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Abstract—Analyzing cell images and identifying them correctly
is a fundamental task in the immunohistochemical exam. In this
paper we propose a novel method to segment FoxP3+ Regulatory
T cells (Treg) images automatically, in order to assist healthcare
professionals in the task of identifying and counting potentially
cancerous cells. The proposed method relies on combining an
object detection network, which is tailor-made for microscopy
images, with a marker-based image segmentation method to
produce the final segmentation, while requiring only a 50x50
training patch to do so. Our pipeline consists on predicting
the location of the cells, applying morphological operations on
the prediction weights to transform them into markers, and
finally using the segmentation method iDISF to generate high
quality segmentations. We also propose a new FoxP3+ Treg cells
dataset containing 10 high resolution images, with a qualitative
and quantitative analysis of our segmentation methods for this
dataset.

I. INTRODUCTION

Immunohistochemistry is a widely used laboratory tech-
nique in the field of pathology and biomedical research to
analyze and identify specific proteins in tissue samples. For
instance, one widely studied protein is the FoxP3+, which is
one of the main markers distinguishing regulatory T-cells from
T-cells [1]. Many studies have been made on the detection
and analysis of FoxP3+ presence and ratio on tissue samples,
to assess its impact on anti-tumor immune response [2],
on the development of oral squamous cells carcinoma [3],
pancreatic ductal adenocarcinoma [4], and hepatocarcinoma
[5]. These studies suggest that the level of FoxP3+ may be
used as a prognostic factor and can bring interesting clinical
implications [2]. Thus, correctly detecting and counting these
cells is of great interest.

Even though immunohistochemistry is a standard process
for staining and highlighting specific types of cells, several
difficulties are faced on the analysis of the produced images.
The most common strategy for analysing images obtained
from this process is based on a visual inspection made
by manual counting performed by the pathologist using a
conventional microscope which evaluates and quantifies of
positively immunostained cells. Possible interpretation and
counting errors can occur due to wear and tear during the

Fig. 1. Ground truth example of an image obtained by immunohisto-
chemistry. The image on the left is a component of the original FoxP3+
cells dataset. The image on the right side demonstrates the outcome after the
process of obtaining a ground truth annotation.

analysis process, which significantly affects decision-making
about the analyzed tissue.

The time for analysing these types of databases can be
considerably long, taking into account the experience of the
professional who performs the exam. This type of exami-
nation also requires extensive training for professionals to
correctly identify the cells to be counted. Considering the
points presented above, automating the identification of these
cells will lead to significant gains in efficiency and quality in
immunohistochemical examinations. In Figure 1, we illustrate
a sample of an image obtained by immunohistochemistry, and
a possible annotation for it producing its groundtruth.

In order to improve the reliability of the process, avoiding
subject evaluation, and to decrease the time for analysing im-
ages, several methods have been proposed in literature [6], [7].
However, most of them are complicated and hand-crafted,
and sometimes require previously annotated datasets in or-
der to be tuned. In this work, we propose a strategy for
automatically segmenting immunostained Regulatory T-cells
(Treg), based on a single-shot learning and interactive graph-
based image segmentation. We also produce a new dataset
containing images with immunostained Regulatory T-cells and
their groundtruth. The former is used to identify cell markers
to be used in the supervised image segmentation, and the latter
for producing robust cell delineation.

The main contributions of this work are threefold: (i) we



propose a method for automatically producing segmentations
for FoxP3+ cells datasets that can be trained with only a
single cell image; (ii) we propose a new FoxP3+ cells dataset,
containing images sampled from mouth tissues; and (iii) a
baseline for the proposed dataset, with a quantitative and
qualitative analysis.

The remainder of this article is organized as follows: in
Section II we describe briefly some basic concepts for a full
understanding of the entire process; in Section III we give an
overview of the image dataset used; a detailed view of the
entire pipeline is provided in Section IV; experimental setup
and results are presented in Section V; finally, in Section VI
is conclusions and future work are drawn.

II. BASIC CONCEPTS

In this section, we present iDISF and ultimate erosion which
can be considered as, in conjuction of a single-shot network,
two very critical parts of our proposed strategy for segmenting
T-cells.

A. Interactive Dynamic and Iterative Spanning Forest

Image segmentation is one of the main tasks in image
processing and computer vision applications. It consists of
dividing an image into meaningful regions or components,
with the aim of isolating objects of interest from the rest of
the scene, referred to as the background. Such technique is
widely used in computer vision to extract the most important
information from an image for a given context.

The Interactive Dynamic and Iterative Spanning Forest
(iDISF) is an interactive segmentation method derived from the
DISF superpixel computation method [8]. The DISF method
is able to compute very accurate superpixel delineation, but it
does not relate the superpixels to any object of interest. On
iDISF, we have the introduction of a human given prior, which
indicates the location of the object of interest, and with this
information, we are able to get an object segmentation with
the same delineation quality given by the DISF method.

Let I be an image, SO be the set of seeds given by the user
representing the object of interest and SB be set of background
seeds, also given by the user. The first step of iDISF is to
expand the SB set by oversampling background seeds over the
image, by using a grid sampling strategy, as in [9]. We denote
the expanded background seeds by Se

B . The final segmentation
SegI(SO, S

e
B) is given by iteratively computing the optimum-

path forest [10] rooted on the given set of seeds, filtering the
least relevant seeds at each step. The seed removal criteria
are detailed in [8]. A sample of a cell image segmentation
produced with iDISF is illustrated in Figure 2.

To compute a segmentation using iDISF, the user must give
an initial set of object seeds, indicating the location of the
objects of interest. These initial seeds guide the computation
of the optimum path forests and the removal of badly sampled
background seeds, and thus have a great importance to the
method. Even though the inclusion of the object seeds help
iDISF to compute robust segmentations, they usually come
from user interactions.

Fig. 2. iDISF object manual marking process. The image on the left shows
a fragment of a original dataset image, in which there are blue markers on
top of FoxP3+ cells. The image on the right shows the result of the iDISF
segmentation given such markers.

B. Ultimate Erosion

The ultimate erosion is a mathematical morphology strategy
made, for example, by iterative erosion of the image until all
objects vanish. Here, the idea is to identify markers (or seeds)
for the cells, thus the primary goal of efficiently reducing a
specified object within a binary image to a compact represen-
tation composed of only a few pixels. Given a grayscale image,
the result of an ultimate erosion over it can be defined as the
set of connected components. An ultimate erosion operation
is similar to the thinning operation, but instead of having
thin connected scribbles we get small separated connected
components. As a consequence of the reduction given by the
ultimate erosion operator, only the essential information of
the cells centrality is preserved, allowing us to have a concise
representation of the center of the original object. A sample
image and the results of its ultimate erosion can be observed
in Figure 3.

III. FOXP3 CELLS DATASET

In this work, we propose a new dataset, composed by 10
annotated oral tissue sample images. The images contain a
high resolution of 2048x1532 pixels, and were acquired by
the Pontifı́cia Universidade Católica de Minas Gerais (PUC -
Minas) dentistry laboratory. In each image, all of the FoxP3+
Treg cells are stained in a shade of brown. It is also possible
to visualize cells in a non-brown color. However, cells of non-
brown color won’t be taken into account for this study for in
future research the emphasis will be on pinpointing the ratio
and evaluating the impact of the proportion of FoxP3+ cells in
relation to non-brown cells to the presence of mouth cancer.
We can observe an example of dataset image on Figure 1.

Fig. 3. Object marker creation: Ultimate erosion onto binarized pre-
diction weights. The image on the left represents the activation map after
binarization, where we applied a threshold to select as objects the set of pixels
with the highest prediction weights (grayscale value > 100). The image on
the right is the result after the ultimate erosion procedure, using the binarized
image as input.



Fig. 4. Complete Segmentation Pipeline. A FoxP3+ cells dataset image, corresponding to the input of step B. B In the Object Detection step the input
image is fed into LodeSTAR, whose output prediction weights are used next to generate the activation maps. C Binary activation map generated in step B,
used as input in step D. D Ultimate Erosion procedure. In this step only the innermost pixels of the object is mantained, creating coordinates which will be
used as object markers in iDISF (E). The object markers from step E will be inputed into iDISF to create seeds and, along with the background markers
from step G, will be used to generate the segmentation in step H.

A. Samples and Imunohistochemistry

The procedure for acquiring this images is detailed in the
following. To begin our sample extraction, paraffin-embedded
biopsies from tissues previously collected for diagnostic pur-
poses, with a clinical and histopathological diagnosis of oral
leukoplakia, were included and evaluated by immunohisto-
chemical staining. Streptavidin-biotin protocol was used for
immunohistochemistry reaction. The serial sections of 3µm in
thickness of paraffin-embedded tissues were performed. The
serial sections were deparaffinized, dehydrated, and antigen
retrieval was carried out using Trilogy solution (Cell Marque,
Rocklin, CA, USA) for 12 min at 98 °C. The samples were
incubated in two baths of 0.3% hydrogen peroxidase for 15
min each for block out endogenous peroxidase activity. The
specimens were incubated with monoclonal antibody FoxP3
(Abcam, clone:236A/E7, dilution 1:50), incubated at room
temperature for 1 h. Detection was performed using the Reveal
System (Spring bioscience, Pleasanton, CA, USA) incubated at
room temperature for 30 min. The slides were subsequently ex-
posed to 3,3-diaminobenzidine tetrahydrochloridechromogen
(DAB, Sigma Chemical, St. Louis, USA, D5637). Mayer’s
hematoxylin was used for counterstaining. For reaction anal-
ysis, the slices were digitized with images captured by a
digital camera attach to an Olympus BX51 optical microscope
(Olympus Optical, Tokyo, Japan) interfaced to a computer, at a
magnification of 400×. This study was approved by the Ethics
Committee in Research of the Pontifı́cia Universidade Católica
de Minas Gerais (PUC - Minas).

B. Ground-Truth

The dataset ground-truth consists of a collection of pre-
segmented binary cell images. The iDISF platform was simi-
larly employed during this procedure. However, cell marking
was accomplished manually through its graphical interface

under the supervision of dental specialists. The tool was
chosen due to the high quality of its segmentation and the
ease of later comparing the segmentation generated by our
architecture. The ground truth and its original image can be
seen in Figure 1. The dataset and the ground-truth will be
publicly available.

IV. METHODOLOGY

Our pipeline is divided mainly in three steps, as illustrated
in Figure 4: (i) object detection; (ii) marker generation;
and (iii) image segmentation. Firstly we use the trained
LodeSTAR deep learning model [11] to detect the location
of cells in the input image (object detection). Then we apply
morphological operations on its activation map in order to
transformed it into a binary image containing the object
markers (marker generation). Finally we use these object
markers and the image into iDISF method to produce the cell
segmentation (image segmentation). In the next subsections
we explain in details the steps of this process.

A. Object Detection Architecture

In order to detect FoxP3+ cells positions, the LodeSTAR
neural network proposed on [11] is used. This model consists
on a single shot architecture created for the purpose of de-
tecting microscopical objects. LodeSTAR achieves an accurate
microscopic object detection by exploiting roto-translational
equivariance. The architecture comprises a sequence of archi-
tectural components. Its first implementation level consists of
three consecutive convolutional layers of size 3 × 3 × 32, each
employing ReLU activation. Subsequently, these convolutional
layers are succeeded by a 2 × 2 max-pooling layer, followed
by an arrangement of eight additional 3 × 3 × 32 convolutional
layers utilizing ReLU activation. The concluding element of
this network is a singular 1 × 1 × 3 convolutional layer with
no activation function. Despite training with only one sample,



the network is able to generalize and detect multiple objects
by removing the weighted global pooling layer and operating
directly on the feature-maps, on the predicted object position
map and on the weight map. The detection of the objects is
obtained by acquiring the local maxima of a detection map,
produced from the multiplication of the weight map and a
measure of the local density of the object positions.

B. Network Training

As stated by the authors in [11], the model requires only
a sample of the desired object so that the other cells are
detected throughout the entire image. Therefore, our training
set consists of a cropped image of size (50x50), obtained from
one of the input images. As preprocessing, Gaussian shift,
Gaussian blur and data normalization are applied sequentially
before their insertion into the network, as shown in Figure
5. During the training stage, the network was trained several
times, varying only the number of epochs by one in order to
find the configuration that best detected. At the end of this
process it was discovered that the variation of two to three
epochs was enough to obtain a desirable detection. Due to
the small size of the network, it was possible to carry out
the training in just a few minutes. The whole process was
tested in an Ubuntu environment with an octa-core CPU Intel
Corei7-8550U.

C. Automatic Marker Creation

In iDISF, the marker generation process is completely
manual, depending on the user to locate and mark the object
and background seeds in order to produce the segmentation.
Since user interaction is an expensive resource, in this work
we propose an automatic seed extraction method to replace
the user’s marking in the interactive segmentation loop.

Let S′
O and S′

B be the novel set of object and background
markers generated automatically, respectively. This approach
is based on the use of LodeSTAR detection to generate the
basis of the iDISF markers. We obtain its activation map and
transform it into a binary image where the object detection is
labelled with 255 and any other information is labelled with
0. To do so, we binarize the image obtained from the network
weights with a threshold of 100. Before generating the markers
we apply an ultimate erosion technique on the objects in order
to reduce it into only few pixels.

This simplification process improves iDISF’s performance
by ensuring that only the necessary information to locate the
position of the cells is used in order to create S′

O. S′
B is created

in sequence using the borders of the image due to the rare
amount of patterns similar to the FoxP3+ cells observed in
these regions, mitigating possible marking errors. iDISF then
expands the S′

B set by oversampling background seeds over
the image using grid sampling. The goal is to retrieve the parts
of the background that aren’t part of S′

B and have different
features (like color or texture) compared to any pixel in S′

B .
We denote the expanded background seeds by S′e

B .
Finally, iDISF processes the image and the seed inputs and

outputs SegI(S′
O, S

′e
B).

Fig. 5. Training image preprocessing procedure. A Original training image.
B Gaussian shift is applied onto A. C Gaussian blur is applied onto B. D
Normalization is applied onto C.

V. EXPERIMENTS AND RESULTS

This section demonstrates that our proposed method can
achieve satisfactory cell segmentation results across the en-
tirety of the 10 images within our dataset. We evaluate the
segmentation quality of our approach by employing three
commonly used metrics in computer vision, the mean IoU
(Intersection over Union) score and the Dice coefficient for
assessing the segmentation quality, and the F1-score for as-
sessing the acurracy rate of the cells detection module.

The IoU metric measures the degree of overlap between the
segmented region generated by our approach and the region
that should be segmented, referred as “ground truth”. An
IoU value of 0 denotes the absence of overlap between the
generated segmentation and the ground truth, while an IoU
value of 1 signifies an ideal scenario of perfect alignment
between the two. Let A be the first image, B be the second
image and N the amount of images, the mean IoU metric is
calculated as show in Equation 1

MeanIoU =
1

N

N∑
i=1

Ai ∩Bi

Ai ∪Bi
(1)

Fig. 6. Comparison between the segmentation obtained through our
method and the ground truth. The first column shows examples of the
FoxP3+ cells dataset images. The second column exhibits the segmentation
obtained through iDISF, after being fed the object markers generated by our
approach. The third column presents the ground truth for said dataset images.



In turn, the Dice coefficient computes the intersection degree
between two images. It is calculated as demonstrated in
Equation 2:

MeanDice =
1

N

N∑
i=1

2× |Ai ∩Bi|
|Ai|+ |Bi|

(2)

Similarly to the IoU metric, a Dice coefficient that approaches
0 tends to have low similarity between the given images,
while a coefficient index that approaches 1 tends to have a
high similarity. Finally, the F1 score is computed as shown in
Equation 3.

F1Score =
2 · Precision · Recall

Recall + Recall
(3)

Let TP be the true positive values, FP be the false positive
values and the FN be the false negative, the precision and
recall are calculated as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Our best configuration obtained a average IoU score of 0.52
and a mean Dice coefficient of 0.67 over the whole dataset.
Regarding the cells detection phase, we achieved a a F1-Score
of 0.73. It was also computed that the object detection module
had a 10% false positive rate and a 30% false negative rate.
The amount of incorrectly detected cells have a direct impact
on the segmentation quality scores, but it is important to note
that we achieve these scores by training the object detection
module with only one object instance, composed by a 50×50
image patch.

The Dice and IoU scores indicate a reasonable similarity
between what was segmented and the expected ideal segmen-
tation, specially taking into account the misdetected cells. In
Figure 6 is possible to visualize the segmentation obtained
in comparison with the ground truth in the form of a binary
image. It is possible to perceive a considerable similarity
between the images, which is maintained for all other images
in the dataset. Despite the high similarity, the segmentation is
still not perfect. For the correctly identified cells, we achieve
very good pixel-level accuracy using iDISF, and we believe
that with a better object detection, we will be able to achieve
even better scores.

VI. CONCLUSION AND FUTURE WORKS

In this work we presented a novel method to segment
FoxP3+ cells images in order to assist healthcare professionals
in the task of identifying and counting potentially cancerous
cells, requiring only a 50x50 training patch required to do so.
We also propose a new dataset, composed by 10 mouth tissue
images. Unfortunately, even if the results are quite satisfactory
with the 10 images, the marker generation must be improved
since the network is still not capable of perfectly identifying
all the desired cells.

In future works, we plan to further study the creation
of markers based on cell detection approaches, which can
lead to an overall improvement on the final segmentation.
Furthermore, we plan to study more robust methods to produce
background markers, since we only use the frame of the image
as an initial weak background marker.

Finally, we plan to collect more high-quality images in order
to increase the FoxP3+ cells dataset. In special, we believe the
proposed method can be used to help dental professionals an-
notate newly acquired images, thus speeding up the annotation
process, which is usually very time-consuming.
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