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Abstract—Salient Object Detection (SOD) methods based on
deep learning have succeeded, usually at the price of abun-
dantly annotated data and intensive computational resources.
Such limitations have motivated the development of lightweight
models, but they are still pre-trained on large datasets, and their
adaptation under labeled data scarcity is challenging. In this
context, Feature Learning from Image Markers (FLIM) is a
methodology under investigation to create convolutional encoders
with minimal user effort in data annotation. Flyweight networks
based on a FLIM encoder followed by an adaptive decoder, which
is a point-wise convolution with adaptive weights for each image
followed by activation, achieved state-of-the-art results for SOD
recently. In this work, we propose four strategies for computing
adaptive weights based on (i) channel-tri-state detection, (ii)
labeled markers, (iii) channel attention, and (iv) a hybrid solution
using the tri-state and labeled-marker decoders. An assessment
on two medical datasets between FLIM-based SOD networks with
the proposed adaptive decoders, three state-of-the-art lightweight
models and a U-shaped network with a FLIM encoder has shown
that the results favor FLIM networks, with the hybrid solution
being the most promising option.

I. INTRODUCTION

Salient Object Detection (SOD) methods locate the most
evident objects in an image [1], [2], with most recent works
relying on deep learning models [3]–[6]. Despite their suc-
cess, large labeled datasets and intensive computational re-
sources are usually needed, leading to the investigation of
lightweight models [4], [7], [8]. SAMNet [4] was presented as
a lightweight model and introduced a novel operation called
Stereoscopically Attentive Multiscale (SAM) that fuses the
features at different scales. The network has 1.33 million pa-
rameters, considerably fewer than other deep models, achiev-
ing comparable results. MSCNet [7] is another lightweight
example that explores multiple scales to refine salient objects.
It is heavier than SAMNet, with 3.26 million parameters,
yet much lighter than other deep models. Similarly light,
MEANet [8] has 3.27 million parameters focusing on little
memory consumption. However, a common characteristic of
those pre-trained lightweight models is that their adaptation to
new applications is challenging when labeled data are scarce.
In this scenario, Feature Learning from Image Markers (FLIM)
is a promising research direction [9] since it provides new
ways to build convolutional encoders from scratch without
backpropagation, requiring minimum human effort in data
annotation.
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Fig. 1. Example with parasite eggs: (a) A training image with foreground
(red) and background (white) markers; (b) Background activation from a
background kernel; (c) Foreground activation from a foreground kernel; (d)
Saliency map; (e) A test image with a red arrow indicating object location; (f)
Foreground activation from a background kernel; (g) Background activation
from a foreground kernel; and (h) Saliency map.

In FLIM, the user selects a few representative images (e.g.,
five) and draws markers (scribbles or circles) on discriminative
regions of them. All convolutional layers’ filters (kernels) are
estimated by clustering from patches centered at marker pixels.
The kernels are derived from the clusters’ centers with the
exact shape of the patches. FLIM-based lightweight networks
have shown promising results in object delineation [9], image
classification [10], instance segmentation [11], and object
detection [12], surpassing the same architecture trained from
scratch and deep models in some applications [9], [10], [12].

A FLIM encoder extracts feature maps for SOD, and
subsequently, those features are combined to produce a final
object saliency map. Most works are concerned with the first
part of this pipeline, producing FLIM encoders but still relying
on backpropagation to train a decoder [11] or a classifier [10].
For SOD, recent work [12] has introduced the concept of
an adaptive decoder – a point-wise convolution with weights
estimated on the fly for each input image followed by ReLU
activation. In this case, the entire network does not require
backpropagation. Such FLIM-based SOD networks can be
thousands of times smaller than deep models, being efficiently
executed on CPU.

By drawing background (white) and foreground (red) mark-



ers (Figure 1a), a FLIM encoder can estimate kernels that
produce feature maps with background (Figure 1b) and fore-
ground (Figure 1c) activation channels. An adaptive decoder
should assign positive weights to foreground channels and neg-
ative weights to background ones. Its point-wise convolution
(a weighted average of the channels) followed by ReLU can
eliminate false positive activations in foreground channels by
subtracting background activations when generating an object
saliency map (Figure 1d). However, in test images (Figure 1e),
some background kernels may create foreground activations
(Figure 1f) and vice versa (Figure 1g). Hence, an adaptive
decoder cannot rely only on labeled markers. It should be able
to differentiate between foreground and background activation
channels for each input image when generating its object
saliency map (Figure 1h).

In this work, we describe four new adaptive decoders: (i)
a slight modification of the adaptive decoder in [13], named
here the tri-state decoder, (ii) labeled markers, (iii) channel
attention, and (iv) a combination of (i) and (ii). The tri-state
decoder in (i) identifies three types of activation channels,
assigning weight −1 for background, +1 for foreground, and
0 for undefined channels. In (ii), it is assumed that foreground
(background) channels in a feature map are created by kernels
derived from markers with the foreground (background) label.
Channel weights are +1 for the foreground and −1 for the
background channels. From Figure 1, we know this assump-
tion may not always hold. However, it is worth evaluating. In
(iii), channel attention is estimated to be higher for foreground
than for background channels. Positive and negative weights
are assigned to the feature map’s channels by subtracting
channel attention values from their mean value. In (iv), we use
the channel weight from (i) if the weight from (ii) indicates a
foreground channel; otherwise, set it to 0.

Section II discusses FLIM and the adaptive decoder. Sec-
tion III presents the four adaptive decoders. Section IV pro-
vides qualitative and quantitative analyses. Finally, Section V
presents final considerations and future works.

II. THEORECTICAL BACKGROUND

Figure 2 gives an overview of the overall FLIM pipeline,
in which features are extracted by the FLIM-based encoder,
and the feature maps are combined by a decoder to generate
a saliency map. This section presents basic definitions while
explaining a FLIM-based SOD network.

A. Images and patches

Let I be an image with m channels and domain DI ⊂ Z2 of
size w×h pixels, such that I⃗(p) = (I1(p), I2(p), . . . , Im(p)) ∈
Rm assigns m features to every pixel p = (xp, yp) ∈ DI . Let
A(p) be a set of k×k adjacent pixels q = (xq, yq) ∈ DI , xq−
xp ∈ [−dk

2 , d
k
2 ] and yq − yp ∈ [−dk

2 , d
k
2 ], within a squared

region of size dk×dk centered at p with dilation factor d ≥ 1.
A patch P⃗ (p) ∈ Rk×k×m results from the concatenation of
feature vectors I⃗(q) of all q ∈ A(p).

Fig. 2. FLIM-based network with an adaptive decoder for parasite egg (arrow)
detection in optical microscopy images.

B. FLIM encoder

For the sake of simplicity, a FLIM encoder may be a
sequence of convolutional layers, with each convolutional
layer containing a sequence of four operations: marker-
based normalization, convolution, ReLU activation, and max-
pooling. These operations are well known, but marker-based
normalization, convolution, and ReLU provide an important
geometrical interpretation for understanding kernel estimation.

Let Il−1 be the input of a convolutional layer l, l =
1, 2, . . . , L, for an encoder with L layers. Let Mi ⊂ DI be a
set of pixels from a given image marker and M = ∪N

i=1Mi

be the union of pixels from N markers drawn by the user in
multiple selected images. Patches P⃗ (p) are extracted from all
marker pixels p ∈ M forming a patch dataset P = ∪N

i=1Pi,
where Pi is the subset of patches from marker pixels p ∈ Mi.

We apply z−score normalization to the patches in M and
use its parameters to normalize patches from any image Il−1.
This operation centralizes the patches around the origin of
Rk×k×m and corrects distortions among different features,
dismissing the need for estimating bias. A c-means clustering
is applied to each normalized patch dataset Pi and one kernel
K⃗ ∈ Rk×k×m, with norm ∥K⃗∥ = 1, is derived from the
center of each cluster. If the kernels total from P is higher
than the desired number of kernels for layer l, the number
of kernels can be reduced by principal component analysis
(i.e., the kernels are eigenvectors) or by a clustering method
(i.e., the kernels are cluster representatives) . Otherwise, each
marker contributes for layer l with the same number c of
kernels per marker.

The convolution between image Il−1 and a kernel K⃗j , j ∈
[1,m′], of m′ desired kernels for layer l results a channel Jj
in the output image Jl with domain DJ = DI and J⃗(p) =
(J1(p), J2(p), . . . , Jm′(p)) ∈ Rm′

, such that

Jj(p) = ⟨P⃗ (p), K⃗j⟩, (1)

j = 1, 2, . . . ,m′ and to every pixel p ∈ DI . Hence, convo-
lution computes a distance (inner product) between P⃗ (p) and
a hyperplane at the origin of Rk×k×m, whose unit normal
vector is K⃗j . Patches that fall on the positive side of the
hyperplane cause activated values Jj(p) > 0 after ReLU, while
those on the negative side generate Jj(p) = 0. Activation
Jj(p) indicates a “similarity” between the patch P⃗ (p) and the
visual pattern of K⃗j . By drawing markers on discriminative
regions, each kernel represents a visual pattern inside or
outside the object. After convolution and ReLU, image regions
with similar patches to K⃗j should be activated with zeroes



elsewhere in channel Ji. After max-pooling, the output image
Il should contain m′ channels with object or background
activations.

The user provides an encoder architecture with patch sizes,
number of kernels per marker, kernel-dilation factors, number
of desired kernels, pooling adjacency, strides, and pooling type
for each layer l. The above procedure is repeated for each layer
l = 1, 2, . . . , L to estimate kernels from the output Il−1 of the
previous layer using set M of marker pixels mapped to its
domain. We are not using marker labels for kernel estimation,
but this is an option [10]. Deeper the layer, the clusters are
expected to be farther from the origin of Rk×k×m, enhancing
the filtering effect with fewer activations from nearby clusters.
After that, the encoder is ready to extract a feature map IL
for any input image I0 from the validation/test set.

C. Adaptive decoder

A simple decoder is a point-wise convolution between a fea-
ture map IL and a point-wise kernel α⃗ = (α1, α2, . . . , αm′) ∈
R1×1×m′

followed by ReLU activation Φ. The operation
creates a saliency map S with image domain DS and values
S(p) ∈ R for each p ∈ DS , such that

S(p) = Φ
(
⟨I⃗L(p), α⃗⟩

)
= Φ

 m′∑
i=1

αiI
L
i (p)

 . (2)

One may upsample DS or DIL to the size of DI0 , whenever
strides are used. In this work, DS = DIL = DI0 .

According to the example illustrated in Figure 1, fixing
the weights αi by optimization is not an alternative since the
same kernel may create background or foreground channels ILi
depending on the input image. One may still want to discard a
channel with an undefined label. Next, we present the proposed
four adaptive decoders.

III. ADAPTIVE DECODERS FOR SOD NETWORKS

This section presents four adaptive decoders for FLIM-
based SOD networks. They are all implemented by Equa-
tion 2, with their difference relying on the definition of
α⃗ = (α1, α2, . . . , αm′). Figure. 3 illustrates the results of the
four adaptive decoders.

A. Tri-state adaptive decoder

Let µIL
i

be the mean activation of channel ILi , τ be the
Otsu threshold of the distribution {µIL

1
, µIL

2
, . . . , µIL

m′
}, and

σ be the standard deviation of that distribution. The number
of pixels above the Otsu threshold of channel ILi divided
by DI defines another threshold ti. The tri-state adaptive
decoder is a slight modification of the one presented in [13],
which defines three channel classes: background (αi = −1),
foreground (αi = +1), and undefined (αi = 0). Unlikely
of [13], we incorporate a threshold ti for removing undesired
regions. The values αi are then defined as

αi =


−1, if µIL

i
≥ τ + σ and ti > 0.2,

+1, if µIL
i
≤ τ − σ and ti < 0.1,

0, otherwise.

(3)

Fig. 3. Adaptive decoder overview(in red). Given the feature maps
of each input image, the adaptive decoder computes a kernel α⃗ =
(α1, α2, · · · , αm′ ) ∈ R1×1×m′

used in a point-wise convolution followed
by a ReLU. Pos-processings are done after the decoding process.

B. Labeled-marker-based adaptive decoder

A labeled-marker-based adaptive decoder assumes that a
kernel from a labeled marker will create a channel with the
same label. Hence, we can assume that λ(ILi ) ∈ {−1,+1}
indicates background (−1) or foreground (+1) channel and
define the weight vector of a labeled-marker-based decoder as
α⃗lm = (αlm

1 , αlm
2 , . . . , αlm

m′), where αlm
i = λ(ILi ), i ∈ [1,m′].

C. Attention-based adaptive decoder

In [14], the authors propose a way to compute channel
attention without trainable parameters. The method highlights
the image regions that mostly contribute to the network’s final
output. In this work, we use a slight modification of this
method. Consider Xi and Yi the results of max-pooling and
average pooling of each channel ILi , i ∈ [1,m′], respectively.
The values in Xi and Yi are linearly normalized within
[0, 1]. A spatial attention channel ai is defined by the linear
normalization of Xi + Yi within [0, 1]. Let a⃗i ∈ Rw×h be the
vectorization of channel ai and b⃗i ∈ Rw×h be the vectorization
of channel ILi . Each channel’s importance ci is computed by

ci =
⟨⃗ai, b⃗i⟩
∥a⃗i∥∥⃗bi∥

. (4)

Let µc and σc be the mean and standard deviation of the dis-
tribution {c1, c2, . . . , cm′}. The weight vector of an attention-
based decoder can be defined as α⃗at = (αat

1 , αat
2 , . . . , αat

m′),
where

αat
i =


1, if ci < µc − σc

2 ,
−1, if ci > µc +

σc

2

0, otherwise
(5)



for i ∈ [1,m′].

D. Hybrid adaptive decoder

This decoder combines the tri-state adaptive decoder with
the labeled-marker-based one. Let α⃗ts = (αts

1 , αts
2 , . . . , αts

m′)
be the weight vector created by the tri-state decoder for some
input image. We define

αhb
i =

{
0, if αlm

i = −1,
αts
i , otherwise,

(6)

for i ∈ [1,m′], as the weights in the vector α⃗hb =
(αhb

1 , αhb
2 , . . . , αhb

m′) of the hybrid adaptive decoder. Thus,
we consider only the weights of the tri-state decoder if a
kernel from a background-labeled marker did not create the
corresponding channel. This decoder was proposed to correct
the cases where kernels generated by background-labeled
markers activate for the objects.

IV. EXPERIMENTS, RESULTS, AND DISCUSSION

This section presents the experiments for salient object
detection. For a fair comparison, we have used the same FLIM
encoder (architecture and parameters) for the proposed adap-
tive decoders and the adaptive decoder without the threshold.
Moreover, we also compare the proposed decoder to the state-
of-the-art of lightweight SOD models.

A. Datasets

Two datasets were used: Parasites, a private dataset with
eggs of Schistosoma Mansoni in optical microscopy images,
and Tumors, a public dataset with brain tumors from the Brain
Tumor Segmentation Challenge (BraTS) 2021 [15]–[17]. The
parasites dataset contains 1219 images of 400×400 pixels and
three channels, from which 853 were divided into three splits
of 5 images for training and 848 for validation. The remaining
366 were held for testing. The tumor dataset contains 3743
grayscale images of 240×240 pixels, and 1113 were held for
testing. The remaining 2630 images were divided into three
splits of 5 for training and 2625 for validation. The parasites
dataset was converted from RGB to the normalized CIELAB
color space for the network’s training. The grayscale images
from the BraTS dataset were also converted to CIELAB by
applying a color table from blue to red and subsequently
converting them to CIELAB.

B. FLIM encoder architectures

Figure 4 presents the FLIM encoder architectures for Par-
asites (above) and Tumors (below). These architectures were
empirically defined by observing the results in the validation
set, which leads to differences in the number of kernels per
layer (increasing in one and decreasing in another). We use
stride (s = 1), and the dilation factor d was used only
in the parasite encoder’s last convolutional layer (d = 7).
These encoders create feature maps with eight and sixty-four
activation channels for Parasites and Tumors.

Fig. 4. FLIM encoder architectures for parasite egg (above) and brain tumor
(below) detection. For convolution, the numbers indicate k × k ×m, d, and
the number of filters per layer is indicated below. For pooling the numbers
indicate k × k, s, where s is the stride in both directions.

C. Compared methods

The FLIM networks for comparison used the same en-
coder with each adaptive decoder: original adaptive de-
coder FLIMoad [13], tri-state (FLIMts), labeled-marker-based
(FLIMlm), attention-based (FLIMat), and hybrid (FLIMhb).
For reference, we include a comparison with three pre-trained
lightweight models, fine-tunned with the training set: SAM-
Net [4], MSCNet [7], and MEANet [8]. We also compare
the methods with a U-shaped network (based on [18]), using
its encoder initialized by FLIM (U-NetFLIM). The encoder’s
weights are frozen during the decoder’s training. The FLIM
encoder for parasites and tumors has three layers with 16, 32,
and 64 kernels. For parasites, the kernels have size 5× 5×m
and max-pooling uses size 3×3 with stride s = 2 in all layers.
For tumors, the kernels have size 3× 3×m and max-pooling
uses size 3×3 with stride s = 2 in all layers. The decoder uses
skip connections from all layers and uses interpolation (rather
than transpose convolution) for the upsampling of the feature
maps, which further passes through convolutions with kernels
of size 3× 3×m followed by ReLU as in the original U-Net.
This method was trained for 100 epochs, using as loss function
the average between Dice loss and Binary cross-entropy; the
learning rate was decreased linearly from 1e-2 to 1e-5 with
the Adam optimizer.

D. Evaluation metrics

We used three popular metrics to evaluate the models:
Weighted F measure [19], Mean Absolute Error (MAE),
Enhanced-aligment Measure (E-M) [20] and also Dice.

E. Experimental setup

The FLIM encoders were trained as described in Section II
using only the five training images. With three splits, the model
with the best validation result was used for testing. Similarly,
each pre-trained lightweight network was fine-tuned on the
three training sets, and the best model was used for testing.

For parasites, we applied grid search to determine the
minimum and maximum sizes of the objects. This search
used the validation set and possible bounds defined as
lower bound = {1000, 2000, 3000} and upper bound =



{10000, 15000, 20000} pixels. Grid search considered the av-
erage of the above metrics, except MAE, in the validation
sets to find the best parameters. Post-processing eliminated
components out of the best size range from the results of all
FLIM and lightweight models.

F. Quantitative results and discussion

Table I shows the mean results of all models in the
validation sets for both datasets. Note that the FLIM mod-
els have from 56 to 251 times fewer parameters than the
lightweight models and require considerably fewer GFLOPs
than MSCNet and MEANet. Only SAMNet is the most
efficient model. SAMNet obtained the best E-M for Parasites,
while MEANet was the best model according to Fω

β and DICE,
and U-NetFLIM was the one with the best MAE. The parasite
dataset exemplifies a case in which the adaptation of a pre-
trained model works. Since the FLIM models are trained from
scratch with only five images, these results also indicate that
there are more suitable strategies than selecting a few training
images randomly. We agree with the authors in [12] that more
user involvement in selecting images, markers, and network
architecture can improve the effectiveness of the FLIM mod-
els. None of the pre-trained models could adapt to Tumors,
even having converted them to color images (the results with
the gray-scale images were worse). U-NetFLIM was the only
model trained with backpropagation (at least its decoder)
which achieves satisfactory results on this dataset. In this case,
FLIMhb presented the best result for all metrics except MAE,
which was better with FLIMat. Note that for tumors, some
models present higher MAE values. This behavior stems from
some of the splits, the model tends to generate saliencies of the
whole brain, as in Figure 5 (d), which shows that the model
could not learn with the data.

Table II shows the results in the test set. Such results agree
with the average ones in the validation sets, demonstrating that
none of the models overfitted or underfitted. MEANet was still
the best model for Parasites for two metrics, except for MAE
and E-M, which were better with U-NetFLIM and SAMNet. The
FLIM models presented the best results for the tumor dataset,
being FLIMhb the best one for the same three metrics, except
MAE, which was better with FLIMat.

Among the adaptive decoders, the tri-state one performed
best in the parasite dataset, except for E-M, which was better
with the hybrid decoder. Ou modification on this decoder also
proves to be beneficial, improving the results in both datasets.
The hybrid decoder was the best among the proposed ones in
the tumor dataset. Its Fω

β was from 1.05 to 5.34 times higher,
MAE was from 0.04 to 0.31 times lower, E-M was from
1.01 to 1.87 times higher, and DICE was from 1.17 to 5.05
times higher than the values obtained by the three lightweight
models. For the parasite dataset, improving the FLIM network
may also improve results with the hybrid decoder.

G. Qualitative results and discussion

Figure 5 presents the saliency maps generated by all models
in both datasets. The first row presents the qualitative results

TABLE I
MEAN RESULTS IN THE VALIDATION SETS. ARROWS ↑ AND ↓ DENOTE

HIGHER AND LOWER VALUES ARE BETTER, RESPECTIVELY.

Parasites #Params ↓ GFLOPs ↓ Fω
β ↑ MAE ↓ E-M ↑ DICE ↑

SAMNet [4] 1.33(M) 0.5 0.520±0.086 5.105±1.484 0.711±0.058 0.524±0.087
MSCNet [7] 3.26(M) 9.62 0.712±0.075 2.050±0.548 0.584±0.048 0.737±0.069
MEANet [8] 3.27(M) 5.87 0.774±0.010 1.688±0.257 0.589±0.013 0.788±0.010
U-NetFLIM 64.91(K) 3.27 0.731±0.037 1.128±0.423 0.589±0.057 0.743±0.037
FLIMoad 13.04(K) 0.65 0.544±0.079 4.701±1.900 0.664±0.029 0.601±0.081
FLIMat 13.04(K) 0.65 0.549±0.074 3.984±1.127 0.609±0.005 0.593±0.076
FLIMlm 13.04(K) 0.65 0.638±0.054 2.554±1.428 0.593±0.070 0.687±0.046
FLIMts 13.04(K) 0.65 0.589±0.073 2.446±0.589 0.642±0.038 0.634±0.075
FLIMhb 13.04(K) 0.65 0.596±0.061 2.578±0.570 0.637±0.047 0.645±0.063
Tumors #Param ↓ GFLOPs↓ Fω

β ↑ MAE ↓ E-M ↑ DICE ↑
SAMNet 1.33(M) 0.5 0.155±0.011 9.569±1.580 0.762±0.020 0.195±0.008
MSCNet 3.26(M) 9.62 0.146±0.001 39.342±1.122 0.452±0.007 0.273±0.001
MEANet 3.27(M) 5.87 0.119±0.011 6.602±2.150 0.739±0.034 0.129±0.014
U-NetFLIM 64.91(K) 0.89 0.560±0.024 2.777±1.704 0.787±0.046 0.572±0.025
FLIMoad 23.58(K) 1.18 0.407±0.070 13.999±3.652 0.687±0.059 0.462±0.053
FLIMat 23.58(K) 1.18 0.423±0.062 2.381±1.849 0.746±0.031 0.476±0.040
FLIMlm 23.58(K) 1.18 0.334±0.216 18.695±25.497 0.627±0.181 0.384±0.219
FLIMts 23.58(K) 1.18 0.483±0.064 2.867±1.776 0.742±0.042 0.523±0.075
FLIMhb 23.58(K) 1.18 0.562±0.052 2.725±1.642 0.819±0.012 0.634±0.048

TABLE II
RESULTS IN THE TEST SET. ARROWS ↑ AND ↓ DENOTE HIGHER AND

LOWER VALUES ARE BETTER, RESPECTIVELY.

Parasites #Params ↓ GFLOPs ↓ Fω
β ↑ MAE ↓ E-M ↑ DICE ↑

SAMNet [4] 1.33(M) 0.5 0.602 5.303 0.737 0.614
MSCNet [7] 3.26(M) 9.62 0.804 1.242 0.485 0.825
MEANet [8] 3.27(M) 5.87 0.824 1.430 0.553 0.834
U-NetFLIM 64.91(K) 3.27 0.799 0.637 0.484 0.809
FLIMoad 13.04(K) 1.18 0.681 2.048 0.575 0.731
FLIMat 13.04(K) 0.65 0.664 2.198 0.584 0.707
FLIMlm 13.04(K) 0.65 0.704 1.653 0.536 0.745
FLIMts 13.04(K) 0.65 0.711 1.331 0.536 0.749
FLIMhb 13.04(K) 0.65 0.677 1.914 0.588 0.725
Tumors #Param ↓ GFLOPs ↓ Fω

β ↑ MAE ↓ E-M ↑ DICE ↑
SAMNet 1.33(M) 0.5 0.161 8.180 0.787 0.199
MSCNet 3.26(M) 9.62 0.150 36.619 0.454 0.279
MEANet 3.27(M) 5.87 0.116 5.982 0.727 0.137
U-NetFLIM 64.91(K) 0.89 0.575 5.161 0.843 0.589
FLIMoad 23.58(K) 1.18 0.475 9.743 0.741 0.512
FLIMat 23.58(K) 1.18 0.550 0.549 0.772 0.595
FLIMlm 23.58(K) 1.18 0.528 1.207 0.829 0.603
FLIMts 23.58(K) 1.18 0.558 2.005 0.805 0.621
FLIMhb 23.58(K) 1.18 0.620 1.623 0.852 0.692

for the parasite dataset, while the second row presents the
qualitative results for the tumor dataset. It can be seen that the
lightweight models (Figures 5(c)- 5(e)) generated better results
for Parasites, even in cases where impurities surround the egg.
The FLIM models (Figures 5(g)- 5(j)), on the other hand,
present better results for Tumors. The U-NetFLIM presents a
good parasite saliency(Figure 5(f)), but that is not as good as
the lightweight models, which explains the lower metrics. For
Tumors(Figure 5(f)), the model presents saliencies better than
the lightweights but has saliencies bigger than the actual size
of the tumor, which explains the high MAE of this model.

The lightweight models could have generated better saliency
maps in the tumor dataset. MSCNet presents the worst results
among these models, generating saliency maps with the whole
brain. FLIM decoders, in contrast, generate better saliency
maps, managing to detect the tumor with the right size and
position. The hybrid decoder provides the best qualitative
results, creating a better saliency map that fits the tumor area.
The tri-state decoder provides a crisp border in the saliency
map but misses parts of the object. Indeed, the lightweight
models adopt a loss that improve object delineation, while the



(a) Original image(b) Ground truth (c) SAMNet (d) MSCNet (e) MEANet (f) U-NetFLIM (g) FLIMat (h) FLIMlm (i) FLIMts (j) FLIMhb

Fig. 5. Qualitative results that show the FLIM networks can outperform the others. (a) Images from Parasites and BraTS. (b) Ground truth. Saliency map by
(c) SAMNet, (d) MSCNet, (e) MEANet, and FLIM with the (f) U-NetFLIM, (g) attention-based, (h) labeled-marker-based, (i) tri-state, and (j) hybrid adaptive
decoders.

FLIM networks are not exploring object delineation methods.
Their qualitative and quantitative results can improve in both
datasets by using the saliency maps to estimate seeds for
graph-based object delineation.

V. CONCLUSION

We present and evaluate adaptive decoders for FLIM-based
networks by comparing them with lightweight SOD methods.
The best adaptive decoder combines the tri-state with the
labeled-marker-based decoder. Its competitive results confirm
that adaptive decoding each image is a promising strategy for
SOD in FLIM networks. The results of the U-shaped network
also indicate that the adaptive decoders should explore feature
maps from all layers in a future work.

The results of the FLIM networks depend heavily on select-
ing good training images. This work used a 3-fold split created
by hand and methods for more representative image selection
should be evaluated in the future. The encoder’s architecture is
another point for improvement. It was built empirically since
our focus was to investigate the decoding process only.
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