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Abstract—Skin cancer is the most common type of cancer in
the world, accounting for approximately 30% of all diagnosed
tumors. Early diagnosis reduces mortality rates and prevents
disfiguring effects in different body regions. In recent years,
machine learning techniques, particularly deep learning, have
shown promising results in this task, presenting studies that have
demonstrated that combining a patient’s clinical information with
images of the lesion is crucial for improving the classification
of skin lesions. Despite that, meaningful use of clinical infor-
mation with multiple images is mandatory, requiring further
investigation. Thus, this project aims to contribute to developing
multimodal machine learning-based models to cope with the skin
lesion classification task employing a lightweight transformer
model. As a main hypothesis, models can take multiple images
from different sources as input, along with clinical information
from the patient’s history, leading to a more reliable diagnosis.
Our model deals with the not-trivial task of combining images
and clinical information (from anamneses) concerning the skin
lesions in a lightweight transformer architecture that does not
demand high computation resources but still presents competitive
classification results.

Index Terms—Deep learning, Skin Lesion Detection, Trans-
formers, Lightweight Architectures.

I. INTRODUCTION

Skin cancer is the most common dysplasia in the world.
The World’s Health Organization (WHO) estimates that skin
cancer accounts for approximately 30% of all types of cancer
diagnosed worldwide [1]. The National Cancer Institute [2]
estimates that for the period 2023-2025 there will be 220
thousand new cases of skin cancer, a number that makes it the
most common type of cancer in the country, with 31.2% of all
types [2]. Even being the most common one, the skin cancer’s
mortality rate is low, around 1% if early diagnosed [2]. Late
diagnosis is the main factor contributing to the rise in this
mortality rate. However, even if it does not lead to death,
the tumor can leave significant mutilations on the skin – for
example, removing part of the nose – if the lesion does not
receive appropriate prognosis and treatment.

For clinical diagnosis of skin cancer, dermatologists perform
a visual examination of the potential lesion and consider the

patient’s medical history, relying on their expertise to make
an accurate assessment. This process is challenging and needs
specialized training and experience in dermoscopy. Kittler
et al. [3] and Sinz et al. [4] have shown that dermoscopy
greatly enhances diagnostic accuracy, although its effective-
ness is heavily influenced by the dermatologist’s level of
experience. Furthermore, the high workload of professionals
and human factors such as fatigue, stress, and emotional issues
can momentarily harm diagnostic capacity, especially when
tracking early-staged anomalies. The situation becomes even
more serious in peripheral and rural regions due to limited
access to experts and specialized equipment. Thus, taking into
account the high incidence rate of skin cancer and the lack of
required resources, especially in rural areas [5] and emerging
countries [6], the development of Computer Aided Diagnosis
(CAD) systems for skin cancer detection becomes a highly
desirable technology to increase effectiveness and speed up
clinical diagnosis in healthcare systems.

In recent years, the use of CAD systems to assist in skin
lesion analysis has been intensely investigated [7]–[9]. The
most successfully employed strategy, in terms of performance,
has been the use of machine learning with deep learning [10]–
[12]. Despite the promising results in the area, several chal-
lenges need to be overcome to enable the implementation
of such technology in a safer and more satisfactory manner.
Among the challenges, the following stand out: uncertainty
in the data, biases, datasets with a low number of samples,
low generalization of models, and low explainability of pre-
dictions [12]. To diminish some of these problems, it was
proposed to use images and clinical data from anamnesis to
classify skin cancer [13]–[15].

Most works cited earlier deal with skin lesion identification
using deep architectures, which are usually costly. A few
works proposed lightweight architectures in the context of neo-
plasia identification. Hou et al. [16] introduced an approach for
early neoplasia identification in Barrett’s esophagus-diagnosed
samples using attentive hierarchical aggregation and self-
distillation. Their work employs a SE-ResNet50 as the back-



bone, a variation of the well-known ResNet50 with squeeze-
and-excitation modules. The authors reported promising re-
sults concerning their method’s efficiency.

In the skin cancer detection context, Tuncer et al. [17]
proposed a lightweight model based on Convolution Neural
Networks (CNN) architectures to classify dermatoscopical
skin lesion images between benign and malignant. Something
similar has been proposed and conducted by Li et al. [18],
where a lightweight CNN-based model is proposed to deal
with the classification of 8 different skin lesions based on
dermatoscopic databases. As one can observe, most current
investigations focused on using images in their lightweight
approaches, not combining their descriptions with any clinical
information and mostly focusing on CNN-based variations.

It is well-known within the ML field that combining features
extracted from images with other features obtained from differ-
ent sources describes a common problem, i.e., the image is the
main source of information and the extra data – hereby defined
as metadata – provides supplementary information about the
problem. But the question remains: how to provide such a
combination? Kharazmi et al. [19] proposed a feature fusion
system based on concatenation and Sparse Autoencoder (SAE)
to detect Basal Cell Carcinoma in skin tissues, and Sierra et
al. [20] also used concatenation to combine image features,
extracted using two CNN architectures, with textual metadata
to predict gender. Recently, Pacheco and Krohling [15] con-
ducted a similar work to predict six different skin lesions by
imposing transformations to image features calculated within
CNN models based on the metadata.

Hence, this work proposes LiwTERM, a lightweight neural
architecture that combines features learned by (i) a Vision
Transformer (ViT) [21] and (ii) a language-processing Tok-
enizer into a shallow and fully connected model to distin-
guish among six different skin lesions from clinical images.
We report competitive results with high efficiency and low
computational cost. To the best of our knowledge, this is the
first time transformers have been employed to combine images
and text for skin cancer description and generalization.

The remainder of this paper is organized as follows. Sec-
tions II and III introduce the proposed approach and the
methodology, respectively. Section IV presents the experi-
ments, and Section V discusses the outcomes. Last but not
least, Section VI states conclusions and future works.

II. PROPOSED APPROACH - LIWTERM

This work proposes a lightweight model that combines
features from pre-trained ViTs and text-based tokenizers with-
out incurring a high computational cost. ViT models, a gen-
eralization of Transformers for image-based tasks such as
identification, description, and classification, are robust tools
for solving image-driven problems. The shortcomings of such
models concern the fine-tuning process for some specific
tasks, which is harmed by the high training computational
requirements. Conversely, the inference process of pre-trained
ViT models does not demand the same computational cost,
providing a powerful image representation.

With the current advances in Generative Pre-trained Trans-
formers (GPTs), the text-processing field has shown account-
able progress in the past few years, with models that can
properly encode-decode text and represent intrinsic features
such as context and word positioning - very difficult tasks to
be accomplished. As the first Natural Language Processing
(NLP) step [22], the tokenization process copes with the
decomposition of a sentence to be further consumed as tokens.
Tokens are the basic description units of text in the NLP
field, accompanied by positioning and delimiters to compose
the word description [22], bridging raw text and context for
language models (LMs) [23]. Some current LM, also known as
a sequence-to-sequence models, use the tokenization process
in their generalization and are built with transformer encoder-
decoder designs, with bidirectional encoders (BERT-like [24])
and autoregressive (GPT-like) decoders, aiming to receive
sentences and give as output, also sentences. At the halfway of
the processing, text features, or embeddings, can be obtained
to represent the original input sentence as a high-encoded
information.

The fine-tuning process for transformer-based models in
general, including the ones that deal with text or images (ViT
specifically), demands a huge amount of samples to perform
well. However, considering the current scenario for this kind
of architecture, already pre-trained checkpoints can provide
powerful feature inference for a wide range of contexts,
benefiting the description for other simpler model training.
This enables simpler setups to perform training and inference
processes using the feature generalization from transformers
and using a reduced amount of available samples for such a
task, something recurrent in the medical field.

Also, using transformer-based architectures to process both
image and text may lead to the representation of two different
representations to a third similar (if not equal) domain. The
ViT representation proposes an image serialization that con-
siders patch positioning, tokenization, and linear projections,
which can be easily compared to the tokenization process
performed by several NLP approaches. Due to this similarity
in representation, the combination of image and text represen-
tations in a common environment can be designed, enabling
the use of both feature descriptions to complement each other.

Hence, we propose LiwTERM, a hybrid-and-shallow
transformer-based model in which image and text features
feed a fine-tuned encoder to distinguish between six skin
lesions and take advantage of both representation methods.
The embeddings of ViT and LM models are combined by
full connection transformations from the second last layer of
each architecture, feeding an encoder composed of four fully
connected layers accompanied by ReLU, batch normalization,
and dropout transformations, hereby named shallow light-
weight model (SLM). Finally, a SoftMax head defines the
classes for the final classification task. Notice that the fine-
tuning is performed only from the fully connected layer of
the ViT and tokenizer features, configuring a shallow training



Shallow Lightweight Model

Image Features Text Features

Batch Normalization
ReLU Activation

Dropout
Dense Layer  (5120 x 2048)

Batch Normalization
ReLU Activation

Dropout
Dense Layer  (2048 x 1024)

Batch Normalization
ReLU Activation

Dropout
Dense Layer  (1024 x 512)

Prediction

Input Image

Dense Layer
(ViT_dim x 4096)

Dense Layer
(CNN_dim x 1024)

ViT Model

Positional Embedding

N Multihead Attention

Positional Description

Feature Transformation Language Model

Position Embeddings

Token Type Embeddings

Output Normalization

Input Clinical Info

Batch Normalization
ReLU Activation

Dense Layer  (512 x number of classes)
SoftMax

Fig. 1: LiwTERM pipeline: the proposed model has two
sections: (i) the feature extraction (with no color) and (ii) the
shallow lightweight model section (with colors). The colored
section concerns the trainable part of the proposed method; fed
from the deep and complex ViT and tokenizer architectures,
this section is in charge of learning the proper weights to
provide the classification of skin lesions based on images and
clinical information.

phase. Figure 1 illustrates the LiwTERM pipeline 1.

III. METHODOLOGY

A. Datasets

The proposed method has been evaluated over two public
datasets named (i) PAD-UFES-20 [25] and (ii) ISIC 2019 [26].
The PAD-UFES-20 dataset is composed of clinical skin le-
sion images collected in the Espı́rito Santo State, in Brazil,
along with clinical information of each patient and lesion. In
total, 2.298 clinical images were collected from smartphone
devices, 21 patient clinical features – such as age, gen-
der, anatomical region, cancer history, skin prototype, family
background, among others – and six different skin lesions,
Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma
(SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK),
Melanoma (MEL), and Nevus (NEV). The ISIC 2019 is a
skin lesion dataset which comprises 25,331 public dermoscopy
images, three clinical features collected from anamneses, e.g.,
age, gender, and anatomical region, and eight skin lesions,

1The LiwTERM code repository is publicly available at https://github.com/
luisouza/liwterm/.

Melanoma (MEL), Melanocytic Nevus (NEV), Basal Cell
Carcinoma (BCC), Actinic Keratosis (AK), Benign Keratosis
(BKL), Dermatofibroma (DF), Vascular Lesion (VASC), and
Squamous Cell Carcinoma (SCC). Figures 2 and 3 illustrates
examples of PAD-UFES-20 and ISIC 2019 dataset classes,
respectively.

B. Evaluation Measures

We employed three well-known quantitative measures to
evaluate the proposed approach: Sensitivity (S), Specificity (P),
and Balanced Accuracy (BACC). The experimental setup also
comprises a statistical evaluation using Wilcoxon’s signed-
rank test [27] with a significance level of 5%.

C. Experimental Delineation

Three experimental approaches evaluate the robustness of
LiwTERM: (i) a 5-fold cross-validation using only the ViT
bottleneck for the feature inference, (ii) a 5-fold cross-
validation using only the text-tokenization bottleneck for the
feature inference, and (iii) a 5-fold cross-validation employing
the entire method, with feature generalization from both im-
ages and clinical information. Additionally, the baseline results
for each designed approach, i.e., (iv) the classification of
cancerous skin tissue only based on the pre-trained ViT archi-
tecture, and (v) the skin lesion classification based only on LM
with the correspondent checkpoint, both designs avoiding the
shallow lightweight training portion, were conducted for the
sake of comparison. All the experimental designs were trained
over 65 epochs with a batch size of 24. All five experimental
folds were constructed based on a class-stratification fashion,
balancing the amount of samples of each skin lesion class for
each fold.

As LiwTERM is based on pre-trained ViT and LM, for the
feature calculation step, we had their weights frozen, keeping
the configuration of the pre-trained states (“google/vit-large-
patch16-224” and “facebook/bart-base,” respectively, and both
from HuggingFace). The shallow lightweight model weights
(Figure 1 - color) have been started from scratch, with a
scheduling learning rate from 1e−3 to 1e−6. All parameters
were selected empirically based on multiple experiments.

D. Implementation Details

The experiments employed a computer with 16 GB RAM
and an NVIDIA RTX®3070 Graphics card of 8 GB VRAM.
The implementation used the Pytorch framework. It is essential
to highlight that the proposed model is designed to cope with
the drawback of high computational costs imposed by trans-
formers. As one can observe, a simple computer configuration
has been set for the experimental step, illustrating that our
model does not require high-end computer configurations. The
proposed model was assessed over GPU and CPU sets, with
the same performance outcomes (despite the longer training
time).
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Fig. 2: PAD-UFES-20 dataset samples.

(a) NEV (b) MEL (c) BCC (d) AK (e) BKL (f) DF (g) VASC (h) SCC

Fig. 3: ISIC 2019 dataset samples.

TABLE I: LiwTERM classification results using 5-fold valida-
tion protocol over the PAD-UFES-20 and ISIC 2019 datasets.
Bold lines mean the overall best-obtained outcome.

LiwTERM’s
Backbone Dataset Composition S P BACC

ViT
PAD-UFES-20 ViT+SLM 0.51± 0.02 0.68± 0.02 0.63± 0.02

baseline 0.44± 0.03 0.48± 0.06 0.46± 0.04

ISIC 2019 ViT+SLM 0.47± 0.06 0.55± 0.08 0.52± 0.02
baseline 0.42± 0.05 0.46± 0.07 0.44± 0.06

LM
PAD-UFES-20 LLM+SLM 0.61± 0.02 0.68± 0.03 0.65± 0.03

baseline 0.47± 0.05 0.56± 0.07 0.51± 0.06

ISIC 2019 LLM+SLM 0.57± 0.04 0.59± 0.03 0.57± 0.05
baseline 0.43± 0.07 0.50± 0.07 0.46± 0.06

ViT + LM PAD-UFES-20 ViT+LLM+SLM 0.69± 0.02 0.76± 0.02 0.74± 0.01
ISIC 2019 ViT+LLM+SLM 0.66± 0.02 0.77± 0.03 0.73± 0.03

IV. EXPERIMENTAL RESULTS

LiwTERM focuses on three main aspects: the correct clas-
sification of six skin lesions, the computational cost required
for the fine-tuning process (already presented in the last
section), and the time consumption for the model’s training
process. Table I presents the model classification results on
the PAD-UFES-20 and ISIC 2019 datasets for all the eval-
uated approaches, highlighting the impact of each selected
backbone generalization for the feature-extraction composition
performed for the features. For comparison purposes, Table I
also presents the baseline results of the evaluated backbones
proposed for LiwTERM model. Figures 4a and 4b illustrate
the overall confusion matrices of complete LiwTERM model
over PAD-UFES-20 and ISIC 2019 datasets, respectively.

V. DISCUSSION

A. LiwTERM’s Backbone Analysis

As one can observe in Table I, the obtained results clearly
highlight the efficiency of our method, where the feature-
encoded information provided by ViT and LM models could
complement each other and enhance the correct prediction
of skin lesions (Fig. 4). Using only the pre-trained ViT or
LM models for predicting the skin lesions is not enough
(baselines), so the fine-tuning must be conducted to make
such a classification feasible. The introduction of the trainable
shallow lightweight portion to the model could enhance the

prediction results, leading to the best ones when both ViT
and LM models work together for the feature generalization
of LiwTERM. Additionally, no statistical similarity was found
between the best results, i.e., the ones employing ViT and LM
features statistically outperformed all the other experimental
designs, including the baselines.

A benchmark evaluation of LiwTERM approaches was
conducted, focusing on memory usage. The baseline models,
using only ViT and LLM backbones, have approximately 60M
and 0.79M parameters, consuming around 200MB and 4MB
of memory, respectively. Adding the SLM portion increased
these to about 63M parameters and 260MB for ViT, and 1.45M
parameters and 15MB for LLM, showing that the additional
layers slightly impacted the original feature extraction. The
final LiwTERM model, which integrates both ViT and LLM
with the SLM module, has approximately 66M parameters and
uses 300MB of memory, with accuracy improvements detailed
in Table I.

We also compared the proposed approaches in terms of
training and inference time. For PAD-UFES-20, training times
were approximately 4.06h for ViT+SLM, 3.89h for baseline
ViT, 1.87h for LLM+SLM, 1.59h for baseline LLM, and
5.15h for the full LiwTERM model. For ISIC19, the times
were 6.10h for ViT+SLM, 5.75h for baseline ViT, 2.17h
for LLM+SLM, 2.00h for baseline LLM, and 6.34h for Li-
wTERM. Inference times for all approaches are quite small,
ranging between 10−4sec and 10−6sec per sample. The SLM
module adds minimal overhead to ViT and LLM models
in terms of parameters, memory, or training/inference times,
making it feasible to use even with CPU configurations –
though GPUs are preferable for reducing training time.

Table II presents a comparison between our method and the
ones reported by Pacheco and Krohling [15], which employed
the same evaluation protocol as described in this work. As one
can observe, our method presents competitive performance to
the CNN-based approaches. The Concatenation, Metablock,
and MetaNet methods process the textual information using
one-hot encoding [15]. Although it is a simple and efficient ap-
proach, it fails, for example, to handle out-of-vocabulary words
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Fig. 4: Overall confusion matrices (original labels vs. predicted labels) for (a) complete LiwTERM design on PAD-UFES-20
dataset, and (b) complete LiwTERM design on ISIC 2019 dataset.

TABLE II: Comparison of LiwTERM with state-of-the-art
works. Statistical similarity concerning PAD-UFES-20 dataset
is presented in bold, while statistical similarity found for
ISIC19 dataset among the models is underlined.

Dataset Model Design BACC

PAD-UFES-20

LiwTERM Lightweight Transformer-based 0.74 ± 0.01
[15] CNNs 0.65± 0.02
[15] CNNs + Concatenation 0.76 ± 0.01
[15] CNNs + MetaBlock 0.77 ± 0.02
[15] CNNs + MetaNet 0.75± 0.03

ISIC 2019

LIWTERM Lightweight Transformer-based 0.73± 0.03
[15] CNNs 0.75± 0.04
[15] CNNs + Concatenation 0.77± 0.02
[15] CNNs + MetaBlock 0.77± 0.01
[15] CNNs + MetaNet 0.76± 0.01

or/and missing words, which are common issues in medical
anamnesis. Our method, on the other hand, uses a transformer-
based architecture to process the textual information, which
is much more robust to these issues. We also carried out a
statistical analysis to compare the methods, and the results
show that our method is statistically equivalent to the CNN-
based approaches in terms of balanced accuracy (as one can
observe in Table II). It is important to note that these similar
results are achieved using the same amount of data, which is
relevant for a transformer-based architecture, as it is known to
be data-hungrier than CNN-based architectures.

B. LiwTERM Strengths and Limitations

We propose a lightweight training model that combines
two pre-trained deep backbones (ViT and LM architectures)
with a shallow, trainable neural block called LiwTERM. Our
approach addresses the challenge of limited resources for train-
ing deep architectures. Unlike traditional methods, LiwTERM
requires less computational power since it only trains the
final embedding calculations. Additionally, by focusing on the
feature description layers and the shallow lightweight block,
LiwTERM delivers competitive results even with a reduced
amount of training data.

Using two backbones significantly enhances the dimension-
ality of skin lesion descriptions by combining features from
different domains (images and text). Data availability is a key
challenge in medical applications, especially with sensitive
data requiring legal permissions. LiwTERM leverages deep
representations without needing to fine-tune bottleneck mod-
els, yet still achieves competitive accuracy. The model can
process images alone, clinical data alone, both together, or
a combination of an image and partial anamnesis, making it
adaptable to scenarios where complete clinical information is
not available.

Our method has limitations, notably the reliance on pre-
trained ViT and LM models. While we advocate for the
lightweight approach, we acknowledge the need for prior
computational resources to create the checkpoints used in
LiwTERM feature generalization. Our goal is to leverage
existing resources to optimize lightweight performance.

Also, we also recognize a limitation in the inference process.
Although LiwTERM reduces training requirements when com-
pared to the baseline methods, it still depends on ViT and LM
feature extraction for final skin lesion predictions. This means
that while our model offers clear training advantages, it does
not lessen the computational load during testing. However,
as previously noted, training costs are significantly higher
than those of a single inference, which still justifies using
LiwTERM.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed LiwTERM, a lightweight training
model that combines two pre-trained deep backbones (ViT
and LM architectures) with a shallow, trainable neural block.
Our approach addresses the challenge of limited resources
for training deep architectures, requiring less computational
power by focusing only on the final embedding calculations.
This allows LiwTERM to deliver competitive results compared
to other methods in the literature. LiwTERM also offers
advantages over other multimodal approaches, providing a
transformer-based solution that is suitable for low-resource
scenarios and can be trained on a CPU while achieving results



comparable to state-of-the-art methods for skin lesion classifi-
cation. Our model introduces a new approach to combining
image and text features, using ViT for images and LLMs
for text, with classification handled by a shallow lightweight
neural network. Additionally, LiwTERM improves feature
availability by functioning even when some data, such as
incomplete anamnesis, is missing, making it adaptable to real-
world clinical scenarios. In future work, we plan to incorporate
other neural architectures as baselines and explore different
methods for integrating image and text features.
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