
From Volume Rendering to 3D Gaussian Splatting:
Theory and Applications

Vitor Pereira Matias*§, Daniel Perazzo*†, Vinicius Silva‡, Alberto Raposo‡,
Luiz Velho†, Afonso Paiva§, and Tiago Novello†

ICMC-USP§, IMPA†, PUC-RIO‡

Abstract—The problem of 3D reconstruction from posed im-
ages is undergoing a fundamental transformation, driven by con-
tinuous advances in 3D Gaussian Splatting (3DGS). By modeling
scenes explicitly as collections of 3D Gaussians, 3DGS enables
efficient rasterization through volumetric splatting, offering thus
a seamless integration with common graphics pipelines. Despite
its real-time rendering capabilities for novel view synthesis,
3DGS suffers from a high memory footprint, the tendency to
bake lighting effects directly into its representation, and limited
support for secondary-ray effects. This tutorial provides a concise
yet comprehensive overview of the 3DGS pipeline, starting from
its splatting formulation and then exploring the main efforts in
addressing its limitations. Finally, we survey a range of appli-
cations that leverage 3DGS for surface reconstruction, avatar
modeling, animation, and content generation—highlighting its
efficient rendering and suitability for feed-forward pipelines.

Index Terms—Gaussian Splatting, Volume Rendering, 3D Re-
construction.

I. INTRODUCTION

3D reconstruction from posed images is a long-standing
problem in visual computing that is undergoing a fundamental
disruption, driven by advances in Neural Radiance Fields
(NeRFs) [1] and 3D Gaussian Splatting (3DGS) [2]. Given a
set of input views with known poses from an unknown scene,
the goal is to optimize the parameters of a 3D representation
that accurately captures the scene’s geometry and appearance.
NeRFs have had a significant impact on this task by repre-
senting scene geometry (as volume density) and radiance using
neural networks, optimized through differentiable volume ren-
dering [3]. This framework enables highly detailed Novel View
Synthesis (NVS) of real-world scenes, with straightforward
integration of 3D reconstruction into deep learning pipelines.

However, representing a scene volumetrically through a
neural network can be inefficient, as the network must learn
to represent both occupied and empty regions of the domain.
During training, its global representation requires supervision
across the entire domain, including empty space, resulting
in high computational costs and making real-time rendering
impractical–crucial for applications. To address these chal-
lenges, Kerbl et al. [2] introduced 3DGS, which models
the scene as a collection of 3D Gaussians with colors and
leverages volume splatting [4] for differentiable rendering.
By avoiding costly queries in empty space and employing
rasterization, 3DGS achieves both high detail and real-time
performance. Figure 1 gives an overview of 3DGS.

*denotes equal contribution.

Surface
Reconstruction

3DGS

Set of
Gaussians

Volume
splatting

Input views

Point cloud
from SfM

Fig. 1: Illustration of the 3DGS pipeline. Given a set of posed input images
(left), a sparse point cloud from Structure-from-Motion (SfM) is used to
initialize a set of colored 3D Gaussians (middle). These Gaussians are then
optimized via volume splatting and can support downstream tasks such as
novel view synthesis and surface reconstruction (right).

The objective of this tutorial is to present the 3DGS method
by deriving its splatting formulation from the volume render-
ing equation, along with techniques for Gaussian initializa-
tion and adaptation during training. We then review recent
approaches that address key limitations of the original 3DGS
method, including its high memory consumption and limited
support for secondary-ray effects. Finally, we discuss a range
of applications of 3DGS, including surface reconstruction, an-
imation, avatar modeling, and feed-forward 3D reconstruction
from sparse views. In summary, our contributions are:

• An intuitive mathematical derivation of 3DGS from the
volume rendering equation.

• A survey of 3DGS extensions and applications across a
variety of 3D reconstruction tasks.

II. VOLUME RENDERING PRELIMINARIES

Our objective is to use differentiable rendering to recon-
struct a 3D scene—parameterized by θ—from a set of N posed
multi-view images and their corresponding camera intrinsics
and extrinsics {Ii,Ki,Wi}Ni=1. For each view i, we render
the scene using the current θ, obtaining an image Iθ,i, which
is then compared to its corresponding input view Ii, enforcing
Ii ≈ Iθ,i. This is achieved by minimizing the photometric loss:

L(θ) = 1

N

N∑
i=1

∥Iθ,i − Ii∥2 , (1)

using standard gradient descent algorithms such as Adam [5].
Traditional mesh-based representations are typically non-

differentiable, making them unsuitable for optimizing loss (1)
via gradient descent methods. To overcome this, NeRFs [1]
and 3DGS [2] employed volumetric representations to enable
differentiable volume rendering. Specifically, the scene is
parameterized by a density field σθ : R3 → R, quantifying



particle light absorption, and a color field cθ : R3 → R,
quantifying emitted radiance. Thus, treating the scene as a
“cloud” that both absorbs and emits light. Although seemingly
unsuitable for representing solid objects initially, this approach
has yielded strong results in novel view synthesis [6], [7] and
detailed surface reconstruction [8], [9].

Let γ(t) = oi + tv be the view ray associated with a pixel
p in the input image Ii, where oi is the camera position. Our
goal is to compute the color observed along this ray using
volume rendering techniques [10]. We restrict the ray domain
to the interval [tn, tf ], where tn and tf correspond to the near
and far bounds. Ignoring scattering, the accumulated radiance
I(γ(t)) along the ray satisfies the volumetric light transport
ordinary differential equation (ODE) [3]:

I ′(t) = σθ(t)cθ(t)︸ ︷︷ ︸
Emission

−σθ(t)I(t)︸ ︷︷ ︸
Absorption

. (2)

For simplicity, we omit γ in the notation. The ODE (2) can be
solved by separation of variables [3, Sec. 4]. Assuming zero
background emission as the initial condition, i.e., I(tn) = 0,
the accumulated radiance at the end of the ray is given by:

If := I(tf ) =

∫ tf

tn

σθ(t)cθ(t) exp

(
−
∫ t

tn

σθ(s) ds

)
dt. (3)

The transmittance exp(· · · ) captures the attenuation of light
due to absorption along the ray. In practice, to render the
predicted image Iθ,i for view i, we approximate the integral (3)
using numerical quadrature methods resulting in the volume
rendering equation [1]:

If ≈
N∑
i=1

cθ(ti)
(
1−exp

(
− σθ(ti)δi

))i−1∏
j=1

exp
(
− σθ(tj)δj

)
, (4)

where δi = ti − ti−1 is the step size between consecutive
samples. This formulation allows gradient-based optimization,
as it is fully differentiable. In NeRF, the functions σθ and cθ
are modeled by neural networks, and (4) is used to optimize
θ via the photometric loss (1). However, the global nature of
neural representations requires supervision across the entire
domain—including empty space—to compute (4). This results
in high computational overhead and severely limits real-time
rendering capabilities, essential for applications.

III. 3D GAUSSIAN SPLATTING

Gaussian splatting overview. To overcome the computational
cost of evaluating the volume rendering equation (3), Kerbl
et al. [2] introduced 3D Gaussian Splatting (3DGS), which
represents the density and radiance fields σθ and cθ using
a collection of colored 3D Gaussians, rendered efficiently
via volume splatting [4]. We follow the pipeline illustrated
in Fig. 2 to describe the main stages of 3DGS. The input
consists of a set of posed images {Ii}, from which a colored
point cloud is obtained via Structure-from-Motion (SfM) [11];
see Fig. 2 (top-left). This point cloud serves as the basis for
initializing a set of M Gaussians, gi := {µi,Σi, σi, ci}, where
µi ∈ R3 is the Gaussian center, Σi ∈ R3×3 is the covariance

matrix, σi ∈ R is the opacity, and ci ∈ R3 is the RGB color.
Each Gaussian defines a density function Gi :R3→R given by:

Gi(x) := exp

(
−1

2
(x− µi)

TΣ−1
i (x− µi)

)
, (5)

which controls the spatial influence of the Gaussian around
point x. To avoid expensive evaluation in empty space, the
initial Gaussians can be placed where geometry is present,
i.e. the optimization begins with the Gaussian centers µi and
colors ci initialized from the SfM point cloud; see Fig. 2 (top-
middle). The scene is then rendered via volume splatting,
and the output image Iθ,i is compared to the corresponding
input view Ii using a photometric loss. The resulting error
is backpropagated to update the Gaussian parameters via
gradient descent. To further refine the representation and avoid
poor local minima, an adaptation module is employed during
training; see Fig. 2 (bottom-right). This step dynamically
adjusts the number of Gaussians by splitting Gaussians that
are too large, cloning Gaussians that underfit local detail, and
pruning those with persistently low opacity.

Overfit
Split

Clone
Underfit

Gaussian adaptation

Input Views

Gaussian 
initialization

Set of Gaussians with colors Volume splatting

Gradient Flow

Photometric Loss

Splatting 

Input view 

SfM point 
cloud

Fig. 2: Overview of the 3DGS pipeline. The process begins (left) with a
set of posed images captured around an object, from which a sparse SfM
point cloud is reconstructed. Gaussians are then initialized over this point
cloud and optimized (center) through differentiable volumetric splatting. The
rendered image is compared to the input views using an photometric loss,
whose gradient is used to update the Gaussian parameters. To enhance spatial
coverage and avoid under- or over-representation, 3DGS incorporates an
adaptation step (right) that dynamically adds (via splitting or cloning) or
removes Gaussians during training.

Volume splatting. While it is possible to apply quadrature-
based volume rendering (4) to the Gaussian representation,
this is computationally expensive since it would require
querying points outside the Gaussian supports. Instead, 3DGS
adopts volume splatting—a efficient rasterization-based alter-
native—to approximate the integral in (3). Precisely, let γ be
a view ray associated to a pixel p, intersecting a set of K
Gaussians sorted according to the distance from their centers
to the camera position. Using basic properties from integral
calculus and assuming that each Gaussian has local support,
we can rewrite (3) as:

I(γ)=

K∑
i=1

ciσiτi

i−1∏
j=1

(1−σjτj) , with τi=

∫
R
Gi

(
γ(t)

)
dt. (6)

Zwicker [4] show that τk corresponds to projecting (i.e.,
splatting) the Gaussian and evaluating it at the pixel location p.



To show that
∫
R Gi

(
γ(t)

)
dt results in a 2D Gaussian in the

image plane, we assume that coordinates are aligned with the
camera coordinate system defined by the pose matrix W. Let
PK : R3 → R2 denote the perspective projection induced by
the camera intrinsics K. Since PK is non-affine, Zwicker et
al. [4] proposed a first-order approximation of PK around the
Gaussian center µi using its Jacobian J ∈ R2×3:

PK(x) ≈ PK(µi) + J(x− µi). (7)

This approximation allows computing the integral τi by eval-
uating a 2D Gaussian G̃i : R2 → R, called splatting of the
3D Gaussian Gi. To compute the the mean and covariance
of this Gaussian, we express the 3D Gaussian into the camera
coordinate system using W and apply the linearized projection
using our first-order approximation:

µ̃i := PK(Wµi), Σ̃i := JWΣiW
TJT . (8)

The opacity and colors are preserved, that is, σ̃i = σi and
c̃i = ci. Thus, the resulting Gaussian splatting set is given
by g̃i = (µ̃i, Σ̃i, σ̃i, c̃i, ) is called. Now, we must perform
the composition of multiple volumes with different opacities
(alpha-compositing) with the projected Gaussians. Assuming
the K Gaussians intersecting the ray “shooting” from pixel
p ∈ R2 are sorted by depth, the final light intensity If at that
pixel p is given by:

If =

N∑
i=1

ci σ̃i G̃i(p)

i−1∏
j=1

(
1− σ̃j G̃j(p)

)
. (9)

With the new intensity equation, the pipeline is reformulated to
first project (i.e., splat) the Gaussians onto the image, followed
by pixel evaluation. A tile-based rasterization strategy enables
parallelization for faster volume rendering. Additionally, to re-
duce aliasing artifacts, 3DGS uses a dilation-based filter [12].
It is important to note that, since both NeRFs and Gaussian
Splatting are derived from the volume rendering integral (3),
note that volume splatting (9) resembles volume rendering
(4). Figure 2 provides an overview of the volume splatting
operation, where Gaussians are first sorted along the viewing
ray and then alpha-composited to form the final image.

Color representation. In 3DGS [2], this modeling approach is
used to perform 3D reconstruction from posed images, where
the scene parameters θ are defined as the set of Gaussians.
They modeled the colors using spherical harmonics to rep-
resent view angle light variation and used a diagonalization
trick to parameterize the covariance matrix. Since Σi is a
positive-definite matrix, hence, there is a diagonalization such
that Σi := VSVT , where S ∈ R3×3 is a diagonal matrix
with positive entries and V ∈ SO(3), where SO(3) is the
3D rotation group. With this representation, we can optimize
S by directly optimizing its diagonal entries, represented as a
vector s ∈ R3. For V, the rotation can be parameterized as an
optimizable quaternion q ∈ R4.

IV. EXTENSIONS AND DEVELOPMENTS

The original 3D Gaussian Splatting (3DGS) technique
achieves high-quality view synthesis but faces challenges such
as memory usage and accurate volume rendering. Recent
extensions address these issues through various improvements.
Thanks to its strong performance, 3DGS is also being applied
beyond its original scope, including surface reconstruction and
avatar creation. In this section, we review key developments
and highlight notable contributions.

Memory: While possessing high quality, 3DGS employs a
substantial quantity of Gaussians, approximately 200,000–
500,000 for complex scenes, thereby resulting in significant
memory and storage demands, particularly when contrasted
with the requirements of NeRFs. Furthermore, these chal-
lenges can be exacerbated by the adaptation mechanism,
which may introduce additional Gaussians during the training
process. Consequently, certain methodologies [13]–[15] have
implemented running regimes during the inclusion process to
reduce the number of Gaussians, thus minimizing the mem-
ory footprint. Recent studies have also endeavored to refine
the adaptation strategy, exemplified by MCMC-3DGS [16],
wherein the traditional heuristics of Gaussian adaptation (den-
sify and prune) have been supplanted by a Markov Chain
Monte Carlo technique utilizing a loss function.

Aliasing and multi-resolution: 3DGS uses a dilation filter,
which fails to suppress high-frequency artifacts when varying
focal length or camera distance. To overcome this, MIP-
Splatting [17] introduced both 2D and 3D Gaussian filters,
improving robustness to aliasing caused by resolution changes.
Building on this, recent work has explored Gaussian Splatting
for multiresolution applications [18].

Specularity: In 3DGS, an emission-absorption model (2) is
used instead of a scattering model [3], effectively baking
lighting conditions into the spherical harmonics coefficients.
This limits performance on highly reflective surfaces and
prevents relighting. To address this, methods such as Gaus-
sianShader [19], 3DGS-DR [20], and IRGS [21] incorpo-
rate classical reflection and shading concepts into the 3DGS
framework. An alternative approach by Ginter et al. [22] uses
diffusion models for relighting. Gao et al. [23] embed BRDF
parameters—albedo, roughness, surface normals, and incident
lighting—into each Gaussian, enabling per-point physically
based rendering. Direct lighting is reconstructed using en-
vironment maps, while spherical harmonics model indirect
lighting. Additionally, while standard 3DGS relies only on
primary rays, recent methods incorporate secondary rays to
model interreflections. To this end, ray tracing techniques have
been integrated [21], [24], allowing secondary rays—such as
reflections and refractions—to be spawned upon primary ray
interactions with Gaussians.

Volume Splatting Revisited: Volume splatting (9) introduces
several approximations that can compromise rendering ac-
curacy. Stop-the-pop [25] mitigates popping artifacts caused
by the sorting procedure. Other works [26], [27] propose



compensation terms on the opacity for more accurate volume
rendering. Additionally, to improve the affine approxima-
tion of the projection operator (7), recent methods such as
3DGUT [28] employ an unscented transform for more precise
Gaussian projection onto the image plane.
3D Reconstruction In the Wild: Recent works have ex-
tended 3DGS to “in-the-wild” settings characterized by occlu-
sions, transient objects, and varying illumination. WildGaus-
sians [29] integrates robust DINO features and a lightweight
appearance modeling module within the 3DGS framework
to handle unconstrained photo collections, matching real-
time rendering speeds while outperforming the original NeRF
baseline and having similar speed to 3DGS on wild data.
Gaussian in the Wild (GS-W) [30] separates intrinsic and
dynamic appearance attributes per Gaussian point, employs an
adaptive sampling strategy, and leverages 2D visibility maps
to mitigate transient occlusions and photometric variations,
achieving high-fidelity reconstructions at fast render times.
In a similar approach, Wild-GS [31] aligns pixel appearance
features from image triplanes directly to 3D Gaussians and
uses depth regularization and visibility maps to mitigate the
transient effects and constrain the geometry. SWAG [32] ex-
tends 3DGS by conditioning Gaussians on learned appearance
embeddings and training unsupervised transient Gaussians to
ignore occluders, yielding state-of-the-art results on diverse
photo scenes. SpotlessSplats [33] further enhances robustness
by detecting outliers in a richer, pre-trained feature space to
ignore transient distractors, improving reconstruction quality
in casual captures.

Fig. 3: Illustration of 2DGS [9]. The method represents the object as a set
of 2D disks and successfully recovers both high-quality view synthesis and
high-resolution normal maps. Image from Huang et al. [9].

Surface reconstruction: Although 3DGS has shown strong
performance in NVS, it is not directly suited for mesh ex-
traction. To address this limitation, several techniques have
been proposed to augment 3D Gaussian Splatting with surface
reconstruction capabilities. One common direction aims to
improve the spatial localization of the Gaussians. For instance
“flattening” the 3D Gaussians [34], enables more accurate lo-
calization which was further extended in 2DGS [9], replacing
3D Gaussians with 2D, as shown in Figure 3. Leveraging
neural signed distance functions (SDFs) for surface recon-
struction — inspired by similar approaches used in NeRF-
based methods [8], [35] — techniques such as GSDF [36]
and GSPull [37] adopt this strategy to recover more detailed

mesh structures. Additionally, some recent approaches have
proposed rethinking the splatting operation [38]. Several re-
cent approaches have been proposed to address this problem
more efficiently, including methods that enable significantly
faster reconstruction [39], reconstruction from sparse input
views [40], [41], and techniques specialized for urban driving
scenes [42].

Animation: 3D representations are often used to enable ani-
mation or to recreate dynamic behavior. To achieve physically
accurate dynamics, PhysGaussian [43] integrates physics-
based continuum mechanics directly within 3DGS, creating a
unified simulation-to-rendering pipeline in which each Gaus-
sian is treated as a discrete physical particle with volume,
allowing direct simulation. Furthermore, Gaussian Splash-
ing [44] performs physical simulations using Position-Based
Fluids. To represent fluids more accurately, it builds upon
GaussianShader [19], which enriches Gaussians with material
parameters such as diffusiveness, specularity, roughness, and
normals to handle specular and reflective objects. To ensure
physically accurate simulation, they reconstruct surfaces and
disentangle the objects that will be actively simulated, using
a mesh-based simulation framework with Gaussians attached
to the meshes for texture rendering. Additionally, 4D-GS [45]
proposes a method for modeling dynamic Gaussians for time-
varying content, such as videos. They develop a spatiotemporal
structure encoder to capture deformations of both positions and
colors over time.

Avatars: Reconstructing human avatars using 3DGS poses
challenges, such as handling dynamic Gaussians and support-
ing relighting. To tackle these issues, Gaussian Avatars [46]
trains a FLAME model [47] of the bust, associating each
triangle with a Gaussian that is optimized for the scene while
being constrained to remain within its corresponding triangle.
In contrast, Gaussian Head Avatar (GHA) [48] uses two
MLPs and a deformation module to predict the 3D Gaussian
positions based on facial expression and head pose, alongside
a color MLP. Gaussian Avatar [49] leverages the SMPL
model [50] as a prior to reconstruct full-body avatars using
pose features to predict Gaussian parameters through a feed-
forward network. Similarly, 3DGS-Avatar [51] reconstructs
full-body avatars by combining Gaussians with both non-
rigid and rigid transformations of an underlying SMPL model.
Novel approaches have further advanced avatar generation:
GPAvatar [52] achieves high-resolution results, MeGA [53]
supports editing capabilities, and DAGSM [54] enables gener-
ative avatars from text descriptions. Additionally, Relightable
Gaussian Codec Avatars [55] introduced relightable Gaussian
avatars, supporting more diverse lighting conditions. Figure 4
summarizes these methods for avatar creation.

3D reconstruction from sparse views: 3DGS [2] often
struggles with NVS from sparse image sets, as its optimization
can become trapped in local minima [56], [57]. To address
this challenge, several works have proposed training feed-
forward networks (FFNs) to directly predict 3D Gaussian
parameters, supervised by photometric losses such as LPIPS,



Mesh Based

Head Mesh Model
(FLAME/ BFM/ others)

SMPL

💀 Head Input

Text
Input

🕴️ Full Body Input

Generative

FF
N

M
LP

Fig. 4: Overview of avatar generation methods. These methods take full-body
or head-only inputs, typically processed using body models like SMPL [50]
or FLAME [47], respectively. Some approaches use feed-forward networks
(FFNs) to generate Gaussians, while others employ MLPs for color effects.
Additionally, some methods use text input to guide avatar generation.

SSIM, or similar metrics, as shown in Figure 2. For instance,
Flash3D [58] uses an FFN for monocular reconstruction,
generating 3DGS scenes by estimating depth from a single
view. PixelSplat [56], incorporates an epipolar transformer to
generalize features between two views, pairing this with a
probabilistic prediction of Gaussians aligned along camera-to-
pixel rays. MVSplat [59] builds upon PixelSplat by combining
multi-view feature extraction through transformers and cost
volumes, which are then processed by a U-Net. Similarly,
GS-LRM [60] tokenizes two to four images and their camera
parameters, concatenates them, and passes them through a
transformer block whose output tokens are decoded into Gaus-
sian parameters. NoPoSplat [61] addresses critical limitations
by eliminating the need for known camera poses. It uses a
canonical coordinate system anchored to a single input view
and introduces intrinsics token embeddings to resolve scale
ambiguity, achieving superior novel view synthesis quality,
especially in scenarios with minimal view overlap. Beyond
these FFN-based approaches, CoR-GS [57] improves sparse-
view reconstruction by defining two independent reconstruc-
tions and comparing them to discard inaccurate Gaussians.
Additionally, MAtCha [41] employs an atlas-of-charts and
depth estimation as input to an MLP, which deforms the
atlas and produces high-quality meshes represented with 2D
Gaussians.

Sp
ar

se
vi

ew
s

Im
ag

e
Te

xt frog sitting
1950s diner

wearing jacket
and hat

Vi
de

o

Diffusion
Model

4D-GS/
FFN

FFN

H(X)
Heuristics

3D/4D GS model

Fig. 5: The yellow arrows represent heuristic-based sparse view NVS, e.g.
CoR-GS [57] and MAtCha [41], orange represents FFNs for NVS from sparse
views, single image, or video [56], [58]–[61]. Finally, purple shows diffusion
models being used to generate content from all sorts of inputs [62]–[68].

Generative models: Image or video diffusion models can
aid Gaussian Splating as both input and output enhancers.
Additionally, 3D content may also be generated with diffu-
sion models that output a set of 3D Gaussians, and can be
expanded to 4D animatable objects. LGM [62], GRM [63],
and DreamGaussian [64] use multi-view diffusion models as
priors 3D generators from text or image inputs, which are
passed into a large FFN model that predicts 3D Gaussians
to perform 3D reconstruction. The input and architecture of
these models vary, as LGM uses an Asymmetric U-Net taking
as inputs the MV images with ray embeddings; GRM uses ViT
features from the MV images, which are fed into an Upsampler
transformer capable of up-sampling the ViT features into a
large number of 3D Gaussians. Additionally, LaRa [65] defines
a volume transformer taking as input DINO image features
from diffusion models or real data to generate 3D content.
Extending to 4D content, Wang et. al. [66] reconstruct a 4D
scene from a single monocular in-the-wild video, using the
RGB video plus their respective monocular depths and an ad-
ditional 2D point tracking over time. L4GM [67] also produces
4D scenes from a single monocular video, contrary to Wang
et. al. they use diffusion models that takes as input videos and
generates multi view videos which are then passed onto an
LGM-like network, which results in better overall geometry.
CAT4D [68] improves results by creating a multi view video
diffusion model from a set of 4D views as input, they use a
camera-temporal sampling that allows for separate camera and
time controls, and allows for time-spatial consistency across
all multi-views videos; these are then inputted into 4D-GS to
generate a dynamic 3D scene. Figure 5 shows an overview of
these methods.

V. CONCLUSION AND OPEN PROBLEMS

Gaussian Splatting introduced a novel approach to 3D
reconstruction, enabling the creation of high-quality repre-
sentations. As discussed in this survey, there remain many
open problems and promising research directions, such as
determining the optimal number of Gaussians, improving the
splatting formulation itself, and developing feed-forward 3D
reconstruction models that are both fast to use and robust to
sparse sets containing any number of input views.
Acknowledgments: We would like to thank CAPES, as this study was
financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior – Brasil (CAPES) – Finance Code 001 (grant 88887.842584/2023-
00); CNPq; FAPESP; FAPERJ; and Google for partially funding this work.

REFERENCES

[1] B. Mildenhall et al., “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, 2021.

[2] B. Kerbl et al., “3d gaussian splatting for real-time radiance field
rendering.” ACM Trans. Graph., 2023.

[3] N. Max, “Optical models for direct volume rendering,” IEEE Transac-
tions on Visualization and Computer Graphics, 1995.

[4] M. Zwicker et al., “Ewa splatting,” IEEE Transactions on Visualization
and Computer Graphics, 2002.

[5] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv, 2014.

[6] K. Gao et al., “Nerf: Neural radiance field in 3d vision, a comprehensive
review,” arXiv, 2022.

[7] G. Chen and W. Wang, “A survey on 3d gaussian splatting,” TPAM,
2024.



[8] P. Wang et al., “Neus: Learning neural implicit surfaces by volume
rendering for multi-view reconstruction,” NeurIPS, 2021.

[9] B. Huang et al., “2d gaussian splatting for geometrically accurate
radiance fields,” in SIGGRAPH, 2024.

[10] R. A. Drebin et al., “Volume rendering,” SIGGRAPH, 1988.
[11] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”

in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4104–4113.

[12] J. T. Barron et al., “Mip-nerf 360: Unbounded anti-aliased neural
radiance fields,” in CVPR, 2022.

[13] Z. Fan et al., “Lightgaussian: Unbounded 3d gaussian compression with
15x reduction and 200+ fps,” NeurIPS, vol. 37, pp. 140 138–140 158,
2024.

[14] T. Lu et al., “Scaffold-gs: Structured 3d gaussians for view-adaptive
rendering,” in CVPR, 2024, pp. 20 654–20 664.

[15] M. Niemeyer et al., “Radsplat: Radiance field-informed gaussian splat-
ting for robust real-time rendering with 900+ fps,” 2025.

[16] S. Kheradmand et al., “3d gaussian splatting as markov chain monte
carlo,” NeurIPS, vol. 37, pp. 80 965–80 986, 2024.

[17] Z. Yu et al., “Mip-splatting: Alias-free 3d gaussian splatting,” CVPR,
2024.

[18] Z. Yan et al., “Multi-scale 3d gaussian splatting for anti-aliased render-
ing,” in CVPR, 2024, pp. 20 923–20 931.

[19] Y. Jiang et al., “Gaussianshader: 3d gaussian splatting with shading
functions for reflective surfaces,” in CVPR, 2024.

[20] K. Ye et al., “3d gaussian splatting with deferred reflection,” in SIG-
GRAPH, 2024.

[21] C. Gu et al., “Irgs: Inter-reflective gaussian splatting with 2d gaussian
ray tracing,” in CVPR, 2025.

[22] Y. Poirier-Ginter et al., “A diffusion approach to radiance field relight-
ing using multi-illumination synthesis,” in Computer Graphics Forum,
vol. 43, no. 4. Wiley Online Library, 2024, p. e15147.

[23] J. Gao et al., “Relightable 3d gaussians: Realistic point cloud relighting
with brdf decomposition and ray tracing,” in ECCV. Springer, 2024,
pp. 73–89.

[24] N. Moenne-Loccoz et al., “3d gaussian ray tracing: Fast tracing of
particle scenes,” SIGGRAPH Asia, 2024.

[25] L. Radl et al., “StopThePop: Sorted Gaussian Splatting for View-
Consistent Real-time Rendering,” ACM Transactions on Graphics,
vol. 43, no. 4, 2024.

[26] A. Celarek et al., “Does 3d gaussian splatting need accurate volumetric
rendering?” in Computer Graphics Forum. Wiley Online Library, 2025,
p. e70032.

[27] C. Talegaonkar et al., “Volumetrically consistent 3d gaussian rasteriza-
tion,” in CVPR, 2025, pp. 10 953–10 963.

[28] Q. Wu et al., “3dgut: Enabling distorted cameras and secondary rays in
gaussian splatting,” CVPR, 2025.

[29] J. Kulhanek et al., “Wildgaussians: 3d gaussian splatting in the wild,” in
The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

[30] D. Zhang et al., “Gaussian in the wild: 3d gaussian splatting for
unconstrained image collections,” in European Conference on Computer
Vision. Springer, 2024, pp. 341–359.

[31] J. Xu et al., “Wild-gs: Real-time novel view synthesis from uncon-
strained photo collections,” Advances in Neural Information Processing
Systems, vol. 37, pp. 103 334–103 355, 2024.

[32] H. Dahmani et al., “Swag: Splatting in the wild images with appearance-
conditioned gaussians,” in European Conference on Computer Vision.
Springer, 2024, pp. 325–340.

[33] S. Sabour et al., “Spotlesssplats: Ignoring distractors in 3d gaussian
splatting,” ACM Transactions on Graphics, vol. 44, no. 2, pp. 1–11,
2025.

[34] A. Guédon and V. Lepetit, “Sugar: Surface-aligned gaussian splatting
for efficient 3d mesh reconstruction and high-quality mesh rendering,”
in CVPR, 2024.

[35] Y. Wang et al., “Neus2: Fast learning of neural implicit surfaces for
multi-view reconstruction,” in ICCV, 2023.

[36] M. Yu et al., “Gsdf: 3dgs meets sdf for improved rendering and
reconstruction,” Neurips, 2025.

[37] W. Zhang et al., “Neural signed distance function inference through
splatting 3d gaussians pulled on zero-level set,” in NeurIPS, 2024.

[38] Z. Yu et al., “Gaussian opacity fields: Efficient adaptive surface recon-
struction in unbounded scenes,” ACM TOG, 2024.

[39] B. Tan et al., “Planarsplatting: Accurate planar surface reconstruction in
3 minutes,” in CVPR, 2025, pp. 1190–1199.

[40] J. Wu et al., “Sparse2dgs: Geometry-prioritized gaussian splatting for
surface reconstruction from sparse views,” in CVPR, 2025, pp. 11 307–
11 316.

[41] A. Guédon et al., “Matcha gaussians: Atlas of charts for high-quality
geometry and photorealism from sparse views,” CVPR, 2025.

[42] C. Peng et al., “Desire-gs: 4d street gaussians for static-dynamic
decomposition and surface reconstruction for urban driving scenes,” in
CVPR, 2025, pp. 6782–6791.

[43] T. Xie et al., “Physgaussian: Physics-integrated 3d gaussians for gener-
ative dynamics,” in CVPR, 2024.

[44] Y. Feng et al., “Gaussian splashing: Unified particles for versatile motion
synthesis and rendering,” in CVPR, 2025.

[45] G. Wu et al., “4d gaussian splatting for real-time dynamic scene
rendering,” in CVPR, 2024.

[46] S. Qian et al., “Gaussianavatars: Photorealistic head avatars with rigged
3d gaussians,” in CVPR, 2024.

[47] T. Li et al., “Learning a model of facial shape and expression
from 4D scans,” ACM Transactions on Graphics, (Proc. SIGGRAPH
Asia), vol. 36, no. 6, pp. 194:1–194:17, 2017. [Online]. Available:
https://doi.org/10.1145/3130800.3130813

[48] Y. Xu et al., “Gaussian head avatar: Ultra high-fidelity head avatar via
dynamic gaussians,” in CVPR, June 2024, pp. 1931–1941.

[49] L. Hu et al., “Gaussianavatar: Towards realistic human avatar modeling
from a single video via animatable 3d gaussians,” in CVPR, 2024.

[50] M. Loper et al., “SMPL: A skinned multi-person linear model,” ACM
Trans. Graphics (Proc. SIGGRAPH Asia), vol. 34, no. 6, pp. 248:1–
248:16, Oct. 2015.

[51] Z. Qian et al., “3dgs-avatar: Animatable avatars via deformable 3d
gaussian splatting,” in CVPR, 2024.

[52] W.-Q. Feng et al., “Gpavatar: High-fidelity head avatars by learning
efficient gaussian projections,” in CVPR, 2025.

[53] C. Wang et al., “Mega: Hybrid mesh-gaussian head avatar for high-
fidelity rendering and head editing,” in CVPR, 2025.

[54] J. Zhuang et al., “Dagsm: Disentangled avatar generation with gs-
enhanced mesh,” in CVPR, 2025.

[55] S. Saito et al., “Relightable gaussian codec avatars,” in CVPR, 2024,
pp. 130–141.

[56] D. Charatan et al., “pixelsplat: 3d gaussian splats from image pairs for
scalable generalizable 3d reconstruction,” in CVPR, 2024.

[57] J. Zhang et al., “Cor-gs: sparse-view 3d gaussian splatting via co-
regularization,” in ECCV, 2024.

[58] S. Szymanowicz et al., “Flash3d: Feed-forward generalisable 3d scene
reconstruction from a single image,” 3DV, 2024.

[59] Y. Chen et al., “Mvsplat: Efficient 3d gaussian splatting from sparse
multi-view images,” in ECCV, 2024.

[60] K. Zhang et al., “Gs-lrm: Large reconstruction model for 3d gaussian
splatting,” in ECCV, 2024.

[61] B. Ye et al., “No pose, no problem: Surprisingly simple 3d gaussian
splats from sparse unposed images,” ICLR, 2025.

[62] J. Tang et al., “Lgm: Large multi-view gaussian model for high-
resolution 3d content creation,” in ECCV, 2024.

[63] Y. Xu et al., “Grm: Large gaussian reconstruction model for efficient
3d reconstruction and generation,” in ECCV, 2024.

[64] J. Tang et al., “Dreamgaussian: Generative gaussian splatting for effi-
cient 3d content creation,” in ICLR, 2024.

[65] A. Chen et al., “Lara: Efficient large-baseline radiance fields,” in ECCV,
2024.

[66] Q. Wang et al., “Shape of motion: 4d reconstruction from a single
video,” 2024.

[67] J. Ren et al., “L4gm: Large 4d gaussian reconstruction model,” in
Advances in Neural Information Processing Systems, December 2024.

[68] R. Wu et al., “Cat4d: Create anything in 4d with multi-view video
diffusion models,” CVPR, 2025.

https://doi.org/10.1145/3130800.3130813

