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Abstract—Predictive maintenance is crucial for reducing costs
in the industry. With the widespread use of internet-connected
sensors in industrial equipment, state-of-the-art predictive main-
tenance algorithms have become a prolific field for innovation. In
this paper we present a new deep learning solution for predicting
the remaining useful life of bearings. Bearings are widely used
in industrial equipment, and their failure prognosis is highly
relevant. The developed model takes spectrograms of vibration
signals from bearings as input and computes their remaining use-
ful life as output using a combination of Convolutional and LSTM
neural networks. The model hyperparameters were optimized
using the Hyperband algorithm. The dataset used originates from
a large accelerated degradation experiment aimed at evolving
bearing failure prognosis techniques, made publicly available as
part of the IEEE PHM 2012 Data Challenge. The optimized
model presented satisfactory results. In addition to reducing
maintenance costs and downtime, the potential application in
IIoT systems for online monitoring guided the architecture and
data processing flow definition. Using a proposed criterion, the
model successfully prescribed component replacement before
failure in all test cases. While 20% of the maintenance was pre-
mature, the model accurately prescribed preventive maintenance
for 80% of the test bearings. The model and data processing flow
are relatively simple and compatible with IIoT systems, allowing
for low-cost edge inference.

I. INTRODUCTION

Predictive maintenance (PdM) plays a crucial role in reduc-
ing costs and downtime in industrial processes by providing
accurate prognosis and diagnosis of equipment and system
failures. The integration of Internet of Things (IoT) sensors in
industrial equipment (IIoT) has opened up new possibilities for
PdM techniques. The vast amount of data generated by IoT
telemetry systems and highly automated factories has made
the combination of PAM and machine learning (ML) a fertile
ground for innovation.

While established failure prognostics techniques rely heav-
ily on domain knowledge and specialized software [1], [2],
recent improvements in data-driven models — specially those
reliant on deep neural networks — have shown an alternative
path that is easier to implement and not as dependent on
extensive knowledge about the equipment being monitored.
Our proposed solution is one of those methods, as we make
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use only of vibration data to predict Remaining Useful Life
(RUL) of common rolling-element bearings.

Online PdM systems are integrated into complex envi-
ronments that involve multiple data sources and distributed
processing in the edge and in the cloud. These systems must
adhere to architectural constraints, computational power, and
data transmission bandwidth limitations.

Regarding connectivity for IIoT sensors, a crucial data
source for training and inference models, low-power wide-
area networks (LPWANSs) have gained significant popularity.
LPWANSs have low power consumption, operate in unlicensed
bands, support battery-powered devices, have long range, and
have low susceptibility to interference. However, their main
disadvantage is their low bandwidth.

There is a wide range of applications in monitored equip-
ment and components. However, common mechanical com-
ponents such as bearings and gear boxes are particularly
important due to their widespread use [1]-[3].

An essential challenge is the development of predictive
methods that combine simplicity, generalization capability, and
low requirements for pre-processing data. In addition, the
potential for execution on edge devices might be critical for
new predictive models aiming for successful field deployment.
These constraints were used as guidance throughout our model
design.

Recurrent Neural Networks (RNNs) [4], [S] are widely
used for predictive time series data modeling. These networks
handle serial data and are often applied to supervised learning
problems. RNNSs can process various types of data, from quasi-
static sensor time series to spectral data from vibration sensors.
In the latter case, RNNs can incorporate convolutional and
pooling layers for reducing data dimensionality when dealing
with high-dimensional and high-volume inputs.

This study aims to evaluate an online-capable flow analysis
of the remaining bearings useful life using a predictive model
based on combined CNN-RNNs, that take as input time
series of vibration data processed as spectrograms. The study
comprises a novel data processing pipeline, model hyper-
parameter tuning, training and evaluation.

For this purpose, the study will assess using a combination
of Convolutional Neural Networks (CNNs) and RNNs for
bearing condition monitoring, focused on the algorithm po-
tential. The model architecture evaluation was conducted. This



work seeks to develop a predictive model with performance
comparable to similar techniques present in the literature,
especially considering accuracy in the prognosis of bearing
failures.

II. RELATED WORK
A. Vibration analysis

Vibration analysis is one of the most important and applica-
ble used techniques in Data Science (DC) for predictive main-
tenance [6]. This technique involves the specialized processing
and analysis of mechanical and acoustic vibration signals,
usually collected through accelerometers or microphones.

Popescu et. al. [6] describe various frequency domain
techniques for vibration analysis, including the characteristics
extraction from the frequency spectrum, such as entropy and
spectral kurtosis. Other noteworthy approaches include the
spectrum envelope, change detection, and principal component
analysis. Additionally, some techniques deal with vibration
signals in the time domain.

One widely used technique for vibration analysis in the
frequency domain is the Discrete Fourier Transform (DFT),
specifically in the form of a computationally efficient algo-
rithm called Fast Fourier Transform (FFT), as described by
Jardine et al. [7].

B. Bearing Failure Prognostics

Bearings are critical components in various types of indus-
trial equipment and are responsible for a significant fraction
of failures in this equipment, as stated by Shenfield et al. [8].
Predictive maintenance of these components typically involves
vibration analysis using techniques based on frequency and
time domains. Data-based methods, such as ML, have also
been increasingly employed, using characteristics extracted
from the signals.

Given the relevance of this topic, challenges have been
carried out to predict remaining useful life, and databases have
been made available, as described by Nectoux et al. [9] and
Hiang et al. [10].

C. RNN-CNN networks for spectrograms of Time Series Data

In time-series-dependent applications, RNNs are often used
to capture the temporal data pattern. Shenfield et al. [§]
propose an algorithm for RUL prediction in bearings using
RNNs coupled with CNNs. Huang et al. [10] also suggest
associating these two types of neural networks for the same
purpose. In both cases, CNN constitutes the first layer of
treatment for the vibration signal, and RNN captures relevant
temporal information for RU L prediction. Our design differs
from these previous studies in that we are the first to use
spectrograms (instead of raw data) and 2D CNN-RNNs for
bearing RUL prediction. The use of spectrograms and 2D
CNN-RNN designs is a trend in sequence modeling and
was successful in: typical audio applications [11], Driver
Identification [12], Arm Motion Classification [13], and ECG
Arrhythmia Classification [14].

III. METHODOLOGY

In this section we present our combined model for predict-
ing RUL in rolling-element bearings. Our models is, to the
best of our knowledge, the first to make use of spectral data
from bearing accelerometers processed through 2D CNN-RNN
architecture.

The development followed a typical workflow for ML
solutions, relying on the CRISP-DM methodology [15] (Task
Understanding, Data Understanding, Data Preparation, Mod-
eling, and Evaluation).

A. Data Processing Pipeline

Our goal is to bring to this problem the benefits seen
in other fields, from (a) transforming time series data to
spectrograms and (b) processing those spectrograms through
convolutional and recurrent neural networks. Our work starts
with the extraction of spectrograms from raw accelerometer
data.

To create our spectrograms we have used the power spectral
density, computed with Welch et. al [16] method using 1024
points per segment with a stride of 64 (allowing then for
overlap between segments). We have also experimented with
other segment lengths and found — through visual inspection
— this value to be the best at avoiding spurious peaks in
the result. We create one spectrogram for each collection
window from the original dataset and combine sequences of
spectrograms to input our CNN-RNN network. A visual data
representation is presented in Fig. 1.
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Fig. 1. Graphic representation of the structure of the entries. The fourth
dimension represents the input channels of the first convolution layer. In this
study one channel is used.

In line with our goal of making this model useful under
compute constraints, we perform dimensionality reduction on
the frequency axis of the spectrograms by keeping only the
maximum value every 4 points on the frequency axis, an
operation equivalent to a max pooling layer. We found that
this operation does not visually degrade the spectrogram.

Finally, we apply a simple yet effective augmentation on the
data; the original set is comprised of data from accelerometers
positioned vertically and horizontally so that each collection
window has two series of points collected; we created a third
series by emulating an accelerometer positioned at 45° by
combining both vertical and horizontal series.

B. Dataset and test data split

The dataset used was introduced at the IEEE Prognostics
and Health Management (PHM) 2012 Data Challenge by



Nectoux et al. [9]. It was created through an experiment with
accelerated degradation of bearings. The data is comprised of
accelerometer signals (vertical and horizontal) collected from
17 bearings up to the failure state. Each bearing was configured
to have specific load and speed conditions. The signals were
collected every 10s for a window of 0.1s at a frequency of
25.6kHz, and the longest-lasting bearing worked for 27710
seconds (Maximum Expected Life). Therefore, following our
pre-processing pipeline each 0.1s collection window creates
each spectrogram, combined in a series of 32 spectrograms to
create each input sample (making for an RNN time-step of
32).

To avoid data leaks between the training and test sets,
we split the bearings: 12 for training and validation and 5
exclusively for testing. The maximum life among the training
bearings is 27710 seconds (a low value as this is an accelerated
degradation test).

C. Loss function and RU L;y, e,

The simple mean squared error (MSE) loss was chosen for
this regression problem. Because MSE does not prioritize the
distribution in any way, we introduce RU L;, 4., as one of
our core contributions: a transformation of the model’s output
magnitude designed to privilege greater precision for small
RULs, i.e., in conditions close to bearing failure. Fig. 2 shows
a diagram that illustrates the regions in a predicted RUL
versus actual RU L diagram according to the model objective.
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Fig. 2. Conceptual regions in the predicted RU L versus actual RU L diagram
according to the model objective

We have then defined RU L;,4c. as:

wXxX MEL
RUL+ (wx MEL)

where w = 0.25 is the adjustment factor, M EL = 27710 is
the Maximum Expected Life. In an ideal scenario M E'L would
be provided by a bearing manufacturer, in the absence of this
information the highest RU L value found in the training set
was used. In Fig. 3, we compare the distribution of the cost
function as a function of RU L and the predicted RU L, where
we can see how changes close to failure are prioritized when
using RU L;pdes-
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F/ig.\3. Distribution of the MSE cost function as a function of RUL and
RUL using RU L directly, on the left, and using RU L, 4e On the right.

We have compared the effectiveness of RU L;,4e, in Sec-
tion IV; when non-transformed RUL is used min-max nor-
malization was performed on the RU L value (using MEL).

D. Hyperparameter Tuning

Since we are the first to use a 2D CNN-RNN for this task,
a network architecture had to be designed from scratch, and
optimization hyperparameters were determined from valida-
tion. To avoid costly grid searches, we have used the low-
cost Hyperband algorithm, described by Li et al. [17] and
known for its focus on early stopping and speeding up random
searches.

E. Model evaluation criteria

In addition to typical regression model evaluation metrics,
the model results were processed to observe how models
prescribe maintenance over time for each bearing until its
failure, adhering closer to the application scenario. After
computing the expected RUL (or RU L;y4e,) for each of the
three accelerometers, we calculate the Exponential Moving
Average (EMA) for each result and take the mean of the
three results as the “final” prediction. Using EMA makes sense
as these systems are expected to be online, with the RUL
threshold determining when maintenance should be executed.

F. Neural Network Architecture

This work aims to apply neural networks with RNN layers
fed by spectrograms of vibration data. Because spectrograms
can and often are interpreted as images, we use a 2D CNN
module at the start to efficiently process high-dimensionality
inputs and capture intermittent vibration patterns present in
the spectrograms.

While designing neural networks from scratch is daunting,
our architecture and the hyper-parameters we vary were chosen
with edge applications and limited training data in mind. In
Fig. 4, we show our proposed architecture, including optional
layers which have their utility tested through Hyperband [18]
tuning.

The convolution layers are intended to extract patterns from
spectrograms — especially the short-term ones — while keeping
the computational cost low. The series of these extracted
patterns are then ingested by the RNN, which captures their
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Fig. 4. Simplified representation of the neural network structure CONV 2D
+ RNN + DENSE. The boxes in green are optional and their presence is
determined by the optimization process

evolution over time and extracts long-term trends from the
vibration data. The convolution operations are then applied
separately for each time series element.

For the present study, the specific instance of RNN used
was the Long-short-term memory (LSTM) module [4]. This
type of RNN presents several advantages when dealing with
Vanishing Gradients [19] and, for our use case, does not
present prohibitive computational complexity or cost. After
processing through the LSTM layers the output is projected
through three final fully connected layers to compute the
predicted RU L value.

To keep the computational cost of training and inference as
low as possible, all layers except the last one are of type 16
bits floating-point. The input data was also converted to 16 bits
floating-point, significantly reducing its volume and benefiting
the potential functioning of the model on IIoT systems with
restricted band connectivity.

IV. EXPERIMENTS AND DISCUSSION
A. Implementation Details

Our models were implemented under the Tensorflow/Keras
framework. Final models (after parameter tuning) were trained
with batch size 64 for at least 70 epochs, up to 90, with early
stopping conditioned on the validation loss. For all models,
the learning rate is exponentially decayed with a factor of
0.8 after each epoch, and 3 fully connected layers were used
at the architecture top. The Hyperband tuner [18] was set to
train each variant for 25 epochs, and the tuner was run for 3
iterations. The validation set was created from a random 20%
split of the training set. The input dimension is (32,84, 25, 1),
representing the number of spectrograms per timestep (32), the
size of the spectrograms (84x25), and the channel dimension

(1.
B. Hyperband Tuning

The Hyperband tuner was executed to perform efficient
hyper-parameter search across the intervals defined in Table
I; the same Table also shows the optimal parameters found.
Our novel RU L;,ger, computed on the validation set, was
used as the model output for the search.

With the hyper-parameters found, we have fully built and
tested three further variants, ablating the use of RU L;ngeq
and whether a more compact version of the model works. Our
Model A is our “default” model and uses RU L;,,4e; as out-
put. Model B ablates the transformation, using instead RU L

TABLE I
SEARCH SPACE AND RESULTANT OPTIMAL VALUES FOR NUMERICAL TYPE
HYPERPARAMETERS OF THE NEURAL NETWORK. THE DENOMINATIONS
C1, C2 AND C3 REFER, RESPECTIVELY, TO CONVOLUTIONAL LAYERS 1, 2
AND 3. SIMILARLY, D1 AND D2 REFER TO DENSE LAYERS

Name Type | min value | max value Optimal
learning rate Float | 1.00E-08 1 0.000864
Layers of conv2D Int 1 3 2
filters cl Int 2 4 4
kernel cl Int 3,3 (7, 5) 5, 4)
stride cl Int (1, 1) (3, 3) (1,2)
filters c2 Int 4 8 8
kernel c2 Int 3,3 (7, 5) (6, 3)
stride c2 Int (1, 1) (3,2) (1, 1)
filters c3 Int 4 8 NA
kernel c3 Int 3, 3) (7,5) NA
stride c3 Int (I, 1 3,2) NA
pooling kernel size Int 2,2 3,3) 2,2)
LSTM units Int 16 128 112
size dl Int 16 128 112
size d2 Int 8 32 16

directly as output. Model C tests a lower compute footprint;
the tuned architecture was kept except for the number of units
in the LSTM layer and the first fully-connected layer, which
were halved. These are the layers with the highest number of
trainable parameters in the architecture.

C. Model Evaluation

1) Model training statistics: We start our analysis by com-
paring predicted RUL (RUL) and ground truth RUL in Fig.
5 for each model A, B, and C. As expected, predictions on
the training data are very accurate. We can see, however, that
when tested on unseen bearings, the model underperforms
on average. However, most of the erroneous predictions are
for larger values of RUL and, therefore, further from the
maintenance window where most of the application value is.

To better show the phenomenon, we compute the Relative
Change Difference (RCD) metric and plot a histogram of the
value considering training and test predictions. The histogram
in Fig. 6, computed for Model A, shows that predictions on
the test set are scattered, and errors are more significant;
it also shows, however, that forecasts trend toward lower
than actual values for RUL, a mistake that has much lower
impact, promoting early maintenance instead of post-failure
maintenance. In the next section, we consider the models with
these application-dependent constraints.

2) Application based model evaluation: The result of ap-
plying exponential moving average and averaging the predic-
tion for all accelerometers is shown in Fig. 7. Good model
performance on capturing the RU L trend is visible in all cases,
with the caveat that because the initial remaining life is not
known in a real scenario, significant variation is expected at
the start of prediction.

We have additionally computed metrics for model ensem-
bles. These ensembles are created by averaging the predicted
RUL from our three model variants; we refer to them by
their combined identifiers (e.g., Model AB for an ensemble of
models A and B).
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Fig. 5. Predicted versus ground truth RUL for models A, B and C, shown
respectively from left to right, top to bottom.
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Fig. 6. RCD metric histogram for training and test data. The histogram of
the training data had part of its bars truncated for better visualization of the
test base results.

For all tested models, a time called t,¢piace Was computed
as a threshold at which the model would prescribe bearing
maintenance. The value was calculated by considering a target
RUL of 10% of the maximum life expected.

By comparing this predicted #,¢piace against the ground
truth RUL = 10%xMFEL we can infer when a model
prescribes premature or late maintenance of the bearing. This
metric is illustrated for all bearings using the best model
(Model BC) in Fig. 8. The results for all models in terms
of this error as a percentage of MEL are presented in Table
II. It can be observed that models A, B, and C deliver
good performance given the challenges already discussed.
Combined models generate positive outcomes and better meet
the proposed objectives despite higher computational costs.

3) Comparison to related work: To allow for comparison
against the work of Nectoux et al. [9] we have also computed
the percent errors of RU L predictions as was done for the
IEEE PHM 2012 challenge. These results are presented in
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Fig. 8. Prognostic of bearing maintenance as predicted by Model BC using
the RUL = 10%XxMEL criteria.

Table III, where it is observed that the best model was the
combination of B and C, with the best non-combined model
being A. The excellent performance of model C is also
regarded, despite having approximately half of the parameters
of models A and B.



TABLE II
ERROR OF PREDICTED t'r‘eplace AS RELATIVE PERCENTAGE OF MEL FOR
ALL MODELS AND TEST BEARINGS. POSITIVE VALUES ARE INDICATIVE OF
PREMATURE MAINTENANCE AND NEGATIVE VALUES OF LATE

MAINTENANCE.
Rol. 3 | Rol. 13 | Rol. 7 | Rol.2 | Rol. 6
Model A 6% 42% 13% 12% 2%
Model B 9% 16% 8% 16% 1%
Model C 18% 33% 0% -8% 9%
Model AB 8% 18% 10% 15% 2%
Model AC 3% 36% 1% -9% 7%
Model ABC | 3% 36% 1% -9% 7%
Model BC 7% 18% 1% 6% 4%
TABLE III

COMPARISON OF MODEL SCORES CALCULATED ACCORDING TO THE
WORK OF NECTOUX ET AL. [9]. THE BEST RESULT IS HIGHLIGHTED IN

BOLD.
Model Score
Nectoux et. al. [9] 0.31
Our Model A 0.24
Our Model B 0.23
Our Model C 0.23
Our Model AB 0.23
Our Model AC 0.25
Our Model ABC 0.25
Model BC 0.32

V. CONCLUSION

This work proposed a new architecture for the prognosis of
the useful life of bearings. The model selection and the data
processing flow involved were designed with the constraints of
IIoT systems in mind. The main pillars defining the proposed
architecture are the use of spectral data and a combined RNN-
CNN model.

We emphasize that our proposed model is not dependent on
knowing the load or rotation speed of the bearing and that it
has a meager inference cost. We also provide an even smaller
but well-performing model for embedded systems.

After adopting the criterion of replacing the bearing with
RUL of 10% of the maximum expected life, in none of the 5
cases evaluated, did the bearings fail before the criterion was
reached. A premature replacement was prescribed in only one
case, bearing 13. It is worth noting that in a real potential
application in industrial systems, unscheduled replacements,
and failures tend to be very expensive, and a premature
replacement, although sub-optimal, is highly preferable.

The main contribution of this work is the proposal of a
new model and data processing flow for RUL prognosis in
rotating machines and components; the first study to make
use of spectrograms and 2D CNNs to address this task. A
model combining CNNs and RNNs was developed, trained,
and evaluated that predicts the RUL of bearings from time
series of spectrograms. The proposed model can be considered
relatively simple and compatible with IIoT systems.

The model results were satisfactory, with complexity and
computational cost within acceptable limits and aligned with
the proposed objectives. Therefore, this study is expected to
serve as a basis or reference for future work in the area of

failure prognosis. Although challenging in modeling and data
acquisition, this area within predictive maintenance has many
applications and allows significant gains for users.
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