
Spherically-Weighted Horizontally Dilated
Convolutions for Omnidirectional Image Processing

Romulo M. Stringhini, Thiago L. T. da Silveira, and Claudio R. Jung
Institute of Informatics, Federal University of Rio Grande do Sul

Porto Alegre, Brazil
{rmstringhini, tltsilveira, crjung}@inf.ufrgs.br

Abstract—Traditional convolutional neural networks (CNNs)
face significant challenges when applied to omnidirectional im-
ages due to the non-uniform sampling inherent in equirectangular
projection (ERP). This projection type leads to distortions,
particularly near the poles of the ERP image, and fixed-size
kernels in planar CNNs are not designed to address this issue.
This paper introduces a convolutional block called Spherically-
Weighted Horizontally Dilated Convolutions (SWHDC). Our
block mitigates distortions during the feature extraction phase by
properly weighting dilated convolutions according to the optimal
support for each row in the ERP, thus enhancing the ability of
a network to process omnidirectional images. We replace planar
convolutions of well-known backbones with our SWHDC block
and test its effectiveness in the 3D object classification task using
ERP images as a case study. We considered standard benchmarks
and compared the results with state-of-the-art methods that
convert 3D objects to single 2D images. The results show that
our SWHDC block improves the classification performance of
planar CNNs when dealing with ERP images without increasing
the number of parameters, outperforming peering methods. Code
is available at: https://github.com/rmstringhini/SWHDC

I. INTRODUCTION

Omnidirectional images, also known as spherical images,
are captured by 360-degree cameras and provide a panoramic
field-of-view of 180◦ × 360◦, much broader than that of
traditional pinhole cameras [1]. With its capability to capture
the entire surrounding environment, omnidirectional images
can be applied to various scenarios such as autonomous
driving, augmented/virtual reality, and robotics [2].

Spherical images, which are signals defined on a spherical
surface, are frequently mapped to a planar format using the
equirectangular projection (ERP) [1], [2]. ERP samples the
unit sphere non-uniformly and produces distortions when
mapping data to the plane [1]. This means that pixels at higher
latitudes represent smaller superficial areas on the sphere than
those at the equator. Consequently, standard convolutional neu-
ral networks (CNNs) designed for structured planar imagery
are not well-suited for omnidirectional images since they use
standard convolutional kernels with fixed support [1], [2].

Many studies try to deal with distortions in ERP images,
offering different solutions to improve the feature extraction
capacity of CNNs, such as the Kernel Transformer Network [3]
or SphereNet [4]. However, these approaches require high
computational resources as kernels that sample irregularity
are generally slower than traditional convolutions [1]. Dilated
convolutions [5]–[8] are used to handle distortions in 360-

degree images due to their wider receptive field and the
possibility of capturing long-range dependencies. However,
since the sphere’s curvature causes variations in area and
distance between points along different rows, the best fit
for dilated convolutions in spherical images must consider
different dilation rates for different rows [1].

The Vision Transformer (ViT) architecture [9] has also been
adapted for spherical image processing tasks using different
sampling strategies for extracting the tokens [10]–[13]. Despite
the widespread of transformers in the past years, architectures
based on CNNs or combinations of CNNs and ViTs can
outperform pure ViT models, particularly when training data
is not abundant [14], [15].

This paper proposes a convolutional block named
Spherically-Weighted Horizontally Dilated Convolutions
(SWHDC) designed to cope with the non-uniform sampling
of ERP images. The SWHDC block contains multiple
dilated convolutions along the horizontal dimension with a
shared-weight kernel. The final output of the block is a linear
combination of the multiple row-wise weighted feature maps
of each convolution, where the row-dependent weights aim
to select the optimal support based on the corresponding
distortion. SWHDC block can be integrated into any planar
CNN backbone to better extract features of spherical images
without increasing the number of parameters. As a case study,
we chose to evaluate the effectiveness of our block in the
task of 3D object classification using spherical images that,
like many others, exhibit limited data availability.

II. RELATED WORK

Several different strategies have been used to deal with
distortion in omnidirectional images. Su and Grauman [16]
proposed a spherical convolution that adapts a planar network
to handle 360-degree images by training distinct kernels for in-
dividual rows of the ERP, and a follow-up study [3] introduced
the Kernel Transformer Network to transfer convolutional
kernels from perspective images to ERP images. On the other
hand, the idea of deforming convolutional filters to adapt their
receptive fields according to the distortion levels was proposed
in [17], [18]. Despite the promising results, these adaptations
of planar filters are computationally demanding.

Another set of techniques explores convolutions defined
on the sphere. Cohen et al. [19] explored the inner product
between a spherical signal and a rotated spherical filter, using



the inherent rotational symmetry of spherical signals in a
similar way to how standard convolutions networks leverage
the translation symmetry in planar images. Esteves et al. [20]
proposed a CNN that achieves 3D rotation invariance by
performing convolutions on the sphere and pooling operations
on the spectral domain to maintain equivariance. The spin-
weighted version (SWSCNN) [21] avoids the need to lift
data to SO(3), and a fast implementation was introduced
in [22]. Jiang and colleagues [23] explored linear combinations
of differential operators to create a convolutional kernel that
operates directly on icosahedral spherical meshes.

Yet, another class of approaches explores multiple represen-
tations or varying-size kernels to deal with panoramas. Uni-
Fuse [24] employs a unidirectional fusion approach to fuse and
combine features from ERP and cube-map projections, while
Bifuse [25] explores a two-branch network that incorporates
both projections. Liu et al. [26] explored the HEALPix (Hi-
erarchical Equal Area Iso Latitude Pixelation) representation
to sample spherical data, and used pooling and convolution
layers to perform different in the transformed domain. Zioulis
et al. [27] proposed a direct use of omnidirectional images
by transforming square convolutional filters into row-wise
rectangles and adjusting filter sizes to be larger near the poles
and smaller close to the equator. Pintore et al. [28] introduced
a slice-based representation to exploit the characteristics of
ERP along the vertical dimension directly, eliminating the
need for distortion-aware convolutions. ACDNet [7] combines
dilated convolutions with different horizontal and vertical
dilation rates with a channel-wise fusion module to improve
feature extraction. The transformable dilated convolution [8]
dynamically adjusts the kernel size based on the distance of
objects in spherical LiDAR data, using a larger kernel for
closer objects and a smaller one for distant objects.

Finally, a recent trend is the adaptation of ViTs to the
spherical domain. PanoFormer [12] extracts tangent patches to
avoid distortions, using them as tokens. Similarly, OmniFusion
[29] converts the ERP image to distortion-free patches with
spherical and tangent plane center coordinates into an encoder-
decoder network. Rey-Area et al. [30] projected the ERP input
image onto a set of tangent planes to produce perspective
views. HEAL-SWIN [13] proposes a modified version of
the Swin Transformer [31] applied to a uniform HEALPix
grid, while GLPanoDepth [10] proposes a Cubemap Vision
Transformer (CViT) combined with a planar CNN to extract
features directly from the ERP.

Even though several strategies aim to overcome the negative
effects of non-uniform sampling in omnidirectional images,
they typically demand considerably higher computational costs
than their planar counterparts [1]. Furthermore, some of these
approaches present similar or marginally superior results than
traditional planar strategies [18]. Architectures based on ViTs
have become very popular in the past years, and they can be
adapted to the spherical domain by selecting adequate patches
[10]–[13]. However, ViT-based approaches typically require
larger training datasets to become effective [14], [15]. In fact,
Goldblum et al. [15] recently evaluated several backbones,

concluding that modern CNNs architectures pretrained via
supervised learning perform better than ViTs on several vision
tasks, whereas transformers benefit more from scale.

III. THE PROPOSED APPROACH

In this section, we revisit the ERP mapping formulation and
describe the proposed SWHDC block to handle the inherent
ERP-induced distortions. Differently from [8], where kernel
sizes are adjusted according to the distance of objects in
LiDAR data, our approach spherically weights dilated con-
volutions according to the ideal support for each latitude in
the ERP image (or feature map).

A. The Equirectangular Projection

The Spherical Camera Model projects a 3D world point
P ∈ R3 onto the unit sphere centered at C ∈ R3 through
central and spherical projections, resulting in the intersection
point p ∈ S2 [1]. Since p has unit distance from the camera
center C, it can be expressed as

p =
[
cos θ sinϕ sin θ sinϕ cosϕ

]⊤
, (1)

where ϕ ∈ [0, π) and θ ∈ [0, 2π) represent the latitudinal and
longitudinal coordinates respectively.

Since this process can be applied to every angle pair
(ϕ, θ), the spherical surface information can be arranged into
a [0, π) × [0, 2π) rectangular grid [1]. This straightforward
mapping is known as ERP [16], which represents a point
p ∈ S2 in position (y, x) of a h × w 1:2 image (the ERP
image) using

y =

⌊
ϕh

π

⌋
, x =

⌊
θw

2π

⌋
. (2)

In ERP images, regions near the poles are more densely
sampled than those near the equator [1]. The horizontal
distance between two points on the sphere with longitudes
θ1 and θ2, given a latitude ϕ, is expressed as sinϕ|θ1 − θ2|,
as detailed in Eq. (1). Conversely, for a fixed longitude θ, the
vertical distance between two points with latitudes ϕ1 and ϕ2

is simply |ϕ1−ϕ2|, which remains constant. As a result, points
closer to the poles require larger horizontal support (scaled by
1/ sinϕ) than those at the equator, while the vertical support
should remain the same.

B. Spherically-Weighted Horizontally Dilated Convolutions

In a traditional (planar) convolutional filter, the kernel has a
fixed support. When applied to ERP images, it covers different
areas of the sphere depending on its latitude. As shown in
Fig. 1, the same kernel has a smaller support close to the poles.
Our SWHDC block copes with the ERP distortions and can be
integrated into any planar CNN to improve feature extraction.
We adapt the idea of [32], where stacked parallel dilated
convolutions are employed to process regular images. In [32],
the outputs of the dilated convolutions (in both dimensions)
are stacked to produce a multi-channel, multi-scale response.
Our SWHDC block also relies on multiple parallel dilated
convolutions but only dilates convolutions along the horizontal
dimension. Instead of concatenating the filter responses, we



(a) (b)

Fig. 1. Applying regular fixed-support kernels at different latitudes to (a) ERP
images covers uneven (b) sphere surface areas. Blue, green, and red squares
represent the kernels (enlarged for visualization purposes).

(a) (b)

Fig. 2. Ideal dilation rates that should be adjusted depending on the latitude:
blueish colors represent small dilation rates (not smaller than 1) while
yellowish colors represent large dilation rates (in the limit case, infinity).

perform a row-dependent linear combination so that each
latitude (row) of the ERP (or feature map) is influenced
differently by each dilated convolution. This leads to a single-
channel per kernel output for the SWHDC block.

The SWHDC block employs N preset horizontally dilated
convolutions with shared weights, each one with a horizontal
dilation rate n that produces a feature map Fn, for n =
1, . . . , N . This design choice allows a multi-support feature
extraction, which can be appropriately weighted to capture
ERP image information despite the distortions. We use circular
padding to capture the full field-of-view of the input, preserv-
ing smooth horizontal continuity across spherical images. By
sharing weights, the number of learnable parameters remains
constant regardless of the number of dilated convolutions,
providing computational efficiency.

Let us consider a kernel support relative to the equator line
(ϕ = π/2) of the ERP. As noted in Section III-A, the ideal
kernel support for each latitude ϕ must be scaled by a factor
1/ sinϕ to cope with non-uniform sampling. Since the support
is proportional to the dilation rate, we select the ideal row-
wise dilation rate based on the factor 1/ sinϕ as illustrated in
Fig. 2 (blueish colors represent smaller values while yellowish
colors represent larger ones). Since this factor yields non-
integer values, we interpolate between the two closest dilation
rates by performing weighted averages, as explained next.

Each row index y of the SWHDC block’s input (ERP image
or feature map) relates to a latitude ϕ according to Eq. (2),
for which the ideal scaling factor is

Rϕ = min{N, 1/ sinϕ(y)}, (3)

noting that we already limit the maximum scaling factor Rϕ

to the largest dilation N . The weight Wϕ
n for dilation rate n

and row index related to a latitude ϕ is given by interpolating

(a) (b)

Fig. 3. (a) Distribution of the weights Wϕ
n according to ϕ when N = 4.

(b) Percentage of area coverage on the spherical surface for N horizontally
dilated convolutions.

the two closest integer scales, i.e.,

Wϕ
n =


1, if Rϕ ∈ N and n = Rϕ

⌈Rϕ⌉ −Rϕ, if Rϕ /∈ N and n = ⌊Rϕ⌋
Rϕ − ⌊Rϕ⌋, if Rϕ /∈ N and n = ⌈Rϕ⌉
0, otherwise

, (4)

where ⌈·⌉ and ⌊·⌋ denote rounding to the closest larger and
smaller integers, respectively. Fig. 3a shows the weights Wϕ

n

for the case when N = 4.
Finally, the combined output feature map F∗ is given by a

linear combination of the feature maps Fn resulting from the
preset of horizontally dilated convolutions:

F∗ =

N∑
n=1

HB(Wn)⊙ Fn (5)

where Wn is the weight for all latitudes, HB(·) denotes
horizontal broadcasting, and ⊙ element-wise multiplication.

Our SWHDC block maintains the same number of parame-
ters as regular convolutional blocks by using hardcoded row-
dependent weights to mimic the optimal support for each
horizontal dilated convolution. Despite employing multiple
dilated convolutions, the number of output channels in the
final combined feature map of the SWHDC block remains the
same as in traditional convolutional blocks. This careful design
choice ensures that the computational efficiency is preserved,
allowing an improved feature extraction while mitigating dis-
tortions without adding any parameter overhead. Fig. 4 shows
the SWHDC block architecture for N = 4.

In the design of our SWHDC block, we chose N = 4 as
our preset amount of horizontally dilated convolutions. This
decision is derived from the observation that the area covered
by a dilated convolution in a spherical surface barely increases
for N > 4. According to Fig. 3b, the area covered by dilated
convolutions with an ideal kernel support ranging from rates
1 to 2 is notably higher compared to higher rates. For N = 4,
the receptive field is sufficiently large to extract significant
features and mitigate distortions effectively as when N ≥ 5,
since the additional coverage area becomes minimal (≈ 1.1%).
Thus, choosing N = 4 is sufficient to handle distortions near
the poles of ERP images. In the particular case for N = 1,
where the dilation rate is n = 1, the expansion of the kernel
is not required and a traditional convolution is used. In this
case, the feature extraction is performed directly along the



Fig. 4. Composition of our SWHDC block when N = 4. The input is
processed by N horizontally dilated convolutions with different dilation rates
n. Each feature map passes through a row-dependent weighting. Then, all
N spherically-weighted feature maps are combined to generate the final
combined feature map. “H”, “W”, “C”, and “HDC” represent height, width,
channels, and horizontally dilated convolution, respectively.

equator line. The selection of N is based on our analysis of
area coverage on a spherical surface and performance results,
which are provided further in Section IV. Regardless the value
of N , the number of trainable parameters remains the same.

The focus of this paper is to overcome the distortion-related
issues inherent to ERP images. Then, we can embed our
SWHDC block into existing planar architectures to effectively
mitigate the impact of distortions in the feature extraction
phase without increasing the number of trainable parameters.
As detailed next, we evaluate our convolutional block in 3D
object classification using spherical images as a case study.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the case study application (3D object
classification using spherical images), the datasets used, and
the experiments and results, assessing different backbones and
comparing the best-performing one with peering methods. Our
goal is to show the effectiveness of our SWHCD block in the
target case study application.

A. Classification of 3D Objects Using ERP Images

This paper aims to mitigate distortions inherent in ERP
images by integrating our SWHDC block into planar CNNs.
By doing so, we improve the performance of planar backbones
for 3D object classification using spherical images.

To generate the 2D spherical views, we followed the ap-
proach used by other methods that explore panoramas for 3D

Fig. 5. Construction of the ERP image. Omnidirectional rays are cast from the
object’s centroid (red dot), with orientation defined by ϕ and θ. The distance
between the centroid and the last intersection point (blue dot) is stored in a
pixel position (y, x) to generate the external depth map of the object.

shape classification [20], [21], [26]. The core idea is to cast
rays omnidirectionally from the object’s centroid until they
intersect the shape (or the convex hull, as in [26]), and retrieve
local geometrical information at the intersection point.

The orientation of each ray is defined by ϕ and θ relative
to the centroid of the object and mapped to an image pixel
position (y, x) according to Eq. (2). In this work, we used
h = 256 and w = 512, a common choice for panorama-based
deep learning approaches [1]. The ERP image is obtained by
calculating the distance between the origin of the ray and
the position of the last intersection point in the object (i.e.,
the depth), which is then projected to a pixel position (y, x)
on the ERP image. We encode the position (y, x) with zero
distance if no hitting point exists between the ray and the
object. The resulting ERP image can be interpreted as an
external depth map of the object since we store information on
the last intersection point between the ray and the object. To
achieve scale invariance, we divide all distance values by the
maximum distance within the object, yielding a normalized
map. This process is illustrated in Fig. 5.

Our experiments are performed on the Princeton Model-
Net [33] datasets, which contain CAD models divided into
different categories. ModelNet10 is a subset that contains
models from 10 categories divided into 3,991 training and 908
testing models. ModelNet40 contains 40 different categories
with 9,843 and 2,468 models for training and testing, respec-
tively. For both datasets, we randomly split the preset training
set into 80% for training and 20% for validation.

We trained the evaluated backbones for a maximum of 200
epochs using early stopping with a patience of 25 epochs. We
used the Adam optimizer with an initial learning rate of 10−4,
decaying by 0.9 every 25 epochs to a minimum of 10−7. Data
augmentation included 3D rotations (0-15◦ for x and y axes,
0-45◦ for z axis). Gaussian blur with a random σ from 0.1 to
2, and Gaussian noise with a mean from 0 to 0.001 and σ from
0 to 0.03. All these primitives were applied to the training set
with a probability of occurrence of 15%.

B. Embedding SWHDC block into Planar CNNs

We analyzed three well-established planar CNN architec-
tures: VGG [34], ResNets [35], and EfficientNets [36]. These



TABLE I
CLASSIFICATION RESULTS OF DIFFERENT BACKBONES AND

CONVOLUTIONAL BLOCKS.

Backbone ModelNet10 ModelNet40 Params.
VGG-16 90.30% 85.53% 138.3M

VGG-16+SWHDC 91.92% 88.21% 138.3M
ResNet-18 89.09% 86.66% 11.7M

ResNet-18+SWHDC 92.38% 89.41% 11.7M
ResNet-18+SPH 90.39% 87.83% 16.4M

ResNet-34 90.64% 87.44% 21.8M
ResNet-34+SWHDC 93.89% 90.87% 21.8M

ResNet-34+SPH 92.76% 89.52% 26.9M
ResNet-50 91.07% 87.88% 25.5M

ResNet-50+SWHDC 94.11% 91.89% 25.5M
ResNet-50+SPH 92.66% 90.13% 31.4M

EffNet-b0 90.22% 86.81% 52.8M
EffNet-b0+SWHDC 93.21% 89.95% 52.8M

EfftNet-b7 90.93% 87.21% 66.3M
EffNet-b7+SWHDC 93.80% 90.06% 66.3M

architectures were evaluated using both standard convolutions
and our SWHDC block. To investigate and compare their
performance on the target task, all models were trained from
scratch using only our ERP images, without pretraining.

Table I shows the classification results of different back-
bones on the ModelNet10 and ModelNet40 datasets, com-
paring their performance with standard convolutions and our
SWHDC block. As observed, integrating our convolutional
block consistently improved the performance of all tested
backbones on both ModelNet datasets without increasing the
number of parameters. We also evaluated the integration of
spherical convolutions (SPH) from SphereNet [4] into ResNet
backbones as they outperformed the compared planar back-
bones. Although spherical convolutions improve the baseline
results, they require more training parameters. Besides keeping
the number of parameters unaltered, our SWHDC block is
particularly advantageous when compared to spherical convo-
lutions, which typically require more computational resources
as they involve complex operations.

As stated in Section III-B, when the amount of horizontally
dilated convolutions inside our block is N = 4, we cover
≈ 96.85% of the spherical surface indicating effective feature
extraction and distortion handling. As we increase the dilation
rate to N = 5, there is minimal change in the covered
area (≈ 1.1%). It suggests that while higher dilation rates
may expand the receptive field, they may not contribute
substantially to increased coverage on the sphere, especially
when the feature map is too small. Table II provides the results
for the ModelNet40 dataset of a modified ResNet-18 backbone
by integrating our SWHDC block containing different amounts
of horizontally dilated convolutions.

C. Comparison with the State-of-the-Art

Several methods have been proposed to classify 3D objects,
including approaches based on single or multiple views per
object, as well as point- and voxel-based methods, which
process raw point clouds or convert 3D objects into a grid
of voxels, respectively. To ensure a fair comparison, our

TABLE II
RESULTS VARYING THE AMOUNT OF N HORIZONTALLY DILATED

CONVOLUTIONS INSIDE OUR BLOCK ON THE MODELNET10 DATASET.

Backbone ModelNet10
ResNet-18+SWHDC (N = 2) 90.41%
ResNet-18+SWHDC (N = 3) 91.40%
ResNet-18+SWHDC (N = 4) 92.38%
ResNet-18+SWHDC (N = 5) 91.96%

TABLE III
SHAPE CLASSIFICATION RESULTS ON MODELNET. BEST RESULT IN BOLD,

SECOND-BEST UNDERLINED.

Method/Backbone ModelNet10 ModelNet40
DeepPano [37] 88.66% 82.54%

PVR [38] 92.73% 91.69%
Cao et al. [39] (from scratch) - 86.09%

SPNet [40] (panoramic) 92.07% -
Ding et al. [41] 91.18% 89.01%

Hoang et al. [42] 91.08% 85.82%
PanoFormer encoder [12] + FC 85.74% 79.71%

SWSCNN [21] - 90.10%
STM [26] - 92.70%

ResNet-50+SWHDC (Our) 94.11% 91.89%

study exclusively benchmarks against methods that employ a
single view per object, focusing on a consistent evaluation of
classification performance. We compared the best-performing
ResNet model supplied with our SWHDC blocks (called our
model) with the results of DeepPano [37], PVR [38], Cao
et al. [39], SPNet [40], Ding et al. [41], Hoang et al. [42],
SWSCNN [21], and STM [26]. Additionally, we trained a
classifier with a recent transformer-based encoder to assess its
accuracy with relatively small datasets such as ModelNet10
or ModelNet40. More precisely, we adapted the ViT-based
encoder of PanoFormer [12] for the task of classification
by adding a fully connected (FC) layer. Here, we feed our
ERP images that encode the geometry of the objects to the
PanoFormer encoder.

A summary of the results is provided in Table III. For
ModelNet10, our approach achieved the best accuracy com-
pared to all other methods that use a single image to represent
3D objects. For ModelNet40, our results were inferior only
to STM [26]. However, STM takes as input a 6-channel
panorama that includes information about depth values and
normal vectors of the mesh and its convex hull1, whereas
our approach uses only a single-channel image (depth). Tests
with PanoFormer yielded low accuracy values compared to
other approaches. However, it is important to mention that we
used the encoder originally designed for depth estimation in
spherical images, so it might be over-dimensioned for the clas-
sification task with ModelNet. Another possible explanation
for the low accuracy of the ViT-based PanoFormer encoder is
the data-hunger nature of transformers.

1STM [26] also reports results combining single and multiple views, but
the accuracy is marginally superior – 93.00%.



V. CONCLUSIONS

This work introduced the SWHDC block for CNNs. Our
SWHDC block is designed to mitigate the adverse effects of
non-uniform sampling in ERP images and improve the feature
extraction capabilities of traditional planar backbones when
processing omnidirectional images. By incorporating multiple
weighted dilated convolutions that expand the horizontal re-
ceptive field only and mimic the optimal support according to
the latitude of the ERP, our approach captures richer spatial
information and mitigates distortions.

We have shown the effectiveness of our SWHDC block by
plugging it into different planar backbones and comparing
the results with their planar counterparts in the 3D object
classification task using spherical images. We also compare
results with a spherical convolution design. Additionally, we
achieved better results than state-of-the-art methods that use a
single image to represent 3D objects.

A key advantage of our SWHDC block is its ability to
replace standard convolutions without increasing the number
of parameters, ensuring that the enhanced performance does
not come at the cost of additional trainable parameters. This
efficiency makes our proposal highly practical and versatile,
allowing easy integration into any existing CNN backbone.

In future work, we plan to assess the effectiveness of our
SWHDC block in other applications. We plan to encompass
different tasks such as depth estimation, object detection,
semantic segmentation, and gravity alignment, to analyze our
convolutional block’s adaptability and generalizability com-
prehensively.
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