
Adapting Synthetic Eyes: A Study of Pixel and
Feature-Level UDA for Traffic Object Detection
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Abstract—Training robust object detectors for autonomous
driving requires vast amounts of annotated data, making the use
of synthetic datasets an attractive alternative. However, models
trained on synthetic data suffer from a significant performance
drop when deployed in the real world due to the “sim-to-real”
domain gap. Unsupervised Domain Adaptation (UDA) aims to
solve this problem without requiring expensive target domain
annotations. This paper conducts an empirical study compar-
ing two leading but philosophically different UDA paradigms:
pixel-level adaptation via image-to-image translation (CycleGAN)
and feature-level adaptation via confidence-aware data mixing
(ConfMix). We evaluate these methods on challenging synthetic-
to-real adaptation tasks, using DOLPHINS and SIM10K as
source domains, and Cityscapes and nuScenes as target domains.
Our findings demonstrate that the feature-level mixing strategy
of ConfMix provides more significant and robust performance
gains than pixel-level translation with CycleGAN. Furthermore,
we introduce and evaluate a hybrid method, TransConfMix,
which yields mixed results, highlighting the complexities of
combining these techniques. Our work provides clear evidence
and practical guidance on the effectiveness of different UDA
strategies, concluding that directly adapting the model’s learning
process is a more potent approach than preprocessing the data
for this critical application.

I. INTRODUCTION

The perception systems of autonomous vehicles rely on
the accurate detection of traffic elements such as vehicles
and pedestrians to ensure safety and operational efficiency
[1]. Modern deep learning object detectors have demonstrated
remarkable performance, driven by complex architectures
and, crucially, the availability of vast, meticulously annotated
datasets [2]–[5]. However, the manual annotation of real-
world data is a prohibitively expensive and time-consuming
bottleneck. This has spurred immense interest in using realistic
synthetic data, which offers a scalable and cost-effective
alternative for training robust models. Furthermore, simulation
provides a safe environment to generate data for rare or
high-risk scenarios that are impractical to capture in the real
world [6].

Despite the promise of synthetic data, a fundamental chal-
lenge persists: the domain gap. Models trained exclusively on
simulated data exhibit a significant performance degradation
when deployed in the real world. This gap arises from discrep-
ancies in visual style (e.g., texture, lighting, sensor noise) and

content distribution (e.g., object density, scene layout) between
the synthetic source domain and the real-world target domain.
To harness the full potential of synthetic data, it is imperative
to bridge this sim-to-real gap.

Unsupervised Domain Adaptation (UDA) offers a com-
pelling solution, seeking to adapt a model trained on a labeled
source domain to an unlabeled target domain. In the context
of object detection, UDA approaches have diverged into two
main categories. The first is pixel-level adaptation, which
uses generative models to transform the appearance of source
images to mimic the target domain’s style. This approach is
highly interpretable, as the quality of the adaptation can be
visually inspected before detector training. The second cate-
gory focuses on feature-level adaptation, which aligns feature
distributions or, in more recent methods, employs sophisticated
data-mixing strategies to teach the detector robustness directly.
These methods adapt the model itself rather than the input
data.

This paper presents an empirical study of these two compet-
ing UDA philosophies for the critical task of adapting synthetic
object detectors to real-world traffic scenes. We ask: Is it
more effective to change the appearance of the data (pixel-
level) or to change how the model learns from disparate data
(feature-level mixing)? To answer this, we investigate two
representative, state-of-the-art methods:

• CycleGAN [7], a canonical method for pixel-level
adaptation via unpaired image-to-image translation.

• ConfMix [8], an advanced technique that performs
confidence-aware mixing of source and target images
and labels.

By evaluating these methods on challenging synthetic-to-
real benchmarks, our study provides the following contribu-
tions:

• We conduct a head-to-head comparison of pixel-level
and data-mixing UDA strategies, providing a clear
analysis of their effectiveness in bridging the sim-to-
real gap for object detection.

• We analyze the distinct advantages and failure modes of
each methodology, offering insights into their practical
utility and robustness in complex driving scenarios.



• We establish strong benchmark results on public
datasets, comparing against source-only (lower bound)
and fully-supervised (upper bound) models to contex-
tualize the performance of these UDA techniques.

II. RELATED WORK

Our work is situated at the intersection of object detection
and unsupervised domain adaptation. We review the key
developments in these areas, focusing on the two major UDA
paradigms relevant to our study.

A. Unsupervised Domain Adaptation for Object Detection

The challenge of domain shift in object detection, es-
pecially in the sim-to-real context, has attracted significant
research interest [9], [10]. Early UDA methods for detection
focused on aligning feature distributions between source and
target domains at either the image or instance level, often
using adversarial training to encourage the model to learn
domain-invariant representations. These methods operate di-
rectly within the detector’s architecture to minimize a domain
discrepancy metric. While effective, they can add significant
complexity to the training pipeline.

B. Pixel-Level Adaptation via Image-to-Image Translation

A conceptually distinct approach is to resolve the domain
shift at the data level before training the detector. This
paradigm, known as pixel-level adaptation, uses image-to-
image translation models to ”re-style” source domain images
to match the appearance of the target domain. The most influ-
ential method in this area is CycleGAN [7], which leverages
a cycle-consistency loss to learn translations between two
domains without requiring paired images. This is ideal for
the UDA setting where a direct correspondence between a
synthetic scene and a real-world one does not exist.

The success of this approach has been demonstrated in
various synthetic-to-real benchmarks [11]. In the context of
autonomous driving, CycleGAN has been used to translate
synthetic training data to look more like real-world datasets,
thereby improving the performance of downstream detectors
[2]. However, the translation process is not without its chal-
lenges. Generative models can sometimes introduce visual
artifacts or fail to properly translate fine-grained details, par-
ticularly in complex traffic scenes with heavy occlusion and a
high density of objects [12]. Despite these limitations, pixel-
level adaptation offers a powerful and interpretable framework
for UDA, as the quality of the adapted dataset can be directly
inspected.

C. Adaptation via Pseudo-Labeling and Data Mixing

An alternative to pixel-level translation is to adapt the
model through self-training, which typically involves gener-
ating pseudo-labels on the unlabeled target data. The model
is then retrained on a combination of labeled source data
and pseudo-labeled target data. The primary challenge in
this approach is ensuring the quality of the pseudo-labels, as
noisy or incorrect labels can lead to error accumulation and
performance degradation.

To address this, recent methods have proposed more so-
phisticated data mixing strategies. ConfMix [8] stands out as
a state-of-the-art technique in this category. Instead of trans-
lating images, ConfMix operates by creating a new training
sample by mixing a source image with patches from a target
image. Crucially, the patches selected from the target domain
are those where the model has the most confident pseudo-
detections. This confidence-aware mechanism ensures that the
model learns from the most reliable parts of the target domain,
progressively adapting its features while mitigating the risk of
noise from low-quality pseudo-labels.

D. Position of Our Work

Image translation and data mixing represent two com-
plementary strategies for reducing the domain gap in VRU
detection tasks and offer distinct advantages. However, the
comparative performance of methods representing these strate-
gies (e.g., CycleGAN and ConfMix) in VRU detection remains
an open question. CycleGAN excels in pixel-level adaptation,
allowing for highly realistic transformations of the source
domain into the style of the target domain. This allows models
to better generalize to real-world data. However, CycleGAN
is computationally expensive and sensitive to domain-specific
details, making it less suitable for real-time applications.

In contrast, ConfMix offers a simple and more efficient
approach that progressively adapts object detectors by making
use of pseudo-labels with confidence based on the target do-
main. While this method is computationally cheaper and easier
to implement, it may not be as effective in scenarios where
high-quality visual transformation is required. The trade-off
lies on the ability of CycleGAN to generate more realistic
images but at the cost of increased computational complexity,
while ConfMix simplifies the adaptation process but may not
achieve the same level of fidelity.

In this study, we evaluate the strengths and weaknesses of
both approaches in real-world traffic environments. Specifi-
cally, we investigate how each approach adapts object detec-
tors trained on simulated traffic data to real-world datasets,
such as Cityscapes and NuScenes. The results aim to provide
a comprehensive understanding of the practical utility of each
method in challenging real-world scenarios.

III. METHODOLOGY

Our methodology is designed to provide a clear and di-
rect comparison between pixel-level, feature-level, and hybrid
adaptation strategies. We first define our baseline object de-
tector and then detail the three UDA approaches evaluated in
this study. Let S = {(xs, ys)} be the labeled source domain
(synthetic data) and T = {xt} be the unlabeled target domain
(real-world data). All experiments focus on a single class: car.

A. Preliminaries: Baseline Object Detector

For all experiments, we employ the YOLOv5 architecture.
YOLOv5 is a highly efficient and powerful one-stage object
detector, making it a relevant choice for applications like
autonomous driving. The other reason we adopted YOLOv5



is to ensure a fair and direct comparison across all adaptation
methods, since it is the detector architecture used in the official
ConfMix implementation. The model is trained to minimize
a multi-component loss function that includes classification,
localization, and objectness scores. When this model is trained
only on the source domain S and evaluated on the target
domain T , it serves as our “source-only” baseline, establishing
the lower bound for performance.

B. Pixel-Level Adaptation via CycleGAN

To adapt at the pixel level, we use CycleGAN [7] to translate
the visual style of the source domain to mimic the target
domain. This unpaired image-to-image translation framework
learns a mapping GS→T without corresponding image pairs.
It consists of two generators, GS→T and GT→S , and two
discriminators, DT and DS . The framework is trained with
a combination of an adversarial loss and a cycle-consistency
loss.

The adversarial loss pushes the generator to create images
that are indistinguishable from real images in the target
domain. For the mapping GS→T , the loss is:

LGAN (GS→T , DT ) = Ext∼T [logDT (xt)]

+ Exs∼S [log(1−DT (GS→T (xs)))] (1)

The cycle-consistency loss ensures that the content of the
image is preserved during translation by enforcing that an
image translated to the other domain and back should recover
the original image. The loss is defined as:

Lcyc(GS→T , GT→S) = Exs∼S [∥GT→S(GS→T (xs))−xs∥1]
+ Ext∼T [∥GS→T (GT→S(xt))− xt∥1] (2)

The full objective function, which includes a symmetric
mapping from T to S, is:

LCycleGAN = LGAN (GS→T , DT ) + LGAN (GT→S , DS)

+ λLcyc (3)

where λ is a hyperparameter that balances the importance of
the losses. After training, we generate a new, translated source
dataset S′ = {(GS→T (xs), ys)}. Then, an object detector
approach can be trained from scratch on S′.

C. Feature-Level Adaptation via ConfMix

For feature-level adaptation, we employ ConfMix [8], a
curriculum-based strategy that mixes source and target data
based on model confidence. The process involves several steps:

1) Pseudo-Label Generation: The detector generates pseudo-
labels on unlabeled target images xt. To capture local-
ization uncertainty, the detector is modified to predict the
parameters of a Gaussian distribution for each bounding
box coordinate:

b̂ = [µbx, µby, µbh, µbw,Σbx,Σby,Σbh,Σbw] (4)

where µ and Σ are the predicted means and variances.

2) Confidence Calculation: A localization confidence score,
Cbbx, is derived from the predicted variances:

Cbbx = 1− mean(Σ̂) (5)

This is combined with the standard classification confi-
dence, Cdet, to produce a final confidence score for each
pseudo-detection:

Ccomb = Cdet · Cbbx (6)

3) Confidence-Aware Mixing: The target image patch with
the highest Ccomb is pasted onto a source image xs,
creating a mixed image xM . The labels for this mixed
image, yM , combine the source labels and the high-
confidence target pseudo-label.

4) Consistency Training: The mixed image xM is fed
through the detector. A consistency loss is applied, en-
forcing that the detector’s output on the mixed image
aligns with the combined labels yM . This loss is the stan-
dard detection loss, Ldet, applied to the mixed sample:

Lcons = Ldet(f(xM ), yM ) (7)

where f is the detector. The total training loss is a
weighted sum of the supervised loss on the source image
and the consistency loss on the mixed image:

Ltotal = Ldet(f(xs), ys) + wconsLcons (8)

D. A Hybrid Approach: TransConfMix

We also propose and evaluate a hybrid strategy, termed
TransConfMix. This approach combines pixel-level and
feature-level adaptation. The training protocol is identical to
ConfMix, but during the mixing step, the source images xs

are replaced by their CycleGAN-translated counterparts from
the dataset S′. This aims to minimize the domain gap before
mixing, potentially enabling more effective learning.

IV. EXPERIMENTS

This section details the empirical evaluation of the UDA
strategies described in our methodology.

A. Datasets

We use two synthetic datasets as our source domains and
two real-world datasets as our target domains.

• Source (Synthetic):
– DOLPHINS1 [13]: A dataset of synthetic vehicle-

centric road scenes (1920×1080 pixels).
– SIM10K2 [14]: A dataset containing 10,000 images

with 58,701 annotated cars, generated from the Grand
Theft Auto V video game (1920×1080 pixels).

• Target (Real-World):

1DOLPHINS: Available at https://dolphins-dataset.net/. Accessed on
September 11, 2025.

2SIM10K: Available at https://fcav.engin.umich.edu/projects/
driving-in-the-matrix. Accessed on September 11, 2025.



– Cityscapes3 [15]: A large-scale dataset of real-world
urban street scenes. We use the vehicle-perspective
images (2048×1024 pixels).

– nuScenes4 [16]: A comprehensive autonomous driv-
ing dataset. We use the front-facing camera data
(CAM_FRONT), which captures diverse environments
(1600×900 pixels).

B. Experimental Protocol and Metrics

To provide a comprehensive evaluation, we establish clear
performance bounds and follow specific training protocols for
each method.

1) Performance Bounds: We define two key performance
benchmarks to provide a clear reference for evaluating the
UDA strategies:

• Lower Bound (Source-Only): A YOLOv5 model trained
for 100 epochs exclusively on a source dataset and
evaluated directly on a target dataset.

• Upper Bound (Oracle): A YOLOv5 model trained for 100
epochs and evaluated on the same target dataset. This
represents the ideal fully-supervised performance.

2) Adaptation Protocols: To evaluate the UDA strategies,
we employed the following methods:

• CycleGAN: Following preprocessing, a CycleGAN
model is trained for each source-target pair (e.g., DOL-
PHINS → Cityscapes). The entire source dataset is then
translated. Finally, a YOLOv5 detector is trained for 100
epochs on this translated dataset.

• ConfMix: We follow the original two-stage protocol.
First, a YOLOv5 model is trained for 50 epochs on the
source data. Second, this model is used to initiate the
adaptation stage, training for an additional 50 epochs
using the confidence-based mixing strategy.

• TransConfMix: The protocol is identical to ConfMix, but
in the second 50-epoch adaptation stage, the source im-
ages are replaced by their CycleGAN-translated versions.

3) Evaluation Metrics: We evaluate all models on the
target domain’s test set, focusing on detecting the car class.
Performance is measured using standard COCO-style metrics:

• mAP@0.5: Mean Average Precision at an IoU threshold
of 0.5.

• mAP@[0.5:0.95]: The primary COCO metric, averaging
mAP over IoU thresholds from 0.5 to 0.95.

C. Implementation Details

In the following, we present the specific details of how we
implemented each method:

• Data splits and leakage prevention: For Cityscapes and
nuScenes, only the official train split was used for
pseudo-labeling/adaptation, while the official val split
was reserved exclusively for evaluation. In nuScenes, we

3Cityscapes: Available at https://www.cityscapes-dataset.com/. Accessed on
September 11, 2025.

4nuScenes: Available at https://www.nuscenes.org/. Accessed on September
11, 2025.

used only CAM_FRONT frames and enforced scene-level
disjointness. For datasets without official validation/test
partitions (e.g., DOLPHINS, SIM10K), we defined fixed,
disjoint subsets at the start of the study and kept them
immutable throughout all experiments.

• CycleGAN: We use the official PyTorch implementation5.
Images are resized to a load size of 1024 and then cropped
to 512 for training. We train for 100 epochs (the first 50
with a fixed learning rate of 0.0001 and the last 50 with
linear decay). We set λcyc = 10 and λidentity = 1.0.

• ConfMix: We use the official implementation6 with the
default hyperparameters provided for YOLOv5.

• YOLOv5: All detector training uses the default configura-
tions from the YOLOv5 repository. The model checkpoint
from the final epoch is used for evaluation.

V. RESULTS AND ANALYSIS

In this section, we present and analyze the results. We first
report the quantitative performance of each UDA method and
then provide a qualitative analysis through visualizations of
the adaptation process and final detection outputs.

A. Quantitative Results

The primary results of our experiments are summarized in
Table I. The table compares the performance of the Source-
Only baseline against the three adaptation strategies (Cycle-
GAN, ConfMix, and TransConfMix) on two distinct synthetic-
to-real adaptation tasks: DOLPHINS/SIM10K → Cityscapes
and DOLPHINS/SIM10K → nuScenes. Performance is mea-
sured by mAP@0.5 and mAP@[0.5:0.95].

TABLE I: Results for object detection in target domains
(Cityscapes and NuScenes). All values are mAP. The best
adaptation method for each metric is in bold. The Oracle
provides an upper-bound performance reference.

Method Cityscapes NuScenes

mAP@0.5 mAP@
[0.5:0.95] mAP@0.5 mAP@

[0.5:0.95]

So
ur

ce
:

D
O

L
PH

IN
S Source-only 0.1053 0.0481 0.2873 0.1518

CycleGAN 0.2199 0.1024 0.2619 0.1382
ConfMix 0.2883 0.1413 0.3766 0.1848

TransConfMix 0.2300 0.1064 0.3806 0.1829
Oracle 0.5824 0.3817 0.5215 0.3046

So
ur

ce
:

SI
M

10
K

Source-only 0.3172 0.1998 0.3573 0.1459
CycleGAN 0.3525 0.2105 0.3766 0.1538

ConfMix 0.4082 0.2396 0.4126 0.1619
TransConfMix 0.3725 0.2144 0.4095 0.1641

Oracle 0.5824 0.3817 0.5215 0.3046

5CycleGAN official PyTorch implementation. Available at https://github.
com/junyanz/pytorch-CycleGAN-and-pix2pix. Accessed on September 11,
2025

6ConfMix official implementation. Available at https://github.com/
giuliomattolin/ConfMix. Accessed on September 11, 2025



B. Analysis of Results

UDA methods successfully bridge the domain gap. As ex-
pected, the source-only models perform poorly on both target
domains, confirming the existence of a significant domain
shift. For instance, the DOLPHINS-trained model achieves
only 0.0481 mAP@[0.5:0.95] on Cityscapes. All adaptation
methods provide a substantial boost over this baseline. In
the DOLPHINS → Cityscapes task, ConfMix improves the
mAP@[0.5:0.95] to 0.1413, a relative increase of over 190%.
This clearly demonstrates that UDA is a critical component
for deploying detectors trained on synthetic data.

Feature-level mixing outperforms pixel-level translation. In
our comparison, ConfMix consistently outperforms Cycle-
GAN across nearly all experiments. When adapting from
SIM10K to Cityscapes, ConfMix achieves a mAP@0.5 of
0.4082, surpassing CycleGAN’s 0.3525. An interesting excep-
tion is the DOLPHINS → NuScenes task, where CycleGAN
surprisingly degrades performance compared to the source-
only baseline. This suggests that flawed pixel-level translation
can be actively harmful, potentially introducing artifacts that
confuse the detector more than the original domain gap. Over-
all, the evidence suggests that directly adapting the model’s
features via data mixing is a more robust and effective strategy
than relying solely on image-style translation.

The hybrid approach shows mixed results. Our proposed
TransConfMix method, which combines pixel-translation with
feature-mixing, yields intriguing but inconsistent results. In
the DOLPHINS → Cityscapes task, it underperforms standard
ConfMix. This suggests that the initial CycleGAN translation,
even if visually plausible, may introduce subtle artifacts that
disrupt the delicate confidence-based mixing mechanism of
ConfMix. However, in the DOLPHINS → NuScenes task,
TransConfMix achieves the highest mAP@0.5 score (0.3806),
slightly edging out standard ConfMix. This indicates that
for certain domain pairs, a preliminary style alignment may
provide a slightly better foundation for the feature-mixing
stage. The effectiveness of this hybrid approach appears to
be highly dependent on the specific source-target pair and the
quality of the initial image translation.

C. Qualitative Analysis

To provide qualitative insights, we visualize the adaptation
process and final detection results.

Figure 1 illustrates the core of the pixel-level adaptation.
The synthetic DOLPHINS image (a) is translated into the
style of Cityscapes (b). While the color palette and lighting
are successfully adapted, some fine details and textures are
altered, which may contribute to the performance gap relative
to feature-level methods.

Figure 2 showcases the mechanism of ConfMix. High-
confidence regions from the real-world target domains
(Cityscapes and NuScenes) are pasted onto synthetic source
images. This directly exposes the detector to real-world object
appearances and contexts during training, which is likely a key
reason for its strong performance.

(a) Original DOLPHINS image. (b) CycleGAN translation to
Cityscapes style.

Fig. 1: An example of CycleGAN’s image-to-image translation
from the synthetic DOLPHINS domain to the Cityscapes
visual style.

(a) DOLPHINS + Cityscapes (b) DOLPHINS + NuScenes

Fig. 2: Region mixing examples for ConfMix when adapt-
ing from the DOLPHINS source domain to Cityscapes and
NuScenes target domains.

Finally, Figure 3 presents sample detection outputs on
the target domains from one of our best-performing adapted
models. The model successfully identifies vehicles in varied
lighting and traffic conditions, qualitatively demonstrating the
effectiveness of the adaptation process.

VI. CONCLUSION

In this paper, we presented a comparative study on UDA
for the critical task of vehicle detection, focusing on bridging
the domain gap between synthetic source and real-world target
domains. We conducted a head-to-head evaluation of a pixel-
level adaptation method, CycleGAN, and a feature-level data-
mixing method, ConfMix, in addition to a hybrid approach we
termed TransConfMix.

Our quantitative and qualitative results lead to a clear con-
clusion: for the task of sim-to-real object detection, adapting
the model through feature-level data mixing is a more effective
and robust strategy than adapting the data through pixel-level
translation. ConfMix consistently outperformed CycleGAN
across our experimental setups, demonstrating that directly ex-
posing the detector to confident pseudo-labels from the target
domain within a mixed-data curriculum is highly effective.
While visually compelling, the image-to-image translation
performed by CycleGAN did not always translate into superior
detection accuracy and, in one case, was even detrimental to
performance. This suggests that subtle artifacts or imperfect



(a) Detection on Cityscapes

(b) Detection on NuScenes

Fig. 3: Example object detection results on the Cityscapes and
NuScenes test sets using a model adapted with ConfMix.

style translations can introduce a new form of “noise” that
hinders the detector’s learning process.

The findings reinforce the significant value of synthetic
data in training perception systems. With effective UDA,
models can achieve respectable performance in real-world
conditions without any manual annotation in the target domain,
dramatically reducing development costs and effort. This has
direct implications for improving the safety and reliability of
autonomous systems, including the robust detection of vehicles
to protect vulnerable road users.

Nonetheless, our study has limitations. The analysis was
restricted to a single object class, and the performance of
generative models like CycleGAN is known to be sensitive to
hyperparameter tuning. The inconsistent performance of our
hybrid TransConfMix approach suggests that naively combin-
ing pixel-level and feature-level methods is not a guaranteed
path to improvement and requires more sophisticated integra-
tion.

As future work, we suggest (i) extend the evaluation to
multiclass detection and report variability across multiple runs,
(ii) analyze the impact of translation quality and resolution
on detection performance, and (iii) explore a more integrated
hybrid strategy by redesigning the ConfMix adaptation stage
to jointly leverage three inputs — the source, the CycleGAN-
translated source, and the target frames — within the same
adaptation cycle. We also plan to investigate adaptations
involving infrastructure-based sensors (e.g., roadside units) to
further broaden the coverage of traffic scenes.
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