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Abstract—Conserving tropical forests is highly relevant socially
and ecologically because of their critical role in the global
ecosystem. However, the ongoing deforestation and degradation
affect millions of hectares each year, necessitating government or
private initiatives to ensure effective forest monitoring. In April
2019, a project based on Citizen Science and Machine Learning
models called ForestEyes (FE) was launched with the aim of
providing supplementary data to assist experts from government
and non-profit organizations in their deforestation monitoring
efforts. Recent research has shown that labeling FE project
volunteers/citizen scientists helps tailor machine learning models.
In this sense, we adopt the FE project to create different sampling
strategies based on the wisdom of crowds to select the most
suitable samples from the training set to learn an SVM technique
and obtain better classification results in deforestation detection
tasks. In our experiments, we can show that our strategy based on
user entropy-increasing achieved the best classification results in
the deforestation detection task when compared with the random
sampling strategies, as well as, reducing the convergence time of
the SVM technique.

I. INTRODUCTION

Tropical forests are biomes that perform indispensable ac-
tivities for maintaining life and the planet’s health. One of
the most important biomes is the Brazilian Legal Amazon,
which, due to its vast extent, harbors an unparalleled diversity
of life, from plant and animal species to indigenous peoples
whose cultures are intrinsically linked to it. In addition to
its biological and cultural importance, the Amazon exerts
significant influence on global climatic systems, regulating
precipitation patterns and stabilizing the climate. However,
rampant deforestation, driven by agricultural expansion, min-
ing, and illegal activities, severely threatens the integrity of
this vital ecosystem. Recent studies indicate that large areas
of the Amazon have already been deforested, resulting in
irreparable biodiversity losses and contributing to high carbon
emissions and global climate change [1], [2]. In this context, it
is necessary to propose initiatives to protect and preserve the
Amazon so that present and future generations do not suffer
these negative consequences.

To combat deforestation and degradation of tropical forests,
several monitoring programs have been developed and imple-
mented [3], [4]. In the case of the Brazilian Legal Amazon,
the Satellite Monitoring Program for the Brazilian Amazon
(PRODES), coordinated by the National Institute for Space
Research (INPE) of Brazil, stands out [5]. PRODES utilizes
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satellite data to generate precise annual estimates of deforesta-
tion rates, allowing for the detailed identification and mapping
of affected areas. The importance of this program lies in the
accuracy and reliability of the data provided, which are crucial
for the formulation of effective public policies, environmental
enforcement, and the implementation of conservation actions.
Additionally, by providing updated information on deforesta-
tion, PRODES significantly contributes to transparency and
public awareness, playing an essential role in the preservation
of the tropical forests of the Legal Amazon. Other complemen-
tary initiatives include reforestation and restoration projects,
environmental education campaigns through, for example,
citizen science projects, and the creation of conservation units,
all aimed at protecting this vital ecosystem [6].

An innovative project proposed in recent years is the
ForestEyes [7]–[9]. In this project, campaigns are designed
and launched focusing on regions with potential for defor-
estation in the Brazilian Legal Amazon, where non-specialist
volunteers actively participate in labeling image samples in the
famous Zooniverse platform. Each small area (image segment
representing a task) of remote sensing images, after thorough
analysis, is manually classified by volunteers as forest or
deforestation. At the end of each campaign (a set of tasks),
these areas constitute a powerful labeled dataset that can be
used, for example, to train machine learning (ML) models
aiming to automatically identify possible recent deforestation
hotspots in regions of the Brazilian Legal Amazon. Although
datasets labeled by volunteers constitute valuable material,
selecting quality samples for effective training of an ML
model, identifying noisy samples, and creating robust training
set [10], the procedure is quite challenging, as the labels may
not precisely represent the majority classes of the segments.
With this in mind, measures of response variability, such as
Shannon’s entropy, can be used to assess how reliable the
labels assigned by volunteers are to the segments. Furthermore,
by calculating the entropy for each segment, it becomes
feasible to determine the degree of classification difficulty
for each task, or the confidence in labeling, based on human
cognition. For example, segments with higher entropy indicate
a higher level of classification difficulty. Given that there
are progressive machine learning strategies, it is possible to
associate segments with their respective entropies to sample
groups that will be used incrementally in model training.
This approach allows models to adapt gradually, starting
with simpler examples and advancing to more complex ones



(or vice versa), thereby optimizing the learning process and
improving the accuracy and robustness of the final model [11].

Given that the ForestEyes citizen science campaigns benefit
from the massive participation of volunteers, a fundamental
characteristic of the Wisdom of the Crowds principle [12],
this study aims to investigate the effectiveness of adopting
user-based entropy as measures of classification difficulty,
combined with a machine learning model. The goal is to assess
whether this approach is efficient in detecting deforestation in
the Brazilian Legal Amazon.

II. BACKGROUND

In this section, we will present a theoretical foundation for
the technologies, techniques, and metrics used in this research.
Specifically, we will discuss the main characteristics of the
Sentinel-2 satellite as well as address the PRODES project.
Additionally, we will elaborate on the SLIC and MaskSLIC
segmentation algorithms, and we will introduce a segment
selection metric known as Homogeneity Rate and Shannon’s
entropy, which measures uncertainty applied in data analysis.
Finally, the Haralick texture features will be described, as well
as the SVM classifier and its approach to building solutions.

A. Sentinel-2 Satellite

Sentinel-2 satellite is part of a program known as Coperni-
cus, managed by the European Space Agency (ESA), and com-
prises two satellites, Sentinel-2A and Sentinel-2B, launched in
2015 and 2017, respectively. These satellites are equipped with
the MultiSpectral Instrument (MSI), which captures images
in 13 spectral bands, ranging from the visible spectrum to
shortwave infrared. The spatial resolution of Sentinel-2 is
10 meters in the visible and near-infrared bands and 20
meters in the shortwave infrared bands. This enables detailed
analysis for a variety of applications, such as agriculture,
natural disaster management, and water resource monitoring.
Furthermore, Sentinel-2 has a revisit frequency of 5 days,
providing short-term observation essential for environmental
monitoring and scientific research [13], [14].

B. PRODES Project

The PRODES Project, developed by the National Institute
for Space Research (INPE) of Brazil [5], has been monitoring
deforestation in the Legal Amazon since 1988. It measures
annual deforestation rates for the period between August of
one year and July of the following year. Initially intended for
governmental use, PRODES evolved into a platform accessible
to the public, especially after the introduction of digital
PRODES in 2003. This update included the dissemination of
digital maps, making deforestation data more comprehensible
for all stakeholders [15].

Unlike other Brazilian monitoring systems, such as DETER-
B, PRODES uses high spatial resolution data captured by
sensors like Sentinel-2, with some bands reaching 10 me-
ters. Additionally, its data is considered more reliable, as
it is meticulously analyzed throughout the year by experts
in forest remote sensing. A key feature of PRODES is its

database of multi-temporal satellite images, available to the
public, allowing for a comprehensive historical analysis of
deforestation in the Amazon. It uses data from satellites such
as Landsat-8, Sentinel-2 [13], and CBERS-4 [16] to provide
high-resolution images of the Legal Amazon. These images
serve as a reference for evaluating the quality of segmentation
in deforestation studies.

To illustrate a geographic forest area with small deforested
regions identified by PRODES, Figure 1 presents two images.
In the first image (Figure 1(a)), a study area used in the present
work is shown, while the second image (Figure 1(b)) displays
the corresponding actual deforested area, known as PRODES
ground truth. In this representation, red pixels indicate recently
deforested areas (non-forest), green pixels correspond to forest
regions, and black pixels represent areas that should not
be analyzed during segmentation, such as hydrography and
consolidated deforestation.

Fig. 1: Study Area and its respective ground truth by PRODES.

C. SLIC Algorithms

The Simple Linear Iterative Clustering (SLIC) algorithm
is a method for segmenting color images represented in the
CIELAB color space, based on generating superpixels using
the K-means clustering algorithm. Initially, it takes param-
eters such as the desired number of superpixels (k) and a
compactness control (m) to ensure uniformity in the size and
shape of the superpixels. Its efficiency is notable because its
computational complexity is linear in relation to the number
of pixels (N ), as the search is limited to the size of the
superpixels [17].

The segmentation process begins by converting the image
to the CIELAB color space and creating k clusters of size√

N
k pixels. Each superpixel is represented by a centroid

that contains the average values of the color components and
spatial coordinates. In each iteration, every pixel is associated
with the nearest centroid within a delimited region, and the
centroids are updated with the average of the pixels belonging
to the superpixel, repeating the process for a fixed number of
iterations until stability is achieved.

On the other hand, MaskSLIC is an extension of SLIC
developed to handle irregular masks, or regions of interest
(RoIs), in the image [18]. Unlike SLIC, which uniformly
distributes seed points across the image, MaskSLIC positions
these points only within the RoI using an Euclidean distance



transform to ensure effective coverage. After defining the
seed points, MaskSLIC applies the SLIC procedure within
the mask, ensuring that superpixels are evenly distributed and
respect the boundaries of the RoI, providing more accurate
and consistent segmentation in specific areas of interest.

D. Homogeneity Rate (HoR)

Currently, in the ForestEyes project, to measure the quality
of segments that can be used in citizen science campaigns,
a metric known as the Homogeneity Rate (HoR) is adopted
[8]. Originally, this measure indicates the percentage of pixels
belonging to a specific class in a binary classification. In the
context of the ForestEyes project, it quantifies the percentage
of pixels of the forest or non-forest classes within the seg-
ments, according to the majority class of the pixels in each
segment. The value of HoR for each segment can be evaluated
using Equation 1.

HoR =
max(NFP,NNP )

NP
, (1)

where, NFP represent the number of forest class pixels,
NNP is the number of pixels in the non-forest class, and
finally, NP concerns the total number of pixels in the segment.

E. Shannon’s Entropy

After the conclusion of each campaign, as mentioned in
the introduction of this paper, the majority response from the
volunteers for each segment should be calculated, given a
specific number of evaluations each segment can receive. By
analyzing the responses per segment, it is possible to determine
the entropy for each one. In this particular study, Shannon
entropy was used, which can be represented by Equation 2.

H(x) = −
n∑

i=1

p(xi) · log2(p(xi)), (2)

where p(xi) is the probability of the event xi occurring
and n is the number of classes. In this work, this means
the probability of one of the classes (forest or non-forest)
being chosen by the volunteer, which can be calculated by
dividing the number of responses for a class i by the total
number of responses received for that segment. Specifically,
in the present study, entropy proves to be a good measure
for assessing the classification difficulty of the segments, as
segments with higher entropy values tend to be more difficult
for volunteers to classify (greater variability in responses).

F. Haralick Texture Features

Haralick texture descriptors pertain to a set of 14 features
that capture an image’s texture based on the gray-level co-
occurrence matrix (GLCM). The GLCM counts the frequency
of pixel pairs with specific values, separated by a set distance
and direction. Considering four directions (0, 45, 90, and 135
degrees), four matrices are computed and normalized to form a
probability matrix. From this matrix, Haralick’s 14 descriptors
can be computed.

Among these descriptors, (i) Angular Second Moment mea-
sures GLCM uniformity, indicating homogeneous textures; (ii)

Contrast evaluates intensity variation between a pixel and
its neighbors, highlighting texture contrast; (iii) Correlation
measures the linear relationship between pixels, indicating
dependency between pixel intensities; (iv) Sum of Squares
(Variance) represents the dispersion of values around the
mean, associated with intensity diversity; (v) Inverse Differ-
ence Moment measures texture uniformity, assigning higher
values to elements near the GLCM diagonal; (vi) Sum Average
calculates the mean of summed pixel intensities, reflecting
central tendency; (vii) Sum Variance evaluates the variation
of summed intensities, indicating pattern diversity; (viii) Sum
Entropy measures disorder or randomness in summed pixel in-
tensities; (ix) Entropy quantifies the randomness or complexity
of the image texture; (x) Difference Variance measures the dis-
persion of intensity differences in the GLCM; (xi) Difference
Entropy assesses disorder or randomness in intensity differ-
ences; (xii and xiii) two measures of correlation information
quantify mutual dependence between gray levels, indicating
pixel intensity relationships; and (xiv) Maximal Correlation
Coefficient measures the highest correlation between pixel
intensities, reflecting similarity across image regions [19],
[20].

G. Support Vector Machine

The Support Vector Machine (SVM) is a supervised learning
algorithm used for classification and regression tasks. Its pri-
mary goal is to find an optimal hyperplane that best separates
the classes in the input data. In other words, the SVM seeks
to identify the decision hyperplane that maximizes the margin
between the data points of different classes. This is achieved
by using support vectors, which are the points closest to the
decision hyperplane [21], [22].

One of the most useful features of the SVM is the so-called
kernel trick, which allows the separation of classes in high-
dimensional spaces. The kernel trick maps low-dimensional
input data to a high-dimensional feature space without the
need to explicitly compute these new dimensions, using only
kernel functions such as linear and polynomial, for example.
During the prediction phase, new data points are mapped to
the high-dimensional space and classified based on which side
of the hyperplane they lie on. Among its main advantages
are the ability to efficiently handle high-dimensional data and
robustness against overfitting in high-dimensional spaces due
to the maximization of the margin.

III. FORESTEYES PROJECT

In this section, the modules that constitute the ForestEyes
project (FE) are explained in detail. To better guide the
understanding of each module, Figure 2 illustrates a schematic
representation of this project.
(a) In the first module, called the Preprocessing Module,

the acquisition, processing, and segmentation of images
from various satellites are performed. Particularly, in this
research, after selecting the geographic area of interest
using the engine of Sentinel-2, bands B1 (coastal aerosol),
B2 (blue), B3 (green), B4 (red), B8 (vnir), B11 (swir),
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Fig. 2: ForestEyes project’s schematic representation. The light blue and orange modules correspond, respectively, to the
modules implemented in this work.

and B12 (swir) are collected. Regarding the geographic
region investigated in this work, specifically, 9 areas of
interest (study areas) located geographically in a region
of Brazil known as the Xingu River Basin, in the state of
Pará, were collected. Together, these 9 areas cover a total
of 8, 514 hectares of land. After collecting the bands, a
composition (combination) of three out of the seven bands
is done before segmenting the collected area. Following
some preliminary experiments with the SLIC [17] and
MaskSLIC [18] segmenters, it was identified that using
the composition of bands B4, B3, and B2 (B4B3B2),
corresponding to RGB bands, generated better quality
segmentations. Thus, after performing the mentioned
composition, the MaskSLIC algorithm was applied so that
non-interest regions, such as consolidated deforestation,
were ignored during the segmentation;

(b) In the Citizen Science Module, each segment, which
can be understood in the form of a task, was visually
represented in four different false-color compositions. In
this sense, the compositions b8b11b4, b4b11b12, and
b11b8b4 were used, along with the NDVI. In the con-
struction of the campaign, 90 segments with HoR = 1
and 90 segments with HoR between 0.7 and 0.8 were
used, aiming to analyze the volunteers’ behavior when
classifying more and less homogeneous segments. After
creating the tasks, the campaign (workflow) were con-
structed on the Zooniverse platform [23], [24]. During
a period of approximately two weeks, volunteers’ re-
sponses were collected. This methodology allowed for a
detailed analysis of volunteers’ performance concerning
the homogeneity of the segments, providing a clearer
understanding of the effectiveness of the false-color com-
positions and NDVI in facilitating the classification task;

(c) Once the campaign is finished, the volunteers’ responses
are processed and analyzed in the Organization and
Selection Module. This module assesses factors like
response times and entropies to evaluate quality. It de-
termines the specific number of responses per task. By

calculating the majority response for each task, variabil-
ity is measured using entropy (H). For this project, it
was computed an entropy value for each task to create
a ranking from highest to lowest, which assesses the
complexity of classification for each task. Based on this
ranking, the segments constituting each task were turned
into a training set for the Machine Learning Module. This
approach allowed for a thorough analysis of the quality
of the volunteers’ classifications and helped in choosing
the most suitable samples for training machine learning
models;

(d) In the penultimate module, the Machine Learning Mod-
ule, training and test sets are constructed, and Haralick
texture features are extracted. The SVM technique us-
ing linear kernel is trained in different approaches and
strategies, and subsequently evaluated and applied to
other regions of interest. For the training set, this study
used only segments classified by volunteers as ’forest’
or ’non-forest’, given that the campaigns allowed for
responses such as ’I cannot identify the class’ and the
possibility of ties in the majority response. Quantitatively,
the training set comprised 96 samples of the ’forest’ class
and 83 samples of the ’non-forest’ class for the Sentinel-
2 campaign. For the test set, 54771 segments of the
’forest’ class and 7872 segments of the ’non-forest’ class
were used, resulting in 62, 643. From these segments, 13
Haralick texture features in four different directions were
extracted, resulting in 72 features, which served as input
for the machine learning model. Regarding the methodol-
ogy implemented in the training process, twenty different
training sets were constructed. The first set, balanced
by class, contained 5% of the samples with the highest
entropy. Starting from the second set, an additional 5% of
samples were included, in descending order of entropy,
incrementally until the twentieth set, which contained
all the samples (100%). Once the training sets were
constructed, three sampling strategies were implemented
during the model training process (user-based entropy).



These strategies are referred to in this paper as increasing,
decreasing, and edges. In the increasing strategy, the
training set selected of the model consisted of samples in
ascending order of entropy. Conversely, in the decreasing
strategy, the sets with samples of higher entropy were se-
lected. The edges strategy involved selecting 2.5% of the
samples with the highest entropy and 2.5% of the samples
with the lowest entropy. Finally, at the end of the training,
using balanced accuracy, the model was evaluated and
made available for application in the automatic detection
of deforestation areas;

(e) While not the main focus of this study, the Post-
processing Module includes a detailed analysis of the
obtained results. These findings have the potential to
serve as a crucial basis for various future applications,
such as strategic decision-making and the development
of effective alert systems. Additionally, in this module,
based on labels assigned by volunteers in citizen science
campaigns, it is anticipated that other approaches, such
as automatic labeling, could be implemented in the near
future.

IV. RESULTS AND DISCUSSION

In this section, the results obtained in the present research
are presented and discussed.

A. Sentinel-2 Campaign Analysis

In this experiment, it was analyzed the behavior of user rat-
ings through entropy and its relationship with the homogeneity
coefficient of the task segment. In this sense, the Figure 3
illustrates segments with low and high entropy. A low entropy
value generally corresponds to a high HoR, indicating well-
defined segments, such as in Figures 3b and 3d, representing
forest and non-forest areas, respectively. On the other hand,
high entropy and low HoR indicate that the image segments
can contain a mix of pixels for the two classes, as shown
in Figures 3a and 3c, leading to a poorly defined delimiting
polygon. Segments with combinations of high entropy and
high HoR, and vice versa, are harder to find in in this research.

According to this behavior, in Figure 4, it is possible to
analyze the relationship between Entropy and HoR for all
segments used in the training data set. Most of the perfect
segments (HoR = 1.0), presented in the superior line, could
be considered as high confidence (H = 0.0) by the volunteers.
Otherwise, segments with lower HoR, populating the inferior
lines in the same figure, are presented close to the right inferior
corner, meaning a low confident volunteers’ classification
(H > 0.8).

B. Comparative Analysis among Sampling Strategies

As presented in Section III, three different sampling strate-
gies were used to train the SVM technique using a linear
kernel. In addition to these, a random sample selection strategy
was also employed in this work, maintaining the same quanti-
tative proportions of samples per class. Regarding the random
selection strategy, to ensure a fair comparison, the model was

Fig. 3: Examples of segments (in red color) with different
HoR and entropy values, showing that the higher the HoR
value, the lower the entropy tends to be and vice versa.

Fig. 4: HoR × Entropy values for Sentinel-2 Campaign.

performed by 10 times, and at the end, the arithmetic mean of
the balanced accuracy was calculated. The results observed
for the three different sampling strategies implemented in
this study, along with the random approach, are presented in
Figure 5.

When analyzing the model’s behavior for each strategy
with the respective training set, a notable advantage of the
increasing strategy is observed when using training sets with
up to 55% of the samples with the lowest entropy (highest



confident samples). This characteristic indicates that through
this strategy, it is possible to train models like SVM with very
few samples from this domain, achieving significant balanced
accuracy results. This fact can be especially useful when a
large training set is not available. Conversely, the decreasing
strategy, where samples with the highest entropy are chosen
first, did not prove as effective, only equating to the other
strategies when using 60% of the samples. The same could be
applied to edge strategy, when the lowest and highest entropies
were selected to organize the training set.

Fig. 5: Classification results of the sampling strategies for
deforestation detection task.

V. CONCLUSION

Citizen science campaigns are valuable tools that promote
volunteer engagement in noble causes, the dissemination of
globally relevant information, and the generation of data of
considerable value. In this context, the research highlighted
the ForestEyes project, in which non-specialized volunteers
analyze and classify segments with potential deforestation in
the Brazilian Legal Amazon. This classification process, at
the end of each campaign, produces valuable labels for the
segments, which can be used to train ML models such as
SVM. As discussed in this paper, sample selection for effective
training is a rather complex task. Considering that in the
campaigns it is possible to measure the difficulty of classifying
segments through the variability observed in their entropy, this
research presented three different sample selection strategies
for training the SVM based on this measure. Based on the
results, it was observed that the approach based on selecting
samples with lower entropy (increasing) produces good results
with few samples. Particularly, with only 10% of the samples
with the lowest entropy (9 from forest and 9 from non-forest),
it was possible to achieve a balanced accuracy value that
the other strategies only reached using around 70% of the
samples. For future work, it is intended to assess the robustness
of this approach in other ML models, such as Multilayer
Perceptron (MLP) neural networks and Random Forest (RF),
exploring a greater parametric variation. Additionally, it is
desired to compare the strategies tested in this work with other
techniques from the literature, such as Margin Sampling.
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