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Abstract—Aggregation functions are mathematical operations
that combine or summarize a set of values into a single represen-
tative value. They play a crucial role in the attention mechanisms
of Transformer neural networks. However, Transformers’ default
aggregation functions, based on matrix multiplication, may have
limitations in certain classification scenarios. This function may
struggle with the complexity of information present in the input
data, resulting in lower accuracy and efficiency. Considering this
issue, the present work aims to replace the traditional matrix
multiplication operation used in the classical attention mechanism
with alternative and more general aggregation functions.

To validate the new aggregation methods on the attention
mechanism, we conducted experiments on two datasets, the
recently propose Google American Sign Language (ASL) Finger-
spelling Recognition and the well-known CIFAR-10, performing
time series and image classification, respectively. Results shed
light on the role of aggregation functions for classification with
Transformers, demonstrating promising outcomes and potential
for further improvements.

I. INTRODUCTION

Machine learning has been extensively explored in a variety
of domains, with classification being one of its fundamental
tasks [1]. In recent decades, convolutional and recurrent neural
networks played a dominant role in the fields of image
classification and natural language processing [2], respectively.
However, the emergence of Transformer neural networks [3]
has allowed new groundbreaking state-of-the-art results on
both tasks.

Transformers introduced an innovative architecture, with
their attention mechanism playing a crucial role in processing
complex and long-range dependent sequential information.
Through these mechanisms, Transformer neural networks can
assign different levels of importance to parts of the input
data, enabling a richer and more adaptable representation.
With this new architecture, it became possible, for instance,
to develop more specific models for both text [4] and image
classification [5].

Important components of the Transformer networks, the
aggregation functions are mathematical operations used to
combine or summarize a set of values into a single representa-
tive value. These functions have various applications, such as
calculating descriptive statistics, summarizing information, or
reducing the dimensionality of a dataset [6], [7]. Despite the
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advantages of Transformers networks, their default aggregation
function based on matrix multiplication may have limitations
in certain classification scenarios. This function may struggle
with the complexity of information present in the input data,
resulting in lower accuracy and efficiency.

This work explores the use of novel aggregation functions in
the self-attention mechanism of Transformer neural networks.
The goal is to shed light on alternatives to the default aggre-
gation function and evaluate their effects on the performance
of Transformers applied to classification problems. Initially,
we review the fundamental concepts related to aggregation
functions, Transformer neural networks, attention mechanisms,
and Vision Transformers (ViT). Following, we present in detail
our new aggregation methodology. After that, we show the
experiments conducted to evaluate the performance of the
new aggregation mechanism on classification using relevant
datasets. Finally, results are analyzed highlighting the main
conclusions and future research directions in this field.

II. THEORETICAL FOUNDATION

Here we provide the theoretical background related to the
main concepts of this study, namely aggregation functions,
Transformers, and Vision Transformers.

A. Aggregation functions

Aggregation functions play a pivotal role in the analysis and
processing of data in diverse domains of machine learning.
These functions are responsible for combining multiple inputs
into a single output, enabling the synthesis of information
from different sources. It is important for these functions to
respect two fundamental properties: the increase property and
the monotonicity property.

Definition 1. Following [8], [9], a function A : [0, 1]n →
[0, 1] is said to be an aggregation function whenever the
following conditions are satisfied:

(A1) A is increasing in each argument: for each i ∈
{1, . . . , n}, if xi ≤ y, then A(x1, . . . , xn) ≤
A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the boundary conditions: A(0, . . . , 0) = 0
and A(1, . . . , 1) = 1.

For an increasing (decreasing) function we do not mean a strictly increasing
(decreasing) function.



Definition 2. Following [10], an aggregation function T :
[0, 1]2 → [0, 1] is a t-norm if, for all x, y, z ∈ [0, 1], it satisfies
the following properties:

(T1) Commutativity: T (x, y) = T (y, x);
(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);
(T3) Boundary condition: T (x, 1) = x.

Definition 3. Second [11], a function m : 2N → [0, 1] is said
to be a fuzzy measure if, for all X,Y ⊆ N , it satisfies the
following properties:

(m1) Increasing: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

Definition 4. According to [8], [12], let µ : 2N → [0,+∞[ be
a fuzzy measure. So, the Sugeno integral Suµ : [0, µ(N)]n →
[0, µ(N)] is defined, for all x⃗ ∈ [0, µ(N)]n, by:

Suµ(x⃗) =

n∨
i=1

(
x(i) ∧ µ(A(i))

)
, (1)

where (i) is a permutation on 2N such that x(i−1) ≤ x(i) for
all i = 1, . . . , n, with x(0) = 0 and A(i) = {(1), . . . , (i)}.

With the intent of generalizing the expression of the Sugeno
integral by replacing the sum and the maximum operator with
respective functions F and G, Bardozzo et. al [13] presented
the following definition:

Definition 5. Let µ : 2N → [0, 1] be a symmetric fuzzy
measure, F : [0,∞] ×[0, 1] → [0,∞] be a binary function and
G : [0,∞]n → [0,∞] be an n-ary function. A Sugeno-like FG-
functional (FG-functional) is a function SuF,G

µ : [0,∞]n →
[0,∞] defined, for all x⃗ ∈ [0, 1]n, by:

SuF,G
m (x⃗) = G

(
F
(
x(1), µ(A(1))

)
, . . . , F

(
x(n), µ(A(n))

))
,

(2)
where (i) is a permutation on 2N such that x(i−1) ≤ x(i) for
all i = 1, . . . , n, with x(0) = 0 and A(i) = {(1), . . . , (i)}.

In this study, we have considered the application of the
standard Sugeno integral as well as some FG-functionals
which are based on the functions presented in Table I.

TABLE I
FUNCTIONS G AND F USED IN THIS STUDY.

G(x⃗), x⃗ = (x1, . . . , xn) ∈ [0,+∞]n F (x, y), x ∈ D, y ∈ [0,+∞]

Max(x⃗) = maxni=1 xi Min(x, y) = min(x, y)

Sum(x⃗) =
∑n

i=1 xi Prod(x, y) = xy

B. Transformers

Transformers have proven to be highly efficient in a variety
of tasks, ranging from natural language processing [4] to
computer vision [5]. One of the key features driving the
performance of Transformers is the self-attention mechanism.

In the Transformer algorithm, there are two fundamental
components, the Encoder, and the Decoder layers. The En-
coder is responsible for analyzing and transforming the input
data into a suitable format for the model. It incorporates
the self-attention mechanism, which captures the relationships
between the input elements. On the other hand, the Decoder
layer is responsible for generating an output sequence based
on the representations obtained from the Encoder and previous
contextual information.

As our issue pertains to data classification, our attention will
be directed towards the Encoder layer, which is accountable for
processing text input and generating representations, as well
as the self-attention mechanism. By utilizing only the Encoder
layer, we can effectively capture the relevant features from the
input data and use them for classification purposes.

The self-attention mechanism enables the model to capture
relationships between elements in an ordered sequence. In
contrast to traditional approaches such as convolutional or Re-
current Neural Networks [14], the self-attention mechanism al-
lows Transformers to consider global and long-range relation-
ships between words, for instance, rather than relying solely on
local information.The self-attention mechanism is grounded in
matrix multiplications, applied to three fundamental elements:
queries, keys, and values. These elements are obtained through
linear transformations of the input representations, which are
learned during the model’s training.

The self-attention operation may be defined as

Self-Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V, (3)

where Q is the Query matrix, obtained by multiplying a weight
matrix Wq by the input representation; K is the Key matrix,
obtained by multiplying a weight matrix Wk by the input
representation; V is the Value matrix, obtained by multiplying
a weight matrix Wv by the input representation; and dk is the
dimension of queries and keys, which determines the scale of
the operation.

The operation begins by calculating the similarity between
queries and keys using aggregation function multiplication
matrices, before normalizing the result using a softmax func-
tion [14]. The value matrix is then adjusted by the resulting
similarity and summed, resulting in the final output of the
self-attention mechanism.

Self-attention is applied to each input element in a sequence,
allowing the model to learn the relative relevance between
one element and all the others. This enables the model to
identify the relevant element and capture the most important
relationships in the problem.

During training, the weights of the matrices Wq , Wk, and
Wv are learned through backpropagation [14], adjusting them
to maximize performance on a specific task. Thus, the self-
attention mechanism learns to assign appropriate weights to
the queries, keys, and values, adapting to patterns and relation-
ships in the training data. This process of weight adaptation
and learning allows the model to improve its performance over
time and generalize well to new unseen examples.



C. Vision Transformers

Based on the Transformer model a new approach called
Vision Transformer (ViT) has been introduced to allow the
application of Transformers to images [5]. The ViT model
extends the Transformer architecture to the domain of com-
puter vision, allowing for the processing and analysis of visual
data. Convolutional Neural Networks [15] have traditionally
been the dominant approach for image recognition tasks.
Vision Transformers, however, offer an alternative solution by
leveraging the self-attention mechanism to capture global de-
pendencies and relationships within images.In the ViT model,
the image is divided into smaller patches, which are regarded
as “words" analogous to the tokens in natural language pro-
cessing. These patches are then processed by the Transformer
architecture, including the self-attention mechanism, to extract
relevant features and perform image recognition.

ViT models have demonstrated remarkable performance in
various image recognition benchmarks. Moreover, they show
the ability to effectively capture long-range dependencies
and context in images. The adaptation of the Transformer
architecture to computer vision tasks has allowed several
advancements in image recognition and comprehension.

III. RELATED WORKS

Studies have explored different approaches to enhance the
performance of neural networks, including investigating the
aggregation functions used by neurons [16]. It has been
demonstrated that using neurons that operate in the complex
domain instead of the real domain can lead to improvements
in the efficiency and performance of models. These complex-
valued neurons allow for more expressive representations and
can capture richer information in certain applications.

The use of structures that enable learning the best aggrega-
tion functions has emerged as a promising strategy to improve
the performance of these functions. Pellegrini et al. [17]
present an approach that allows the model to learn and adapt
the aggregation functions during training, rather than using
fixed and predetermined functions. The flexibility provided by
learning the aggregation functions is an important aspect of
the potential use of these models in new machine learning
architectures. By enabling the model to learn the optimal ways
to combine and summarize information, it becomes possible
to adapt the aggregation process according to the specific
characteristics of the data and the problem at hand.

Also in this direction, Rodriguez et al. [18] introduce
the modification of max pooling through (a-b)-grouping as
an interesting approach that addresses the use of different
aggregation functions in convolutional neural networks. They
aim to improve the performance of traditional max pooling,
which involves selecting the maximum value within a spe-
cific region of the image. The (a-b)-grouping is competitive
compared to modern pooling operators such as mixed pooling,
gated pooling, and attention pooling. These modifications aim
to enhance the ability of convolutional networks to capture
relevant information and preserve important features in the
pooling layers.

In Transformers, aggregation functions are also of great
importance. Despite the lack of research evaluating these
functions, researchers have explored modifications to the at-
tention mechanism to reduce computational costs. The origi-
nal self-attention mechanism has a computational complexity
proportional to O(n2), which can be expensive for large
sequences. In this line of work, Wang et al. [19] have proposed
modifications to the aggregation of multiple attention outputs
in the self-attention mechanism. By rethinking the aggregation
step, they were able to reduce the computational cost to O(n),
making it more efficient for processing long sequences.

Regarding ViTs, Zhang et al. [20] propose the Nested
Transformers (NestT) model as an approach to simplifying
the Transformer architecture for computer vision tasks. Instead
of using a global Transformer across the entire image, NestT
suggests nesting basic local Transformers in non-overlapping
regions of the image and hierarchically aggregating them. This
hierarchical approach allows for a significant reduction in the
number of model parameters, resulting in a lighter and more
efficient architecture. The study reported a 57% reduction in
the number of parameters compared to traditional models.

Despite the related works mentioned above, to the best
of our knowledge, no other work in the literature evaluate
the effects of different aggregation functions on Transformers
and ViT for classification. In the present work, we perform
classification on two tasks with diverse spatial and temporal
domains, aiming for a wide observation of the aggregation
functions’ role in this context.

IV. A NEW SELF-ATTENTION METHOD BASED ON
FG-AGGREGATION FUNCTIONS

To investigate the potential of incorporating novel aggrega-
tion functions in the self-attention mechanism shown in Eq. 3,
we propose a novel approach that employs a combination of
FG-functionals. This approach aims to leverage the capabil-
ity to identify significant connections among elements in a
sequence, resulting in more comprehensive and informative
representations.

Therefore, we focus on changing the aggregation function
between the tensors Q and K, which originally used a matrix
multiplication. As a consequence, the original operation is
based on a sum of multiplications (rows per column) which
can be understood as an FG-functional based on F = sum
and G = Prod. The new self-attention method based on the
FG-aggregation function replaces this relation with a different
combination of functions (see Table I) as stated in Eq. 4

To perform these new combinations, we choose to follow
the same pattern as the set of initially proposed aggregation
functions, which consists of having a T-conorm as the outer
function and a T-norm as the inner function. With this in mind,
we formulated our first set of aggregations, which consists of
combining the maximum function with the minimum function,
resulting in the following equation:



Self-Attention(Q,K, V ) = Softmax
(
SuF,G(Q,KT )√

dk

)
V.

(4)
Based on empirical observations, we realize that the ag-

gregation function in Eq. 4 did not require the normalization
element, allowing for its suppression. Hence, the normalization
component was not employed in any of the proposed aggrega-
tion functions, resulting in a streamlined attention mechanism.

V. EXPERIMENTAL SETUP

We perform experiments with the new set of self-attention
mechanisms introduced in Section IV on both the Transformer
and ViT models. The purpose of these tests is to evaluate
the performance and effectiveness of different combinations of
aggregation functions in each model. For doing so, we have
selected a different classification task for each kind of model.
To evaluate our methodology on the Transformer networks
we apply it to time series classification, in the form of sign
language recognition based on body posture keypoints. For
the evaluation of the ViT setup, we tackle the single image
classification task. Such diverse tasks, concerning their spatial
and temporal characteristics, aim for a wider observation of the
effects of the new aggregation functions on the self-attention
mechanisms of the models.

In the experiments, we employ the original Transformer [3]
and ViT architectures [5] as baselines and compare their
performance with the respective versions modified with the
new aggregation functions. To ensure a reliable experimental
setup in which the effects of the different aggregation functions
can be accurately measured and compared we set consistent
hyperparameters, as shown in Tab. II, and fix a seed for
weight initialization, allowing for reproducibility. The data in
all experiments is split into sets for training and validation
(80%), and testing (20%). Convergence is monitored through
the validation error and training is ended using the early-stop
strategy. Finally, the Transformer models were implemented
in PyTorch and ViT networks in TensorFlow. Experiments ran
at Google Colab and the code will be made publicly available.

TABLE II
HYPERPARAMETERS

Hyperparameter Transformers ViT
Embedding Dropout 0.1 0.1

Epochs 100 30
Batch Size 128 256

Learning Rate 5e-4 1e-3
Heads 4 8
Seed 1601 1601

Dimension Heads 256 64

VI. EXPERIMENTS: TRANSFORMERS APPLIED TO SIGN
LANGUAGE RECOGNITION

Videos of sign language words may be seen as time series,
with each frame corresponding to a data point in the sequence.
By human pose estimation methods [21], [22], keypoints that

encode the body postures of the speaker frame-by-frame can
be extracted from videos. Thus, from the original videos,
this process derives correspondent time series in which the
data points are now sets of 2D keypoints representing the
position of the speaker’s body parts at each frame of the video
sequence.

In this context, a sign language word is analogous to a
textual sentence, in a way that each set of keypoints from a
frame is analogous to a textual word. Therefore, analogously
to word embeddings (word2vec) [23], sign language words
require keypoint embedding to be classified with Transformer
networks. This approach aims to reduce the dimensionality
of the data and formulate an embedding representation. The
use of keypoints embedding helps to capture the essential
characteristics of the data and provides a more compact and
informative representation, facilitating processing and analysis
by the Transformers model.

A. Dataset: ASL Fingerspelling Recognition
The data in the ASL Fingerspelling Recognition dataset

was recently released in a competition held by Google on
the Kaggle platform. The goal is to recognize/classify ASL
words into 64 different categories. Each word appears multiple
times in the dataset, as it is performed by several subjects on
videos. The subjects’ body poses are estimated offline for each
video and each of these words ends up being composed of 128
keypoints per video frame that correspond to the body postures
of the subject along the sequence. Each keypoint is defined by
2D (x, y) coordinates. A sample frame of a dataset sequence
is illustrated in Figure 1. The dataset consists of a total of
61,955 samples. Out of this set, 54,719 samples are used for
training and validation, while 7,236 examples are allocated for
testing. The train and validation sets are further divided, with
10,943 samples for validation and the remaining 43,776 for
training.

Fig. 1. The set of keypoints correspondent the body pose of a subject
performing an ASL word in the Google ASL Fingerspelling Recognition
dataset. Keypoints represent face, hands, and body postures in a video frame.

B. Transformer Results on ASL Fingerspelling Recognition
In Figure 2, we are monitoring the increase in accuracy as

we progress through epochs. We can observe that the functions
behave stably, with two functions standing out for their better
performance. The first one is Vanilla (our baseline), which
refers to the Transformers model found in the literature. The
second one is the sum of minimums. Both show promising
and superior results in terms of accuracy.

https://www.kaggle.com/



Fig. 2. Accuracy in Validation data

Looking at Figure 3, we can observe the rate of error
reduction as we progress through epochs. We can see that the
behavior is stable, and the two previous functions continue
to have the lowest error rates, remaining similar throughout
the validation process. This indicates that these aggregation
functions are contributing to the error reduction and good
performance of the model.

Fig. 3. Loss in Validation data

Lastly, we can observe from Table III that the Transformers
with the vanilla function perform better in almost all cases,
with lower error rates. However, the sum of minimums func-
tions equals error in terms of error while achieving a higher
accuracy metric for the training data. This indicates that the
maximum of minimums function may be more effective in
capturing relevant information for the correct classification of
the training data, although it results in similar error rates.

TABLE III
BEST RESULT IN TRANSFORMERS

Aggregation Functions Accuracy Train Accuracy Validation Loss Train Loss Validation
Vanilla 80.76 74.13 1.79 1.88

Max Min 72.93 64.25 1.88 2.00
Max Product 72.26 62.13 1.89 2.02

Sum Min 80.82 74.09 1.79 1.88

VII. EXPERIMENTS: VIT APPLIED TO IMAGE
CLASSIFICATION

A. Dataset: CIFAR-10

The CIFAR-10 [24] is an image classification dataset widely
used in the field of computer vision and machine learning. It
consists of 60,000 color images with a resolution of 32×32
pixels, divided into 10 different classes. Each class represents
a specific type of object.CIFAR-10 [24] is considered a chal-
lenging dataset because the images are relatively small and

low-resolution, which complicates the classification task. Ad-
ditionally, the presence of objects in different poses, lighting
conditions, and backgrounds adds further variability to the
dataset.

The dataset is split into training and testing sets. The
training set contains 50,000 images, with 5,000 images for
each class, while the testing set contains the remaining 10,000
images, with 1,000 images for each class. This division ensures
that the models are evaluated on unseen data during training,
allowing for an objective assessment of their performance.

B. ViT Results on CIFAR-10

The data results below refer to the experiments conducted
by ViT on the validation process of the CIFAR-10. In Figure
4, we are monitoring the increase in accuracy as we progress
through epochs. We can observe that the functions behave
remarkably, with the vanilla function standing out with better
results. However, we can also notice that the maximum of
minimums and maximum of product functions are very close
to the original function.

Fig. 4. Accuracy in Validation data

In Figure 5 error reduction, the functions follow a similar
behavior as the accuracy functions. Therefore, the vanilla func-
tion ends up having the lowest error, while the maximum of
minimums and a maximum of product functions show higher
error performance. This indicates that the vanilla function is
more efficient in reducing error and providing more accurate
results compared to the other tested aggregation functions.

Fig. 5. Loss in Validation data

All these results are reflected in Table IV, where we can
observe that the existing Transformers model in the literature
shows the best results in all cases. This indicates that the
standard model, dubbed here as vanilla, has proven to be
more effective in handling the CIFAR-10 dataset and achieving



superior performance in terms of evaluation metrics such as
accuracy and error.

TABLE IV
BEST RESULT IN VISION TRANSFORMERS

Aggregation Functions Accuracy Train Accuracy Validation Loss Train Loss Validation
Vanilla 83.74 82.55 0.86 0.91

Max Min 80.76 80.87 0.92 0.94
Max Product 80.65 80.69 0.93 0.94

Sum Min 76.23 78.07 1.02 0.99

VIII. CONCLUSION

A crucial point in Transformers is related to the self-
attention mechanism and its default aggregation function based
on matrix multiplication.

Having this in mind, this study proposed a modification of
this mechanism by considering different aggregation functions
known as FG-functionals.

When analyzing the results, it is possible to observe that the
aggregation function that seems to perform better is the sum,
which has a logical behavior similar to an OR. Regarding the
inner function, the product demonstrates better performance
in the tests, with a behavior similar to an AND. However, it
is also worth mentioning that the minimum function yields
considerably similar results, although we cannot establish a
direct relationship with a specific logical function in this case.

Based on these results, it appears that the attention mecha-
nism benefits from the combination of an aggregation function
similar to an OR (such as the sum) and an inner function
similar to an AND (such as the product). This observation
can provide an interesting direction for future investigations,
exploring sets of functions that follow this approach. These
combinations of aggregation functions may potentially im-
prove the performance of the attention mechanism in different
tasks and contexts.

It can be observed that in both classification tasks, the
vanilla function exhibits superior performance in solving the
proposed problems. However, we also observed that the per-
formance of each function may vary depending on the specific
problem. This is evident in the training of Transformers on the
ASL dataset, wherein the sum of minimum functions yielded
comparable outcomes to the classical function and outper-
formed it in terms of validation accuracy. This observation
presents a diverse range of possibilities for utilizing alternative
aggregation functions in Transformers and modifying them
according to the particular matter at hand. In future works,
we intend to explore other aggregation functions, as well as
modify how we organize the categories of functions within
the attention mechanism. This may further improve the per-
formance and flexibility of Transformers and ViTs models.
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