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Abstract—Image retrieval approaches typically involve two
fundamental stages: visual content representation and similarity
measurement. Traditional methods rely on pairwise dissimilarity
metrics, such as Euclidean distance, which overlook the global
structure of datasets. Aiming to address this limitation, various
unsupervised post-processing approaches have been developed to
redefine similarity measures. Diffusion processes and rank-based
methods compute a more effective similarity by considering the
relationships among images and the overall dataset structure.
However, neither approach is capable of defining novel image
representations. This paper aims to overcome this limitation
by proposing a novel self-supervised image re-ranking method.
The proposed method exploits a hypergraph model, clustering
strategies, and Graph Convolutional Networks (GCNs). Initially,
an unsupervised rank-based manifold learning method computes
global similarities to define small and reliable clusters, which are
used as soft labels for training a semi-supervised GCN model.
This GCN undergoes a two-stage training process: an initial
classification-focused stage followed by a retrieval-focused stage.
The final GCN embeddings are employed for retrieval tasks using
the cosine similarity. An experimental evaluation conducted on
four public datasets with three different visual features indicates
that the proposed approach outperforms traditional and recent
rank-based methods.

I. INTRODUCTION

With the significant advancements in multimedia acquisi-
tion, storage, and dissemination technologies, image retrieval
approaches capable of considering the visual content to search
for and retrieve pertinent multimedia data, have garnered
substantial interest from both industry and academia [1]. In
Content-Based Image Retrieval (CBIR) systems, the ranking
process generally involves two fundamental stages: the repre-
sentation of image content and the measurement of similarity
between the query image and images in a collection. The
representation phase involves encoding an image as a point
within a high-dimensional feature space. Subsequently, the
similarity measurement is concerned with determining the
proximity of the feature space representations of database
images to the query image. Traditionally, this is achieved by
calculating the pairwise dissimilarity between feature vectors
using metrics such as the Euclidean distance.

Once images (and other multimedia data) are often rep-
resented in spaces of much smaller dimensions than their
respective feature vectors, exploiting the intrinsic structure of
datasets becomes a central problem in retrieval, learning, and
computational vision tasks [2]–[4]. Pairwise distance measures
(as the Euclidean distance) define relationships only between
pairs of images, the global structure of the dataset and the
context wherein the query is computed are ignored. In general,
this is the central point of re-ranking methods based on
unsupervised similarity learning methods, whose objective is
to compute more effective distances among images, capable
of taking into account the relationships among images and the
global structure of datasets.

In fact, various different unsupervised post-processing ap-
proaches have been proposed for retrieval tasks during the last
decades [2]–[9]. Among them, two categories can be high-
lighted: diffusion processes [2], [3], [5] and rank-based [4],
[6]–[9] approaches. Diffusion processes often rely on a graph
and on spreading the affinities through that graph. The defini-
tion of a global measure describes the relationship between
pairs of points in terms of their connectivity. Rank-based
approaches employ various distinct techniques exploiting the
ranking structure, which defines similarity relationships not
only between pairs but among a set of images. In spite of the
differences, both approaches (diffusion and rank-based) are
based on the redefinition of similarity/dissimilarity measures
among images.

However, both diffusion and rank-based approaches redefine
the similarity among images without redefining their repre-
sentation. On the other hand, Graph Convolutional Networks
(GCNs) exploit multidimensional feature vectors and graph-
based structures to learn more effective representations (em-
beddings) [10]. In opposite to Convolutional Neural Networks
(CNNs), which often apply convolutions in the Euclidean
space, GCNs allow convolution operations in non-Euclidean
domains defined by graphs. Supported by such flexibility,
various GCN models have been proposed [11], achieving
impressive results in several tasks, especially semi-supervised
classification.

Recently, GCN models have been exploited for a cluster-
ing approach [12]. The Self-Supervised Graph Convolutional
Clustering (SGCC) exploits the strengths of different learn-
ing paradigms, combining unsupervised, semi-supervised, and
self-supervised perspectives. Firstly, an unsupervised rank-
based manifold learning uses a hypergraph model to compute a
more global similarity and define reliable and small clusters.
The small clusters are modeled as soft-labels for training a
semi-supervised GCN, used for classification. Finally, SGCC
uses the GCN embeddings to assign data items to clusters.

This paper proposes a novel image re-ranking method
named Self-Supervised GCN for Re-Ranking (SGRR). The
method uses visual features trained through transfer learning
based on CNNs and recent Transformers models. Such features
are taken as input by SGCC [12] for defining hypergraphs
and the small clusters used as soft-labels. The soft-labels are
subsequently used by a GCN model, which is trained through
a two-stage procedure. A loss focused on classification is
initially used, followed by a second stage based on the triplet
loss, where the triplets are also defined by the soft-labels.
Finally, the embeddings computed by GCNs are used for
retrieval tasks, considering the cosine similarity for ranking.

An experimental evaluation was conducted on 4 public
datasets considering 3 different visual features. The proposed
approach achieved highly effective retrieval results compared



with the original results and recent rank-based approaches as
baselines. The main contributions of the proposed method can
be summarized as:

• A novel self-supervised image re-ranking is proposed.
In contrast to diffusion and rank-based methods, the
proposed approach learns a novel representation given by
the GCN embeddings;

• A two-stage training procedure is proposed, considering
both classification and retrieval-focused loss functions.

The remainder of the paper is organized as follows: Sec-
tion II discussed a formal definition of the problem. Section III
provides an overview of the proposal. Section IV discusses the
SGCC approach and Section V defines the proposed re-ranking
approach. Section VI presents the experimental evaluation and
Section VII draws the conclusions.

II. RETRIEVAL AND RE-RANKING FORMAL DEFINITION

In this section, we formally define the retrieval and ranking
models considered for this work, mostly following [12]. First,
let C = {o1, o2, . . . , on} be a collection, where each object
oi denotes a data object. Second, let xi be a feature vector
defined in Rd, which represents an oi ∈ C element in a d-
dimensional feature space, which can be used for retrieval
and machine learning tasks, and is commonly supported on
distance or similarity measures computed between pairs of
objects.

Formally, let ρ: Rd × Rd → R+ be a function that, based
on their feature vectors, computes the distance between two
objects. Therefore, the distance between oi and oj can be
defined by ρ(xi, xj). The traditional Euclidean distance is
often employed.

However, focusing solely on pairs of objects can overlook
valuable information embedded in more complex relationships.
In this context, rank-based techniques aim to represent and
utilize rich contextual similarity data.

A ranked list τq , based on the distance function ρ, can
be computed to identify the most similar objects to a given
element oq . Consequently, τq=(o1, o2, . . . , ol) can be formally
defined as a permutation of the collection Cl, where l indicates
the length of the ranked list and Cl ⊂ C is a subset containing
the l objects most similar to oq .

Additionally, the permutation τq is a bijection from the set
Cl to the set [Lg] = 1, 2, . . . , l. Additionally, τq(oi) represents
the position of the object oi in the ranked list τq . If oi is
ranked before oj in oq’s ranked list, meaning τq(oi) < τq(oj),
then ρ(xq,xi) ≤ ρ(xq,xj). By computing a ranked list τi
for each object oi ∈ C, we obtain the set T = τ1, τ2, . . . , τn
of ranked lists. This set encodes crucial similarity information,
reflecting the dataset’s structure. Rank-based manifold learning
algorithms leverage the similarity data embedded in the set of
ranked lists T to compute a new similarity measure, which
can then be used to update the ranked lists. Formally, we can
define an unsupervised manifold learning method as a function
m(·), which computes a more effective set of ranked lists T ′ =
m(T ).

III. OVERVIEW OF PROPOSED SGRR APPROACH

The main objective of the proposed SGRR method consists
of exploiting contextual similarity information for image re-
ranking. With this aim, two models are used to encode
the contextual similarity information. Firstly, a hypergraph is
used to encode first and second-order neighborhood similar-
ity information (neighbors and neighbors of neighbors). The

hypergraph is also used to define small and reliable clusters
as soft-labels. Subsequently, a GCN is trained using the soft-
labels and a graph representation of similarity computed by
the hypergraph model. The soft-labels are used through a two-
stage training procedure, with two different loss functions.

Figure 1 illustrates the steps of the proposed SGRR ap-
proach. The next sections describe the main steps in detail.

IV. CLUSTERING BY MANIFOLD LEARNING BASED ON
HYPERGRAPHS

A. Manifold Learning based on Hypergraphs

The Log-based Hypergraph of Ranking References
(LHRR) [8] is an unsupervised manifold learning method that
computes more effective similarities among data elements.
The method is based on ranking information from the set
of ranked lists T modeled in hypergraph structures. The
algorithm can be broadly divided into three main steps, which
are described in the following sections:

1) Rank Normalization: Firstly, LHRR computes a new
similarity measure by using reciprocal rank positions. Using
the computed new similarity, the top-l elements from the
ranked lists are reordered using a stable sorting algorithm.

2) Hypergraph Construction: Hypergraphs are a powerful
generalization of graphs, where hyperedges can connect any
set of vertices. Let G = (V,E,w) be a hypergraph consisting
of a finite set of vertices V and a set of hyperedges E. Each
item oi ∈ C is associated with a vertex, vi ∈ V , and the
hyperedge set E is defined as a collection of subsets of V .

Following this definition, LHRR starts the creation of a hy-
pergraph by defining a relevance weight function wp(oi, oz) =
1−logk τi(oz) that computed the relevance of an element oz to
an element oi based on the log value of its ranked list position.

Using wp(·), the function r(ei, vj) is computed by multi-
plying the relevance between all elements that are neighbors
from both oi and oj . Both relevance functions are applied to
create an incidence matrix H of size |E| × |V |, such that:

h(ei, vj) =

{
r(ei, vj) if vj ∈ ei,
0 otherwise.

Additionally, the Hyperedge Weight w(ei) measures the
confidence of the relationships between the objects in hyper-
edge ei. The weight w(ei) is computed as the sum of h(ei, ·)
for all k elements with the highest scores in the hyperedge ei.

3) Hypergraph-Based Similarity: The Hypergraph-based
similarity matrix W = Q ◦ Sp is obtained by combining
the hyperedge relationship, encoded in the matrix Sp and
the vertices pairwise relationship, encoded in the matrix Q.
This final similarity matrix, which concentrates all similarity
information extracted from the hypergraph, is used to compute
a new set of ranked lists for the data collection.

Finally, by generating an improved set of ranked lists,
LHRR can be executed sequentially over t iterations.

B. Clustering through Hypergraph Structures

The Self-Supervised Graph Convolutional Clustering
(SGCC) [12] is an algorithm that exploits the similarity
information encoded into the hypergraph structures, to separate
the data into small and reliable clusters, which are later used
as soft-labels for training a GCN in a semi-supervised manner.
The creation of these soft-labels can be described in three main
steps, presented below.
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Fig. 1: Overview of the proposed Self-Supervised GCN for Re-Ranking (SGRR).

1) Hyperedge Self-Confidence Score: Using the hyperedge
weight and the incidence of an element in its own hyperedge,
SGCC defines a function wh(ei) = h(ei, vi) × w(ei), which
explores both estimations to compute a self-confidence score.
The higher the score value, the more important an element oi
is for its neighbors.

Based on wh, the ranked list τh=(o1, o2, . . . , on) is
defined as a permutation of the collection C such that if oi
is ranked ahead of oj , then wh(ei) ≥ wh(ej). The ranked
list τh establishes the sequence in which the dataset items are
processed by the proposed algorithm, ensuring that the more
reliable items are selected and combined earlier.

2) Representatives Proxy Selection: Despite containing a
reliable order of elements, τh can include various items similar
to each other at top positions. To surpass this limitation,
SGCC creates a selection of representatives, defined by R =
(o1, o2, . . . , oc) ∈ C, where |R| = c.

The selection criteria for representatives can be described as
follows: prioritize candidates with a high self-confidence score
(numerator) and minimal similarity to previously selected
representatives (denominator). The set of representatives R
starts with the first element in τh, which is the element
with the highest self-confidence score in the collection. After
that, c − 1 iterations are conducted to select the remaining
representatives.

Based on R, the initial clusters set S can be defined, such
that |S| = c and ∀Si ∈ S, Si = {ri ∈ R}, creating a unitary
cluster for each representative object.

3) Reliable Clusters Set: The hyperedge is a powerful rep-
resentation of the relationship between multiple data elements
at once, which can be extended for the clusters created in
IV-B2.

Therefore, a cluster assignment degree hs(Si, vj) is defined
by the sum of all similarity values between an object, repre-
sented by vj , and all the elements contained in the cluster Si.
Additionally, the function nc(oi) encounters the most similar
cluster to oi, by using hs(·) and the size of each cluster Si ∈ S.

After a cluster is selected, oi is agglomerated to it, with
oi’s hyperedge being used to update the cluster’s hyperedge
as well. This agglomeration process is conducted until the q

first elements of τh are allocated into clusters, where q =
round(n× p), n = |C| and p ∈ (0, 1) is a constant.

After the agglomeration step, SGCC recovers a highly
reliable initial cluster configuration, which can be used as soft-
labels for training a GCN in a semi-supervised classification
task. In this work, we explore the soft-labels to train our GCN
model, evolving the approach proposed in [12]. The soft-
labels usage is described in the next section.

V. SELF-SUPERVISED GRAPH CONVOLUTIONAL
NETWORK FOR IMAGE RE-RANKING

A. Graph Convolutional Network (GCN)
Substantial progress has been made in developing deep

learning techniques specifically for graph data [13] in recent
years. In [10], a two-layer GCN model for semi-supervised
classification, utilizing a graph described by a symmetric ad-
jacency matrix A. The goal of Graph Convolutional Networks
(GCNs) is to learn node representations (embeddings) by
iteratively aggregating information from neighboring nodes,
effectively capturing the graph’s structure in a neural network
model. Therefore, the resulting model can be expressed as a
function of both the feature matrix X and the adjacency matrix
A: Z = f(X,A).

In this context, Z denotes an embedding matrix, where Z =
[z1, z2, . . . , zn]

T ∈ Rn×d. Each zi represents a d-dimensional
embedded vector for the node vi. Firstly, the degree matrices
are computed during a preprocessing step, which involves
defining Â = D̃−1/2ÃD̃−1/2, where Ã = A + I and D̃ is
the degree matrix corresponding to Ã. Afterward, the matrix
Z for a two-layer GCN model, can be obtained by the function
f(·):

Z = log(softmax(ÂReLU(ÂXW(0))W(1))) (1)

Where W(0),W(1) ∈ Rd×H are the network weights
for the input-to-hidden and the hidden-to-output layers, re-
spectively, and H represents the number of feature maps.
Both matrices are optimized using gradient descent on the
cross-entropy error calculated over the labeled node set VL.
Following the embedding process, each node’s embedded
representation zi undergoes a softmax activation function row-
wise, resulting in a probability distribution over d class labels.



The label assignment for each node vi is determined by
selecting the class with the highest log probability from zi.

In this work, based on recent research applications [14] and
on results obtained in [12], the Simple Graph Convolution
(SGC) [15], which is a simplified GCN obtained by the
collapse of weight matrices between consecutive layers and
the removal of nonlinearities, was selected as the GCN model.

B. Two-stage GCN Training and Loss Functions

In a re-ranking scenario, the embeddings learned through a
classification loss can fail to encode the intrinsic relationship
between images. Therefore, we extend the training approach
from [12] by adding a triplet-based loss function, alongside the
classification focused Negative Log-Likelihood (NLL) loss. The
configuration of our GCN training procedure can be defined
in three main steps:

1) Soft-labels creation: As described in Section IV-B3, we
explore the hypergraph structure to construct a set of reliable
clusters S, which contains c clusters and classifies q images
from the dataset into soft-labels that can be used for semi-
supervised training. For this work, we set p = 0.5 as default,
resulting in half of the dataset being classified into soft-labels.

2) Triplet creation: The groups created within the soft-
label clusters are reliable associations, extracted from the
hypergraph manifold learning algorithm. Therefore, we can
explore these groups to formulate triplet-based examples for
training our GCN model. We follow the triplet pattern de-
scribed in [19], where a triplet is a set (a, p, n) containing
three elements: the anchor (a), a positive example that should
be set approximated to the anchor (p), and a negative example
that should be separated from both the anchor and the positive
example (n).

For each created cluster, we extract a set of triplet examples
by conducting three steps. First, let Pi be a set with all possible
pairs of elements from a cluster Si:

Pi = {(oa, ob) | oa, ob ∈ Si and a ̸= b} (2)

Next, we need to define a negative element for each obtained
pair. Therefore, we define a set of possible negative candidates,
PMi as the difference between our image collection C and
the cluster Si:

PMi = C \ Si (3)

From this set of possible negative examples, we randomly
extract j elements, where |Pi| = j:

Mi = {o1, o2, . . . , oj}, oi ∈R PMi, |Mi| = j (4)

After obtaining both positive and negative examples, we
can combine Pi and Mi to create a set of triplets Ji, which
contains all training examples for the cluster Si:

Ji = {(oa, ob, oc) | oa, ob ∈ Pi, oc ∈ Mi} (5)

Finally, by executing these steps for all clusters obtained
from our algorithm, we can define a set of all triplets available
for training our GCN model. Therefore, let the function tf()̇
be the sequential application of Equations 2, 3, 4, and 5 for a
given cluster, the set of training triplets J can be defined as:

J =
⋃

Si∈S
tf(Si) (6)

C. Two-Stage Training

As mentioned in this section, we extend the training proce-
dure from [12] by adding a second stage using a triplet-based
loss. In this scenario, our GCN model is trained with the NLL
loss and the Triplet Margin Loss [19] in a semi-supervised
approach, using the soft-label and the triplet examples, re-
spectively.

Therefore, we define a custom loss function that combines
both approaches:

L = α× LNLL(X ,S) + (1− α)× LTRIPLET (X ,J ), (7)

where Z is the set of feature embeddings obtained from the
GCN model, S is the set of soft-label clusters, J is the set
of triplet examples, and α ∈ 0, 1 defines which loss is being
used in the current training epoch.

Finally, our training is conducted by running a defined
number of epochs using α = 1, training the model in
the classification task, and afterward running another defined
number of epochs with α = 0, fine-tuning the model for the
retrieval task.

D. Image Re-Ranking based on GCN Embeddings

After training, a final inference is executed for the complete
collection, retrieving a set of embeddings Z:

Z = {z1, z2, . . . , zn | zi ∈ Rc} (8)

Based on the extracted set of embeddings, let ρ(oi, oj)
represent the cosine similarity calculation between images i
and j, being defined as:

ρ(oi, oj) =
zi · zj

∥zi∥2 ∥zj∥2
(9)

By computing the cosine similarity between all elements
from the image collection, we can retrieve an improved set
of ranked lists Tf which are used to perform the retrieval
operations.

VI. EXPERIMENTAL EVALUATION

A. Datasets and Experimental Protocol

In the experimental analysis, we considered four diverse
image datasets. Three of them are general-purpose datasets
containing from 17 to 200 classes: (i) Flowers [20], 1360
images, 17 classes; (ii) Corel5k [21], 5000 images, 50 classes;
and (iii) CUB200 [22], 11788 images, 200 classes. The
last one is a person re-identification (Re-ID) dataset, which
encompasses the challenge of identifying the same individual
in different camera views: (iv) CUHK03 [23], 14,097 images,
1,467 individuals (classes). The Re-ID protocol and the de-
tected dataset version [23] were used.

For the general-purpose datasets, our experiments used three
feature vector sets extracted from a ResNet CNN [16], a
ViT [17], and a Swin [18] Transformers networks, all pre-
trained on the ImageNet dataset. For Re-ID, since it is a
different domain, ResNet [16] and two OSNet [24] variants
were used, both trained on the MSMT17 dataset. The input
ranked lists used in LHRR and the Original metrics were
obtained using the Euclidean distance in the input features.
The k-NN graph used during GCN training was constructed
based on the final ranked lists obtained from LHRR.



TABLE I: Mean Average Precision (MAP) results on the Flowers dataset for k = 80.
Method Features

RESNET [16] Rel. Gain VIT-B16 [17] Rel. Gain SWIN-TF [18] Rel. Gain
Original 49.32% - 86.98% - 92.59% -
RFE [4] 71.73% +45.44% 97.16% +11.70% 99.19% +07.13%
RDPAC [6] 72.37% +46.73% 92.21% +06.01% 97.31% +05.09%
BFSTREE [7] 64.87% +31.52% 90.61% +04.17% 95.74% +03.40%
LHRR [8] 70.81% +43.57% 96.19% +10.58% 99.39% +07.34%
CPRR [9] 63.64% +29.03% 90.93% +04.54% 95.75% +03.41%
Ours 73.10 ± 00.23 +48.19% 96.84% ± 00.09 +11.33% 99.62% ± 00.002 +07.59%

TABLE II: Mean Average Precision (MAP) results on the Corel5k dataset for k = 80.
Method Features

RESNET [16] Rel. Gain VIT-B16 [17] Rel. Gain SWIN-TF [18] Rel. Gain
Original 62.93% - 73.76% - 72.93% -
RFE [4] 86.08% +36.78% 91.11% +23.52% 94.63% +29.75%
RDPAC [6] 79.73% +26.69% 86.07% +16.68% 84.20% +15.45%
BFSTREE [7] 75.10% +19.33% 82.41% +11.97% 80.27% +10.06%
LHRR [8] 86.85% +38.01% 91.40% +23.91% 95.93% +31.53%
CPRR [9] 76.07% +20.88% 83.05% +12.59% 80.58% +10.48%
Ours 89.05% ± 00.12 +41.50% 89.76% ± 00.07 +21.69% 97.60% ± 00.34 +33.82%

TABLE III: Mean Average Precision (MAP) results on the CUB200 dataset for k = 50.
Method Features

RESNET [16] Rel. Gain VIT-B16 [17] Rel. Gain SWIN-TF [18] Rel. Gain
Original 20.55% - 59.00% - 56.54% -
RFE [4] 34.20% +66.42% 66.37% +12.49% 66.24% +17.15%
RDPAC [6] 30.45% +48.17% 68.07% +15.37% 70.09% +23.96%
BFSTREE [7] 27.30% +32.86% 65.78% +11.49% 66.31% +17.27%
LHRR [8] 34.88% +69.73% 69.64% +18.03% 70.73% +25.09%
CPRR [9] 28.37% +38.05% 66.31% +12.38% 67.31% +19.04%
Ours 38.44% ± 00.11 +87.05% 70.09% ± 00.06 +18.79% 76.61% ± 00.11 +35.49%

TABLE IV: Mean Average Precision (MAP) results on the CUHK03 dataset, following the person Re-ID protocol, for k = 10.

Method Features
RESNET Rel. Gain OSNET-IBN Rel. Gain OSNET-AIN Rel. Gain

Original 13.08% - 20.78% - 27.00% -
RFE [4] 16.88% +29.05% 28.11% +35.27% 35.74% +32.37%
RDPAC [6] 19.03% +45.49% 30.30% +45.81% 37.39% +38.48%
BFSTREE [7] 16.68% +27.52% 26.86% +29.26% 34.21% +26.70%
LHRR [8] 16.64% +27.22% 29.03% +39.70% 34.69% +28.52%
CPRR [9] 16.05% +22.71% 26.22% +26.18% 32.76% +21.37%
Ours 19.57% ± 00.07 +49.62% 28.74% ± 00.17 +38.31% 31.81% ± 00.08 +17.81%

B. Implementation Details

Regarding method parameters, we follow the best results
from [12], setting T = 2, p = 0.5 and the number of classes
and clusters, c, as the number of real classes for all datasets.
Additionally, L is defined as 4 ∗ k with a minimum default
value of 100, in order to better extract relationships when
exploring smaller neighborhoods, e.g. k <= 25. Moreover,
a value of k was selected, and used in all methods, for each
dataset. We used k = 80 for the Flowers and Corel5k datasets,
k = 50 for the CUB200 dataset, and k = 10 for CUHK03.

For the GCN training, we used 32 hidden layers for all
experiments and a learning rate of 10−3, using ADAM as our
optimizer. Furthermore, we executed 300 epochs of training
in the classification task (α = 1) and other 300 epochs in
the retrieval task (α = 0). All experiments for our proposed
method were executed 10 times, with averages and standard
deviations being reported.

C. Retrieval Results

In our retrieval experiments, we compared the proposed
SGRR with recent ranking and diffusion-based manifold
learning algorithms: CPRR [9] (2018), LHRR [8] (2019),
RDPAC [6] (2021), BFSTREE [7] (2021), and RFE [4] (2023).

Table I presents the results on the Flowers dataset. The
proposed approach obtained the best results in two of the three
explored features. In a similar result, for the Corel5K dataset,
presented in Table II, SGRR obtained the best values in both
RESNET and Swin-TF features. In the CUB200 dataset, pre-
sented in Table III, our approach obtained the best results in all
features. Additionally, on relative gain, the proposed algorithm
obtained a strong 87.05% increase in MAP performance for
the RESNET feature. As we can observe, among the three
general retrieval datasets, the proposed method achieved the
best results for all features on CUB200, which is the biggest
and most challenging dataset.

Table IV presents the results of the Re-ID experiment on
the CUHK03 dataset. Our method obtained the best result
for the RESNET feature while presenting competing results
on the other two features. Additionally, it is interesting to
see that, not only the LHRR results were improved by our
approach in almost all scenarios, but also we achieved the
highest improvement for the RESNET features in all datasets.
This is an indication that our proposed framework is capable
of improving re-ranking results while also being more reliable
when handling noisy data, obtained from weaker feature
extractors.



D. Visual Results
As one of the most important contributions from this work,

SGRR is capable of generating embedding vectors with fewer
dimensions, while improving performance in retrieval tasks.
For instance, the embedding vector for the Flowers dataset was
reduced from 2048 dimensions (from the RESNET output) to
only 17 (the number of classes in the dataset) while the MAP
performance was improved in 48.19%.

The results obtained in VI-C, demonstrate that the manifold
learning processes, combined with our GCN training approach,
were able to extract better representations with a lower number
of dimensions.

To illustrate this improvement in separability, we apply
UMAP [25], using the default parameters, to reduce both the
input and SGRR features to two dimensions, allowing the
creation of a visualization image.

Figure 2 presents the results comparing RESNET and SGRR
features for the CUB200 dataset. The SGRR features broke the
two main clusters observed on the RESNET image, creating
smaller and more separated groups. This example resulted in
an impressive 87.05% increase in MAP.

(a) RESNET features (b) SGRR features

Fig. 2: Feature visualization for RESNET and SGRR.

VII. CONCLUSION

This paper proposes a novel re-ranking algorithm by ex-
ploring hypergraph-based manifold learning, clustering, and
GCN models to generate a new set of image representations.
Additionally, we propose a novel two-stage approach for
training GCNs, combining semi-supervised losses for both
classification and retrieval tasks. The results in retrieval ex-
periments show that our approach can better encode similar-
ity information based on query images in most considered
scenarios. The computed embeddings are also superior to the
hypergraph used in isolation (LHRR results), indicating that
the hypergraph structures can be further explored by GCNs.

Additionally, our novel approach is capable of generating
new embedding representations for retrieval with lower di-
mensions, drastically reducing storage space while improving
effectiveness. In future work, we intend to explore more
complex training approaches, triplet creation methods based
on the hypergraph manifold, and an extension of this work to
function on inference with new query images, allowing us to
classify and retrieve similar data for never-seen images.
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