas Pascotti Valem†
∗São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, Brazil

†Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo (USP), São Carlos, Brazil
Emails: gabrielmaiab@usp.br, lucas@icmc.usp.br

Abstract—Graph Convolutional Networks (GCNs) have shown
promising results in semi-supervised learning tasks, yet their
effectiveness is highly dependent on the quality of the input
graph. In image classification scenarios, graph construction
remains a challenging step due to the general lack of inherent
structural relationships between images. In this work, we propose
a novel method to build input graphs for GCNs based on
rank correlation measures between image similarity rankings.
Each image is represented as a node, and edges are established
according to the correlation between its ranked list of neighbors
and those of other images. We introduce a density-guided strategy
for automatically selecting the correlation threshold that controls
the sparsity of the graph. Experiments conducted on three image
classification datasets using three feature extractors and three
GCN architectures show that the proposed correlation-based
graphs outperform standard kNN and reciprocal kNN graphs
in most cases, especially when used with the Simplified Graph
Convolution (GCN-SGC) model. Our method surpasses several
traditional and recent baselines, including techniques based on
manifold learning and label propagation, while relying solely on
contextual similarity through rank correlation without any post-
processing refinement. The proposed approach’s source code and
documentation are publicly available at corgcn.lucasvalem.com.

I. INTRODUCTION

Graph Convolutional Networks (GCNs) have established
themselves as promising approaches for semi-supervised learn-
ing tasks, standing out for their ability to exploit structural
relationships in data across various applications [1]. Even with
the emergence of more recent approaches, such as Graph
Transformers, traditional GCNs still achieve competitive ef-
fectiveness, often comparable to the state of the art in many
scenarios [2]. However, these models are sensitive to graph
structure, so effective graph modeling is crucial for successful
learning.

Despite their potential, the application of GCNs to image
datasets remains limited compared to other domains, mainly
due to the challenges involved in graph modeling [1]. Improper
graph construction can hinder the GCN’s ability to propagate
relevant information between nodes, negatively impacting the
model’s effectiveness. In many cases, the adopted strategy
builds a separate graph for each image and then compares
those graphs. Although this approach allows the representation
of complex visual features, it imposes a high computational
cost, especially in the pairwise graph comparison stages.

This work aims to investigate the use of contextual infor-
mation, which involves comparing elements and their relation-
ships with their respective neighbors in the similarity space,
going beyond strictly pairwise comparisons [3], [4]. To this
end, each image is modeled as a vertex in a graph, and edges
are established based on contextual similarity measures that
consider both the direct similarity between two vertices and
the distribution of their neighbors. In the literature, there are
works that construct kNN neighborhood graphs, which connect

each vertex to its k nearest neighbors according to a metric
(e.g., Euclidean distance) in the embedding space [5].

The main goal of this research is to model graphs not in
the traditional Euclidean space, but using ranking-based con-
textual similarity measures derived from rank correlation [3].
In this way, the edges established between vertices reflect not
only pointwise similarity but also the information contained in
their neighborhoods. The hypothesis is that this approach will
improve the effectiveness of the results compared to existing
approaches in image classification.

The main contributions of this work are as follows:
• We propose the construction of a graph in which edges

are defined based on the rank correlation between images,
enabling the incorporation of contextual information be-
yond simple pairwise similarities. Although correlation-
based graphs have been explored in other works, par-
ticularly for image retrieval [6], our contribution lies in
adapting and refining this structure as input to a GCN.

• The definition of a threshold, which varies according to
different datasets, is a challenging aspect of correlation
graphs. This work proposes an algorithm and evaluates
the use of the density coefficient to automatically choose
the appropriate threshold without user intervention, yield-
ing significantly sparser graphs than kNN and baselines.

• A generalized Jaccard correlation function is introduced,
which yields several variants, including JaccardMax and
JaccardMean. While JaccardMax has demonstrated sig-
nificant results in image retrieval tasks [6], to the best
of our knowledge, this is the first work to evaluate
JaccardMedian in image classification.

• A comprehensive experimental evaluation was conducted
on multiple datasets, considering different visual feature
extractors and semi-supervised learning scenarios. The
results reveal that our approach outperforms several tra-
ditional and recent methods, validating the effectiveness
of the proposed approach.

II. PROPOSED APPROACH

The proposed approach follows a series of sequential steps,
as depicted in Figure 1, with graph modeling serving as a
central component of the process (step 3), being the central
contribution. The method unfolds as follows:

1. Feature Extraction: Features are extracted for each im-
age in the dataset using pre-trained deep neural networks.

2. Compute Ranked Lists: Ranked lists of most similar
images are generated for each sample based on feature
similarity.

3. Compute Density-Guided Correlation Graph: Rank
correlation is computed between images based on the
similarity of their ranked lists. A graph is constructed us-
ing our density-guided correlation thresholding approach.

http://corgcn.lucasvalem.com
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Fig. 1: Workflow of the steps that compose the proposed approach.

4. Run GCN for Semi-Supervised Image Classification:
A Graph Convolutional Network (GCN) is trained over
the constructed graph and the original features. Final
class predictions are obtained via the GCN in a semi-
supervised classification setting.

The remainder of this section is organized as follows.
Section II-A presents the formal rank model, which provides
the foundation for computing the correlation measures. Sec-
tion II-B details the rank correlation measures considered.
Section II-C outlines the graph modeling approaches, covering
both baseline methods and our proposed density-guided rank
correlation graph construction.

A. Formal Rank Model
This work builds upon concepts from image retrieval, which

serve as the foundation for defining the correlation measures.
The image retrieval task consists of identifying and returning
the most similar images from a collection C in response to
a query image xq . This process typically relies on features
extracted from each image, which encode visual content into
a high-dimensional space. Formally, a feature descriptor is
defined as a function f : C → Rd that maps an image to
a d-dimensional feature vector. For an image xi ∈ C, its
representation is given by xi = f(xi) = [xi1, xi2, . . . , xid],
where xij ∈ R denotes the j-th feature component.

Thus, an image dataset can be represented as C =
{x1, x2, . . . , xn}, where each image xi is described by a
feature vector xi ∈ Rd. The resulting set of feature vectors
is denoted by X = {x1,x2, . . . ,xn} ⊂ Rd. The similarity
between two images is defined by the distance between their
feature vectors. Let ρ : Rd×Rd → R+ be a distance function,
typically Euclidean. The distance between images xi and xj

is given by ρ(xi,xj), where xi ∈ Rd is the feature vector of
xi.

The k-nearest neighbors of a query image xq form the set
N (xq, k), containing the k closest elements from X according
to ρ. The ranked list τq is a permutation of X sorted by
increasing distance to xq , where τq(xi) < τq(xj) implies
ρ(xq,xi) ≤ ρ(xq,xj).

B. Rank Correlation Measures
To quantify the similarity between ranked lists, we adopt

correlation measures that evaluate the degree of agreement

among top-k elements. Given two ranked lists τi and τj , and
a neighborhood depth k, a measure returns a value in the range
[0, 1], where higher values indicate stronger agreement.

1) Rank-Biased Overlap (RBO): For computing the correla-
tion between ranked lists, the Rank-Biased Overlap (RBO) [3]
measure is used. This measure considers the overlap between
top-k lists at increasing depths. The weight of the overlap is
calculated based on probabilities defined at each depth. It can
be formally defined as follows:

λ(τi, τj , k, µ) = (1− µ)

k∑
d=1

µd−1 × |N (xi, k) ∩N (xj , k)|
d

,

where N (xi, k) denotes the top-k neighborhood for image xi

and µ is a constant (µ = 0.9 was used in this research).
2) Jaccard Correlations: Inspired by the original Jaccard

index, different variants have been proposed to detect strong
similarity indications at different depths of ranked lists. In this
work, we define the generalized Jaccard function as:

JacFn(τi, τj , k) = Agg

({
|N (xi, kd) ∩N (xj , kd)|
|N (xi, kd) ∪N (xj , kd)|

}k

kd=1

)
.

Here, Agg(·) denotes an aggregation function over the Jac-
card similarities computed at different depths kd ∈ [1, k]. This
function can be instantiated as the maximum (JacMax), mean
(JacMean, usually known as JaccardK), or median (JacMed),
depending on the desired behavior.

C. Graph Modeling
In addition to feature vectors, the input graph of a GCN is

fundamental to its learning process [7]. GCNs were originally
proposed for datasets with an available graph or structured
data. Despite recent advances, GCN-based approaches are still
underexplored in image scenarios [8], [9] when compared to
other domains. The main challenge lies in that, since the graph
is not available in such scenarios, it must be constructed for
these datasets. Most approaches build the graph using the kNN
or reciprocal kNN strategy [5], [10], [11].

In this work, for all graphs G = (V,E) constructed over a
dataset of n images, such that V = X = {x1, . . . ,xn}, the
difference lies in how the edge set E is defined.



1) k-Nearest Neighbor (kNN) Graph: Edges are formed by
connecting each image to its k most similar neighbors:

Eknn = {(i, j) | j ∈ N (xi, k)}.

2) Reciprocal k-Nearest Neighbor Graph: Edges are in-
cluded only between pairs of images that are mutually among
each other’s k nearest neighbors:

Erec = {(i, j) | j ∈ N (xi, k) ∧ i ∈ N (xj , k)}.

This symmetric condition yields a sparser graph that retains
only reciprocal relationships.

3) Density-Guided Correlation Graph (ours): We propose
to use rank correlation measures to build graphs provided as
input to GCNs. We model the graph considering each vertex
as representing an image in the dataset, with edges constructed
between them if the correlation of their ranked lists exceeds
a given threshold. Figure 2 illustrates a graph in which each
vertex corresponds to an image from the collection, and edges
are defined based on the correlation between ranked lists. Two
example images, highlighted in blue, illustrate the process,
showing a correlation of 0.82 between them. We hypothesize
that visually similar images (shown in green) tend to exhibit
higher correlation values, while images from different flower
species (shown in red) are expected to have lower correlations.

Rank-based
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Fig. 2: Illustration of the correlation graph computed for the
Flowers17 [12] dataset, where edge weights are determined by
the correlation between ranked lists. It is expected that more
similar images exhibit higher correlation (in green), while less
similar images show lower correlation (in red).

The correlation graph Gcorr = (V,Ecorr) is defined by

Ecorr =
{
(i, j) | j ∈ N (xi, L) ∧ c(τi, τj , k) > th

}
.

For each image xi we first identify its L nearest neighbors
Ni. Then, for each neighbor xj ∈ Ni, we compute the rank
correlation c(τi, τj , k) between their respective ranked lists up
to k neighborhood depth. Whenever c(τi, τj , k) exceeds the
threshold th, the directed edge (i, j) is added to Ecorr.

To automatically define the graph threshold th, we propose
a density-based threshold approach. Given a dataset of size
n = |C| and L nearest neighbors per node, the graph density
is defined as δ = (|Ecorr|)/(n × L), where |Ecorr| denotes
the number of edges in the correlation graph and (n × L)

is the maximum number of edges possible. To standardize the
computation of δ, we set L = 200 throughout the experiments.

Algorithm 1 performs a bisection search on the correlation
threshold th in the interval [0, 1] so that the resulting graph
density δ lies within a user specified range [δlow, δhigh].
Starting with bounds low = 0, high = 1 and th =
0.5, each iteration calls CorrelationGraph to construct
Gcorr = (V,Ecorr). This function inspects each node’s L
nearest neighbors and adds a directed edge (i, j) whenever
the rank correlation c(τi, τj , k) exceeds th. After computing
the new density, if δ < δlow the algorithm lowers the high
bound to th, and if δ > δhigh it raises the low bound to th
and repeats until the density falls within the target interval or
a maximum number of iterations is reached. In this study, the
bisection search was limited to Imax = 5.

Algorithm 1: Density-Guided Rank Correlation Graph
Input : Image features X = {x1, . . . ,xn}, number of

neighbors L, correlation depth k, density
interval [δlow, δhigh], max iterations Imax.

Output: Graph Gcorr = (V,Ecorr) and threshold th
Initialization: low ← 0, high← 1, th← 0.5, i← 0;
repeat

Gcorr ← CorrelationGraph(X , L, k, th);

δ(Gcorr)←
|Ecorr|
n× L

;

if δ(Gcorr) < δlow then
high← th;

else if δ(Gcorr) > δhigh then
low ← th;

th← low+high
2 ;

i← i+ 1;
until δlow ≤ δ(Gcorr) ≤ δhigh or i ≥ Imax;
return Gcorr, th

III. EXPERIMENTAL EVALUATION

A. Datasets and Features

This work evaluated the results on three publicly available
image datasets, described as follows:

• Flowers17 [12]: consists of 1360 images evenly dis-
tributed across 17 flower categories. Each class contains
80 images captured under varying backgrounds and view-
points, offering moderate intra-class variability.

• Pets [13]: comprises 7409 images from 37 pet classes, in-
cluding high variability in pose, lighting, and background.

• CUB200 [14]: contains 11788 images of 200 bird species.
The dataset provides class labels for fine-grained recog-
nition and localization studies.

For each dataset, we employed three deep learning models
pretrained on the ImageNet dataset:

• ResNet152 [15]: a deep residual CNN. We used the 2048-
dimensional output from the final convolutional stage.

• SENet154 [16]: a ResNet variant with channel-wise
attention. Features were extracted from the final SE block
(2048 dimensions).

• ViT-Base [17]: a transformer model operating on patch
sequences. We used the 768-dimensional class token from
the last encoder layer.



B. GCN Models and Setup
The following GCN models were evaluated:
• SGC [18]: Simplified Graph Convolution (SGC) removes

intermediate nonlinearities and collapses multiple weight
matrices into a single linear transformation applied after
k-step adjacency propagation.

• APPNP [19]: Approximate Personalized Propagation of
Neural Predictions (APPNP) decouples prediction and
propagation by first generating node embeddings with a
multilayer perceptron and then refining them via person-
alized PageRank propagation.

• ARMA [20]: employs AutoRegressive Moving Average
(ARMA) filters to model graph convolution as a recursive
propagation process, enabling deep filtering with stable
frequency responses through stacked ARMA layers.

The GCN models were trained for 200 epochs with a
learning rate of 10−3 across all datasets, except for CUB200,
where a learning rate of 10−2 was used. We adopted the default
hyperparameters provided by the PyTorch Geometric reposi-
tory (https://github.com/pyg-team/pytorch geometric). In all
cases, we set k = 40 for computing the correlation measures
and for the depth of kNN graphs. For our method, we evaluated
L = 200 and L = 40, where L sets the edge selection scope
and k defines the rank correlation depth.

All experiments followed a 10-fold cross-validation proto-
col, in which each fold was used once as the training set and
the remaining nine as the test set. This setup ensures that
every subset is used for training in at least one execution.
Notably, this configuration trains the model on only 10% of
the data while testing on the remaining 90%, thus creating
a particularly challenging scenario with limited labeled data
and few labeled samples per class. For all reported results, we
present the mean accuracy and the sample standard deviation
computed across folds. Each result corresponds to the average
over 5 runs of the 10-fold protocol. We do not report the stan-
dard deviation across executions, as it consistently remained
below 0.5 in all experiments.

C. Analysis of Graph Density Interval
To compute the correlation graph based on graph density, we

first conducted an experiment to determine the most appropri-
ate density interval. Figure 3 presents a surface approximation
derived from multiple executions. The analysis was performed
for both (a) JaccardMax and (b) JaccardMedian using the
GCN-SGC model on the Flowers dataset with ResNet features.
The SGC model was selected for this evaluation due to its high
sensitivity to the graph structure [18]. The Flowers dataset was
chosen for its relatively small size.

Each red point in the figure represents a distinct execu-
tion using a correlation threshold varying from 0.1 to 0.9
(nine values in total). For each execution, the corresponding
graph density (δ) and classification accuracy are reported. The
surface provides a visual approximation that highlights the
relationship between graph density and other parameters. The
plot indicates that the highest accuracy is obtained with lower-
density graphs. Based on this observation, we selected the
density interval [δlow, δhigh] = [0.03, 0.04] for all subsequent
experiments. With the current setup, our graphs are at least 5×
sparser than kNN graphs, as detailed in the supplementary ma-
terial. Sparse graphs are generally advantageous for GCNs as
they help mitigate over-smoothing, reduce noise propagation,
and preserve the local structure of the data, thereby enabling
more effective feature aggregation [10].

D. Semi-Supervised Classification Results
A comprehensive experimental evaluation was conducted on

three datasets, employing three distinct feature extractors and
three GCN models. As baselines, we considered both kNN
and reciprocal kNN graphs and compared their classification
accuracy against our approach, which leverages density-guided
correlation graphs for semi-supervised image classification.
The evaluation considered four rank correlation measures:
RBO, JaccardK, JaccardMedian, and JaccardMax.

Tables I and II present the results for two L values. The
setting L = 200 provides a broader neighborhood for edge
selection, while L = 40 = k allows assessing the impact
of aligning neighborhood size with the correlation depth.
We observe that graphs constructed with rank correlation
and guided by a density-based threshold consistently outper-
form both kNN and reciprocal kNN baselines across almost
all dataset–feature–model combinations. This holds for both
settings of the graph size parameter L, indicating that our
adaptive threshold selection is robust to the choice of L.

The SGC model benefits most from the proposed graphs.
For instance, on Flowers17 with ViT features, the Jaccard-
Median graph achieves 98.08% accuracy, a 1.22% relative
gain over the best reciprocal kNN graph. On CUB200 with
ResNet features and APPNP, accuracy increases from 48.39%
(reciprocal kNN) to 52.52%, corresponding to an 8.53%
relative gain. Even ARMA, which is generally less sensitive
to graph structure, exhibits improvements in many scenarios.

E. Comparison with Other Approaches
Table III reports the best results achieved by our proposed

approach across Tables I and II, focusing on the Flowers
and CUB200 datasets (the smallest and largest, respectively)
for each feature extractor. These results are compared against
both traditional and recent methods under the same train/test
splits for the semi-supervised image classification task. Note
that CoMatch operates on input images instead of extracted
features; therefore, the accuracy remains the same across
feature extractors. We include two widely adopted semi-
supervised learning strategies as baselines: a label-spreading
(LS) algorithm that propagates labels to unlabeled samples
before classification, and pseudolabel (PL), a self-training
approach that iteratively assigns pseudo-labels based on model
predictions. The abbreviations SL-prec. and ML-prec. refer to
single-layer and multi-layer perceptrons, respectively. Using
ViT features, our approach outperformed all baselines. For
other features, it achieved the highest accuracy on CUB200
and remains highly competitive on Flowers. All baselines are
cited accordingly; when a reference is not provided, it refers
to a traditional method used from the scikit-learn library.

IV. CONCLUSION

In this work, we introduced rank correlation graphs as input
to GCNs to enhance semi-supervised image classification. By
leveraging graph density, our method enables the automatic
selection of the correlation threshold. Experimental results,
conducted on three image classification datasets using three
feature extractors and three different GNN architectures, reveal
that correlation-based graphs outperformed both kNN and re-
ciprocal kNN graphs in most cases, especially when used with
the SGC model, achieving results superior to most existing
approaches. In contrast to other methods, our approach does
not rely on manifold learning or post-processing steps to refine
the graph structure.

https://github.com/pyg-team/pytorch_geometric
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Fig. 3: Surface plots showing the impact of correlation thresholding on graph density and classification accuracy using the
GCN-SGC model with ResNet features on the Flowers dataset.

As future work, we aim to investigate different GCN
architectures. We also intend to explore strategies for com-
bining different graph constructions, such as reciprocal and
correlation-based graphs, to better leverage their complemen-
tary properties. Another promising direction is using manifold
learning as a post-processing step to refine the latent feature
space and improve the proposed correlation graph structures.
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TABLE I: Accuracy (%) results for L = 200. For each row, the best-performing correlation graph is highlighted in bold.
The overall best result for each dataset and feature extractor is marked with a gray background and blue font. Relative gains
are reported for both kNN and reciprocal kNN graphs, with positive gains shown in green and negative gains in red.

Dataset Feature GCN Baseline Graphs Correlation Graphs (ours) Relative Gains Over
Extractor Model kNN Rec. kNN RBO JaccardK JaccardMed JaccardMax kNN Rec. kNN

Flow
ers

17

ResNet
SGC 79.68 ± 1.08 83.98 ± 1.77 84.33 ± 2.37 85.41 ± 1.30 85.68 ± 1.46 85.55 ± 2.16 +7.53% +2.02%
APPNP 77.16 ± 1.53 83.13 ± 1.43 84.83 ± 1.49 85.13 ± 1.12 85.29 ± 1.14 82.85 ± 1.48 +10.53% +2.60%
ARMA 78.56 ± 1.40 83.24 ± 1.50 83.65 ± 2.01 82.08 ± 2.00 82.07 ± 1.80 81.59 ± 2.30 +6.47% +0.49%

SeNet
SGC 72.93 ± 1.78 76.17 ± 2.21 78.42 ± 1.96 76.20 ± 2.54 76.08 ± 2.45 77.15 ± 3.03 +7.52% +2.95%
APPNP 70.80 ± 1.82 76.98 ± 1.33 78.35 ± 1.88 77.79 ± 2.00 77.59 ± 1.64 75.97 ± 2.73 +10.66% +1.77%
ARMA 72.81 ± 1.79 76.89 ± 1.63 77.39 ± 1.55 75.54 ± 2.47 75.59 ± 2.14 76.33 ± 2.43 +6.29% +0.65%

ViT
SGC 92.85 ± 1.22 96.90 ± 0.51 98.01 ± 0.31 97.99 ± 0.41 98.08 ± 0.36 98.06 ± 0.44 +5.63% +1.22%
APPNP 90.14 ± 1.71 96.95 ± 0.56 97.85 ± 0.51 97.77 ± 0.47 97.82 ± 0.50 96.96 ± 0.60 +8.55% +0.92%
ARMA 91.10 ± 0.50 96.73 ± 0.40 96.76 ± 0.78 95.76 ± 0.71 95.08 ± 0.89 94.86 ± 1.26 +6.21% +0.03%

Pets

ResNet
SGC 87.79 ± 0.90 89.50 ± 0.68 90.32 ± 0.67 90.04 ± 1.27 89.99 ± 1.16 89.96 ± 1.17 +2.88% +0.92%
APPNP 87.99 ± 0.75 90.50 ± 0.74 90.50 ± 0.58 90.62 ± 0.77 90.62 ± 0.80 90.65 ± 0.77 +3.02% +0.17%
ARMA 87.69 ± 0.79 89.44 ± 0.79 89.36 ± 0.84 88.06 ± 0.99 87.99 ± 0.96 88.18 ± 1.11 +1.90% -0.09%

SeNet
SGC 85.55 ± 0.87 89.05 ± 0.76 89.67 ± 0.48 89.59 ± 0.59 89.53 ± 0.66 89.69 ± 0.69 +4.84% +0.72%
APPNP 84.94 ± 0.66 90.11 ± 0.50 89.80 ± 0.54 90.08 ± 0.58 90.05 ± 0.51 90.17 ± 0.57 +6.16% +0.07%
ARMA 86.51 ± 0.48 89.55 ± 0.50 89.47 ± 0.53 89.30 ± 0.55 89.06 ± 0.58 89.20 ± 0.65 +3.42% -0.09%

ViT
SGC 85.16 ± 1.04 88.28 ± 0.94 89.48 ± 0.76 89.84 ± 0.72 89.70 ± 0.72 89.75 ± 0.72 +5.50% +1.77%
APPNP 77.85 ± 0.84 86.98 ± 1.02 88.80 ± 1.14 88.56 ± 1.33 88.22 ± 1.32 88.41 ± 1.28 +14.06% +2.09%
ARMA 80.01 ± 1.25 85.01 ± 1.01 83.87 ± 1.42 80.40 ± 1.39 78.21 ± 1.59 78.40 ± 1.03 +4.82% -1.34%

CUB20
0

ResNet
SGC 47.55 ± 0.34 53.71 ± 0.36 53.43 ± 0.65 54.43 ± 0.65 53.95 ± 0.70 53.52 ± 0.52 +14.47% +1.34%
APPNP 30.73 ± 1.40 48.39 ± 0.41 52.52 ± 0.40 51.42 ± 0.59 50.25 ± 0.55 51.46 ± 0.42 +70.90% +8.53%
ARMA 38.55 ± 0.64 44.27 ± 0.49 46.39 ± 0.54 41.04 ± 0.59 38.67 ± 0.85 42.21 ± 0.88 +20.34% +4.79%

SeNet
SGC 36.48 ± 0.68 40.31 ± 0.25 39.77 ± 0.48 39.51 ± 0.60 38.95 ± 0.45 41.00 ± 0.50 +12.39% +1.71%
APPNP 29.90 ± 0.48 38.11 ± 0.34 39.06 ± 0.30 38.49 ± 0.30 38.37 ± 0.31 39.12 ± 0.28 +30.81% +2.65%
ARMA 32.86 ± 0.54 34.22 ± 0.30 34.25 ± 0.26 31.40 ± 0.32 30.66 ± 0.35 30.82 ± 0.52 +4.23% +0.09%

ViT
SGC 74.23 ± 0.38 78.03 ± 0.42 81.23 ± 0.55 80.87 ± 0.58 80.80 ± 0.51 80.76 ± 0.46 +9.43% +4.10%
APPNP 55.84 ± 1.38 68.48 ± 0.46 72.33 ± 0.77 63.63 ± 1.12 64.00 ± 1.02 61.75 ± 1.39 +29.53% +5.62%
ARMA 59.71 ± 0.85 64.90 ± 0.72 60.19 ± 0.73 45.28 ± 1.89 46.74 ± 1.45 42.71 ± 2.51 +0.80% -7.26%

TABLE II: Accuracy (%) results for L = 40. For each row, the best-performing correlation graph is highlighted in bold.
The overall best result for each dataset and feature extractor is marked with a gray background and blue font. Relative gains
are reported for both kNN and reciprocal kNN graphs, with positive gains shown in green and negative gains in red.

Dataset Feature GCN Baseline Graphs Correlation Graphs (ours) Relative Gains Over
Extractor Model kNN Rec. kNN RBO JaccardK JaccardMed JaccardMax kNN Rec. kNN

Flow
ers

17

ResNet
SGC 79.68 ± 1.08 83.98 ± 1.77 84.41 ± 2.49 85.28 ± 1.51 85.59 ± 1.43 85.40 ± 2.18 +7.42% +1.92%
APPNP 77.16 ± 1.53 83.13 ± 1.43 84.13 ± 1.92 84.97 ± 1.13 85.13 ± 1.25 82.66 ± 1.79 +10.33% +2.41%
ARMA 78.56 ± 1.40 83.24 ± 1.50 83.50 ± 2.11 82.10 ± 1.94 82.11 ± 2.10 81.48 ± 2.02 +6.29% +0.31%

SeNet
SGC 72.93 ± 1.78 76.17 ± 2.21 77.96 ± 2.45 70.07 ± 2.96 76.19 ± 2.93 76.39 ± 2.96 +6.89% +2.35%
APPNP 70.80 ± 1.82 76.98 ± 1.33 78.21 ± 2.35 78.04 ± 2.34 77.93 ± 2.00 75.67 ± 2.56 +10.47% +1.59%
ARMA 72.81 ± 1.79 76.89 ± 1.63 77.45 ± 1.93 75.52 ± 2.62 75.80 ± 2.49 76.27 ± 2.22 +6.37% +0.73%

ViT
SGC 92.85 ± 1.22 96.90 ± 0.51 98.08 ± 0.35 98.01 ± 0.41 98.09 ± 0.36 98.07 ± 0.45 +5.64% +1.23%
APPNP 90.14 ± 1.71 96.95 ± 0.56 97.81 ± 0.56 97.82 ± 0.44 97.80 ± 0.50 96.93 ± 0.69 +8.52% +0.90%
ARMA 91.10 ± 0.50 96.73 ± 0.40 96.80 ± 1.02 95.33 ± 1.55 94.57 ± 2.01 94.91 ± 1.20 +6.26% +0.07%

Pets

ResNet
SGC 87.79 ± 0.90 89.50 ± 0.68 90.16 ± 0.71 89.97 ± 0.96 90.07 ± 1.16 90.07 ± 1.13 +2.69% +0.73%
APPNP 87.99 ± 0.75 90.50 ± 0.74 90.24 ± 0.71 90.44 ± 0.70 90.47 ± 0.77 90.47 ± 0.76 +2.82% -0.03%
ARMA 87.69 ± 0.79 89.44 ± 0.79 88.79 ± 1.02 88.54 ± 0.96 87.90 ± 1.32 88.38 ± 0.91 +1.25% -0.73%

SeNet
SGC 85.55 ± 0.87 89.05 ± 0.76 89.31 ± 0.60 89.45 ± 0.71 89.28 ± 0.79 89.35 ± 0.87 +4.56% +0.45%
APPNP 84.94 ± 0.66 90.11 ± 0.50 89.29 ± 0.60 89.89 ± 0.65 89.80 ± 0.64 89.87 ± 0.55 +5.83% -0.24%
ARMA 86.51 ± 0.48 89.55 ± 0.50 89.07 ± 0.59 89.30 ± 0.60 89.17 ± 0.61 89.25 ± 0.57 +3.23% -0.28%

ViT
SGC 85.16 ± 1.04 88.28 ± 0.94 89.35 ± 0.88 89.78 ± 0.74 89.72 ± 0.65 89.68 ± 0.80 +5.43% +1.70%
APPNP 77.85 ± 0.84 86.98 ± 1.02 88.19 ± 1.35 88.41 ± 1.32 88.23 ± 1.33 88.24 ± 1.31 +13.56% +1.64%
ARMA 80.01 ± 1.25 85.01 ± 1.01 83.31 ± 1.34 79.75 ± 1.41 79.21 ± 1.37 79.88 ± 1.24 +4.12% -1.99%

CUB20
0

ResNet
SGC 47.55 ± 0.34 53.71 ± 0.36 51.66 ± 0.66 53.87 ± 0.61 53.50 ± 0.54 53.43 ± 0.47 +13.29% +0.30%
APPNP 30.73 ± 1.40 48.39 ± 0.41 51.66 ± 0.33 51.24 ± 0.49 50.41 ± 0.50 51.09 ± 0.38 +68.11% +6.76%
ARMA 38.55 ± 0.64 44.27 ± 0.49 44.51 ± 0.67 42.92 ± 0.66 40.91 ± 0.84 42.58 ± 0.57 +15.46% +0.54%

SeNet
SGC 36.48 ± 0.68 40.31 ± 0.25 39.23 ± 0.53 39.86 ± 0.66 38.94 ± 0.54 40.32 ± 0.40 +10.53% +0.03%
APPNP 29.90 ± 0.48 38.11 ± 0.34 39.28 ± 0.40 39.03 ± 0.44 38.47 ± 0.34 38.98 ± 0.45 +31.37% +3.07%
ARMA 32.86 ± 0.54 34.22 ± 0.30 34.30 ± 0.42 31.52 ± 0.42 31.78 ± 0.39 31.34 ± 0.51 +4.38% +0.23%

ViT
SGC 74.23 ± 0.38 78.03 ± 0.42 81.08 ± 0.62 80.86 ± 0.58 80.77 ± 0.55 80.75 ± 0.45 +9.23% +3.90%
APPNP 55.84 ± 1.38 68.48 ± 0.46 70.34 ± 0.50 62.87 ± 1.31 64.15 ± 0.88 61.62 ± 0.88 +25.97% +2.72%
ARMA 59.71 ± 0.85 64.90 ± 0.72 57.02 ± 1.10 44.80 ± 1.17 46.24 ± 2.26 42.90 ± 1.71 -4.50% -12.14%

TABLE III: Accuracy comparison (%) with other approaches from the literature using the same features, considering scenarios
with only 10% of the training data. Our results are shown in blue, and the best accuracy per line is highlighted in bold.

Features Dataset
CoMatch

[21] kNN SVM
OPF
[22]

SL-
Perc.

ML-
Perc.

PL+
SGD

LS+
kNN

LS+
SVM

LS+
OPF
[22]

LS+
SL-

Perc.

LS+
ML-
Perc.

GNN-
LDS
[23]

WSEF
[4]

MGCN
[5] Ours

ResNet Flowers 82.55 63.67 80.54 71.77 75.44 78.88 82.69 73.49 73.53 72.66 72.34 73.03 79.32 85.12 85.88 85.68
CUB200 38.29 36.67 48.84 38.59 39.91 32.24 21.67 36.99 38.70 39.28 39.21 39.68 37.78 52.17 52.85 54.43

SENet Flowers 82.55 48.71 73.30 64.00 71.84 72.62 76.87 58.05 59.84 59.25 59.27 59.39 — 76.16 78.82 78.42
CUB200 38.29 22.23 35.32 30.94 36.39 32.15 20.96 20.00 24.82 25.38 25.41 25.72 37.78 36.49 40.31 41.00

ViT-B16 Flowers 82.55 91.91 96.75 96.50 75.79 92.59 96.84 95.74 94.49 94.22 93.71 95.13 96.66 97.82 97.43 98.09
CUB200 38.29 56.62 75.61 73.27 70.84 12.02 30.19 66.15 66.81 66.68 65.45 62.81 52.42 78.64 79.27 81.23
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