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Abstract—The quality of a superpixel segmentation may con-
sider accuracy in delineation, shape compactness, and color
homogeneity. Among several existing measures, Explained Vari-
ation (EV) and Intra-cluster Variation (IV) seem to be the only
ones focusing on color homogeneity. However, EV ignores color
differences inside superpixels while IV reduces penalization by
averaging those differences. This work proposes a superpixel
color descriptor to measure color homogeneity when comparing
superpixel algorithms. Our RGB-cube Bucket Descriptor (RBD)
is a compact representation of the most relevant colors in each
superpixel. Color homogeneity is measured based on differences
between pixel color and its closest color in RBD and the color
differences inside RBD. We call it Similarity between Image
and Reconstruction from Superpixels (SIRS) since, substituting
each pixel color by its closest color in RBD, one obtains an
image reconstruction. A high-quality superpixel segmentation
should then present a reconstruction similar to the original
image. Experiments on three datasets show that SIRS can
better distinguish segmentation algorithms according to color
homogeneity than EV (the most popular measure). The results
also show that SIRS is more robust to slight color variations due
to luminosity than EV.

I. INTRODUCTION

A common approach for image segmentation is to gener-
ate disjoint groups of connected pixels, named superpixels,
concerning a predetermined criterion (e.g., color similarity).
Such procedure has several benefits: (i) workload magnitude
reduction (i.e., pixels to superpixels); (ii) high-level seman-
tic information by the superpixels; and (iii) accurate object
delineation by its compounding superpixels. Consequently,
superpixel segmentation methods have been used in several
applications, such as object segmentation [1], semantic seg-
mentation [2], object detection [3], saliency detection [4], and
image classification [5].

Several measures have been proposed to assess superpixel
segmentation quality accoding to delineation accuracy, shape
compactness and color homogeneity [6]. For instance, one may
compare superpixel algorithms according to their accuracy in
object delineation using measures such as Boundary Recall
(BR) [7] and Under-segmentation Error (UE) [8]. Informally,
BR measures the ratio of object boundaries overlapped by
superpixel borders. UE estimates the superpixel error for
multiple object overlapping. Some of these measures are also
highly correlated [6].
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Fig. 1. (a) Original image. Difference between color homogeneity scores
for (b) a grid segmentation with 1000 superpixels using (c) EV and (d) our
proposal (whiter values indicate higher scores).

Superpixel methods generally aim to generate a controllable
number of superpixels composed of connected pixels homoge-
neous in color. Although the desired properties of superpixels
are not a consensus in the literature, inner color similarity
usually underlies these methods. Among the proposed mea-
sures, Intra-cluster Variation (IV) [9] and Explained Variation
(EV) [10] are the only ones that assess color homogeneity. IV
computes the standard deviation of the pixel colors in each
superpixel and averages them. It then reduces penalization
for superpixels with subtle color variations. However, by not
being a normalized measure, IV is not comparable between
images nor with other measures [6]. On the other hand, EV
ignores color differences inside superpixels. It computes the
differences between each superpixel’s mean color and the
mean color of the image. Despite its popularity [6], [11],
EV cannot describe perceptually homogeneous regions in
some situations. Figure 1(a) shows an image with slight color
variations due to luminosity. EV cannot capture the color
homogeneity of a simple grid segmentation.

One could argue that a superpixel should be composed of a
small set of representative colors that are not very different
from each other. Such a set of colors should represent a
perceptually homogeneous superpixel. Ideally, such quantity



should be minimal for an acceptable description, being only
one when it is monochromatic. In this work, we achieve that
goal with a new measure, named Similarity between Image
and Reconstruction from Superpixels (SIRS), that relies on
a suitable color descriptor for superpixels. SIRS computes
the differences between the original and reconstructed images
from superpixels. The color descriptor, named RGB-cube
Bucket Descriptor (RBD), creates a small set of the most
relevant colors for each superpixel. One obtains an image
reconstruction by substituting each pixel color with its closest
color in the RBD of the corresponding superpixel.

In summary, RBD exploits the well-behaved RGB space,
described by a cube in R3, and groups colors based on
their similarities to the cube’s vertices. Then, each group is
divided into several subgroups, and the most relevant colors
are selected for superpixel description. With the chosen colors,
the image is reconstructed by painting each pixel inside the
superpixel with the most similar color available. From that,
we use a Mean Exponential Error (MEE) to express the
reconstruction error between the original and the reconstructed
images from RBD. Briefly, MEE increases the error impact for
complex textures while reducing the influence on perceptually
homogeneous ones. Finally, SIRS defines segmentation quality
as the Gaussian weighted error of reconstruction using MEE.
By doing so, SIRS provides values normalized between zero
and one with adequate spread to differentiate between segmen-
tation qualities easily. Experimental results show its ability to
properly penalize superpixels containing heterogeneous colors
while maintaining high scores for perceptually homogeneous
ones. Also, they show that the measure properly expresses
discrepancies between different segmentation qualities using
three superpixel segmentation methods in three datasets.

This paper is organized as follows. While Section II for-
mally describes preexisting color-based superpixel measures,
our proposal is presented in Section III. Experimental results
are thoroughly detailed in Section IV. Finally, we draw con-
clusions and possible future work in the Section V.

II. COLOR-BASED MEASURES

In this section, we review color-based superpixel measures.
Let an image I be defined as a pair (I, I) in which I ⊂ Z2

is the set of picture elements (i.e., pixels) whose colors is a
vector mapped by I(p) ∈ Rm, given m ∈ N∗. Note that,
when m = 1, I is grayscale and it is colored otherwise. We
may compute the ℓ-norm of I(p) = ⟨I1(p), . . . , Im(p)⟩ of the

colors of the pixel p by ∥I(p)∥ℓ =
(∑m

j=1 |Ij(p)|
ℓ
)1/ℓ

, given
ℓ ∈ N∗. By setting ℓ = 1 and ℓ = 2, the ℓ-norm is equivalent
to the Manhattan and Euclidean distances, respectively.

If a set X ⊆ I of pixels is provided, one may calculate
its mean color µ(X) ∈ Rm by µ(X) =

∑
x∈X I(x)

|X| , where
|X| denotes its size. Furthermore, we may segment X into
k ∈ N∗ subsets by a function S(X, k) ∈ P(X)\∅, being P the
power set, resulting in a partition (or grouping) {X1, . . . , Xk}
such that

⋃k
i=1Xi = X ,

⋂k
i=1Xi = ∅, and k ≤ |X|. We

may extend such concepts for describing the segmentation

S ∈ S(I, k) of an image I, in which every Si is a region
or superpixel.

Followed by the intuition that uniformity exhibits low
color variability towards the mean, the Intra-cluster Variation
(IV) [9] measures homogeneity of a superpixel Si by its stan-
dard color deviation. Consequently, as shown in Equation (1),
the homogeneity of an image I is defined as the mean color
homogeneity of the segmentation S:

IV (S) =
1

|S|
∑
Si∈S

√∑
p∈Si

∥I(p)− µ(Si)∥21
|Si|

(1)

One major drawback of IV is not presenting normalized
values, being not comparable across images and datasets [6].
Moreover, it penalizes all superpixels equally within the com-
putation [11]. That is, the importance of each region, and thus
its deviation, is equivalent irrespective of its size. Finally, by
definition, the mean color amortizes the color variations within
the superpixel, possibly resulting in an inaccurate color when
the composing ones are significantly discrepant.

In contrast to IV, the Explained Variation [10] defines
homogeneity by comparing the variance of the superpixels’
mean color µ(Si) and the variance of the pixels’ color I(p)
towards the image’s mean color µ(I), resulting in a normal-
ized measure (Equation 2). This measure is maximum when
|S| = |I| or when I(p) = µ(Si) for all p ∈ Si and for every
Si ∈ S.

EV (S) =

∑
Si∈S |Si| ∥µ(Si)− µ(I)∥21∑

p∈I ∥I(p)− µ(I)∥21
(2)

However, similarly to IV, EV considers the superpixels’
mean color, which is insufficient for describing perceptually
homogeneous textures [10].

III. PROPOSAL

In this work, we assess the quality of the superpixel seg-
mentation by its ability to reconstruct the original image. More
formally, let R = (I, R) be a reconstructed image of I in
which every pixel p ∈ I has its reconstructed (or predicted)
color R(p) ∈ Rm. Such reconstruction is ideal when R ≡ I .
If a segmentation S is provided, the popular approach is to
assign R(p) = µ(Si) for all p ∈ Si and every Si ∈ S.

However, as previously discussed, reconstructing I using
the mean value of each superpixel in S leads to inaccurate
results. Thus, we propose a superpixel color descriptor, named
RGB Bucket Descriptor (RBD), in which a palette of the
most representative colors within the superpixel Si ∈ S is
constructed (Section III-A). From that, we build the best
reconstruction possible given S and evaluate its similarity
towards I using a novel measure named Similarity between
Image and Reconstruction from Superpixels (SIRS), described
in Section III-B.



A. RGB Bucket Descriptor
We argue that the color information of any superpixel

can be represented by a minimal set of colors due to its
homogeneity property. In order to build the palette of the
most relevant colors in each superpixel Si ∈ S, we exploit
the well-behaved RGB space, represented as a cube in [0, 1]

3.
Therefore, I and R map to normalized RGB colors. First,
let GSi ∈ S(Si, 8) represent the set of 8 disjoint groups
related to each of the cube’s vertices, whose colors are
V = {c1, . . . , c8}, in which ci ∈ [0, 1]

3. RBD divides the
RGB space according to the vertices of its cube representation
and merges the white and black vertices to represent gray
levels. Therefore, V corresponds to all possible combinations
of RGB color channels. Let x = ⟨xi⟩mi=1 a vector that indicates
the color channels with maximum intensity in I(p) such that
xi = 1(Ii(p) = ∥I(p)∥∞). We populate each GSi

l ∈ GSi

by assigning every p ∈ Si to its most similar group using a
mapping function M(p) = argminci∈V {∥x− ci∥1}.

Although GSi

l contains pixels similar to cl, they may present
significantly distinct luminosities (i.e., color shades), which
can be suppressed if the mean color is desired. Thus, we split
it into λ ∈ N∗ subgroups (or buckets), denoted by ĜSi

l ∈
S(GSi

l , λ). Without abuse of notation, we insert every p ∈
GSi

l into its respective group ĜSi

l,b given b = ⌊∥I(p)∥∞ λ⌋.
Therefore, each color group cl is subdivided into λ buckets
that correspond to the cl color intensities.

We name RGB Bucket Descriptor (RBD) the descriptor
RBD(Si) = {c1, ..., cα}, in which ci ∈ [0, 1]

3, resultant from
the selection of the α ∈ N∗ most relevant colors within GSi by
some predetermined criterion. In this work, RBD(Si) selects
the average color µ(GSi

l,b) of the most populated buckets, irre-
spective of l (i.e., its vertex-based group). Although inaccurate
for heterogeneous sets of pixels, the refinement for generating
GSi

l,b leads to a better approximation of the most predominant
colors by the mean operator. On the other hand, by promoting
such grouping, colors with visually indistinguishable differ-
ences are assigned to the same bucket, reducing the probability
of selecting slight variations of the most frequent color.

B. Similarity between Image and Reconstruction from Super-
pixels

Given RBD(Si) = {c1, . . . , cα}, one could generate a
proper approximation of the original texture by the cor-
rect ordering, but such task is challenging. Conversely, we
propose evaluating the best reconstruction possible from
the most relevant colors for measuring the color variation
description of Si. Thus, we build R such that R(p) =
argmincj∈RBD(Si)

{
∥I(p)− cj∥1

}
.

After generating R from S, we may compute the Mean
Exponential Error (MEE), shown in Equation 3 between it and
the original image I for weighting each error accordingly:

MEE(S) =
1

|I|
∑
Si∈S

∑
p∈Si

∥R(p)− I(p)∥2−ψ1 (3)

in which ψ = max
{
∥cl − cj∥1

}
and cl, cj ∈ RBD(Si). If a

superpixel requires a palette of highly discrepant colors, the

error impact should be greater since it is describing a complex
pattern. Conversely, if the relevant colors are similar and, thus,
are representing a more uniform texture, such impact must be
light. Finally, we may define the Similarity between Image and
Reconstruction from Superpixels (SIRS), in Equation 4, by a
Gaussian distribution centered at MEE(S):

SIRS(S) = exp−
MEE(Si)

σ2 (4)

where σ2 is a parameter that controls the importance we give
to small error variations. In SIRS, higher the value, better is
the color homogeneity of the superpixels in S, represented
within [0, 1].

IV. EXPERIMENTAL RESULTS

In this section, we describe the experimental setup for
validating our proposal and discuss the impacts of the pa-
rameter selection (Section IV-A). Finally, in Sections IV-B
and IV-C, we compare our proposal to the EV in quantitative
and qualitative evaluations of five superpixel segmentation
methods with varying segmentation qualities. Due to the IV
not presenting normalized values and not being comparable
with the EV and SIRS, we did not include the IV in the
evaluation. The implementation of SIRS is available online
at https://github.com/IsabelaBB/SIRS-superpixels.

We selected three different datasets which impose different
challenges in assessing segmentation. Birds [12] consists of
150 images of Birds whose thin elongated legs are difficult
to segment and, thus, may compromise the color description.
Sky [13] has 60 images with large homogeneous regions with
subtle luminosity variations. Finally, the Extended Complex
Scene Saliency Dataset (ECSSD) [14] is composed of 1000
images with objects and backgrounds whose textures are
complex. Moreover, we select five superpixel methods with
different properties to evaluate SIRS’ expressiveness, leading
to distinct color variation descriptions. Specifically, DISF [15]
and SH [16] are state-of-the-art methods in object delineation,
while IBIS [17] and SLIC [18] present more compact su-
perpixels with fair delineation. Finally, we consider a grid-
based segmentation (GRID), representing a segmentation with
maximum compactness but poor delineation.

A. Parameter Analysis and Suggestion

For evaluating the impact of RBD’s α and λ in SIRS,
we performed a grid-search for a varying α ∈ [1, 2, 4, 8]
and λ ∈ [8, 16, 32, 64] on a random selection of 30% of
the Birds’ images. From Figure 2, it is possible to infer
that α and λ are highly correlated. By selecting α = 2
and λ = 32, the reconstruction is compromised due to the
reduced number of relevant colors selected in contrast to the
low discretization of the color space (i.e, small color intervals
are grouped on RBD). On the other hand, α = 8 and λ = 8
offers a lighter penalization for few superpixels, which often
present low-quality color variation description. Therefore, we
opt for α = 4 and λ = 16 since it severely penalizes for
few superpixels, while selecting a fair quantity of relevant
colors for reconstruction. Figure 3 illustrates the impacts on
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Fig. 2. Impact of different λ and α for varying superpixel numbers on the
train images of Birds dataset with GRID (gray), IBIS (blue), and DISF (red)
segmentations.
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Fig. 3. Impact of different λ and α for image reconstruction using RBD.
(a) Original Image; (b-d) Reconstructions using 200 superpixels using GRID
with α ∈ {2, 4, 8} and λ ∈ {8, 16, 32}, respectively

such selection: by increasing α and λ, RBD is capable of
improving the set of relevant colors, leading to a more accurate
reconstruction. It is important to note that the reconstruction
may have no errors for α values equal to the number of
populated buckets. Therefore, the λ and α values are crucial
for our proposal’s performance.

Similarly, to evaluate the impact of the Gaussian variance
σ2, we evaluated varying it between [0.005, 0.05] with step
of 0.005. From Figure 4, we infer that σ2 influences on the
steepness of the curves, indicating lighter penalizations as σ2

increases and, finally, reducing expressiveness. Therefore, for
a fair error influence and a better spread of the curves, we
opted for σ2 = 0.01.

B. Quantitative Results

As one can see in Figure 5, both SIRS and EV distinguish
methods which maximize delineation (i.e., DISF and SH)
with those opting for more compact superpixels (i.e., GRID,
SLIC, and IBIS). However, EV presents a lesser spread than
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Fig. 4. Impact of different σ2 for varying superpixel numbers on the train
images of Birds dataset with GRID (gray), IBIS (blue), and DISF (red)
segmentations.

SIRS, as exemplified in the distance between IBIS’ and
SH’s curves. Moreover, EV tends to result in significantly
higher values, especially in contexts where superpixels are
increasingly heterogeneous. For example, GRID obtains a
score over 0.5 on the Sky dataset with only 25 superpixels.
Conversely, SIRS offers a more meticulous discrepancy even
with methods with similar performance, like DISF and SH.
Also, due to its penalization, SIRS exhibits a more coherent
range of values when few superpixels are generated — i.e.,
in a more heterogeneous segmentation. In the same example,
GRID scored less than 0.4 on the same dataset.

C. Qualitative Results

Figure 6 presents a visual comparison between the eval-
uations obtained with SIRS and EV in segmentations of
images with large homogeneous or texturized regions. As
one may note in the Sky segmentations, EV is sensitive to
color variations, leading to higher penalization in perceptually
homogeneous regions — when, we argue, should be lighter.
Moreover, seeing the ECSSD segmentation, EV often inac-
curately scores the object superpixels as heterogeneous as
those in the background. Finally, by increasing the superpixel
quantity, EV shifts its perception of highly-variant superpixels
mostly to those in the background, including homogeneous
ones in the Sky segmentations. In contrast, SIRS consis-
tently perceives homogeneous regions as low-variant ones,
independently from the number of superpixels, in both Sky
and ECSSD segmentations. We argue that such robustness
is directly linked to the accurate selection of colors from
RBD, properly describing superpixel homogeneity. Finally,
it is worth noticing that, although SIRS may penalize more
heterogeneous regions (e.g., those with complex textures), it
tends to be lighter than those from EV.

V. CONCLUSION

In this work, we propose a novel color homogeneity mea-
sure for superpixel segmentation assessment, named Similarity
between Image and Reconstruction from Superpixels (SIRS).
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Fig. 5. Results obtained for Birds, Sky and ECSSD for EV and SIRS.

Our proposal evaluates a superpixel segmentation by its ability
to reconstruct the original image from small sets with the
most representative colors in each superpixel. Such selection
is made using a new color descriptor named RGB-cube Bucket
Descriptor (RBD), which collects the most representative
colors per superpixel. Results show that RBD offers an accu-
rate color selection, while SIRS presents expressiveness and
robustness to color variations being able to better differentiate
superpixel algorithms than the most popular measure of color
homogeneity. For future work, we intend to explore the
optimal selection for λ and α values and improve SIRS to
highly correlate it with accurate object delineation.
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(a) Original images
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Fig. 6. Segmentation comparison with (a) images from Sky and ECSSD among (b) DISF, (c) GRID, (d) IBIS, (e) SH, and (f) SLIC. In (b)-(f), segmentations
in first and fourth columns have 100 and 500 superpixels, respectively. The second and fifth column in (b)-(f) present the EV evaluation representation (whiter
values indicate higher scores), and it is analogous for the third and sixth columns for SIRS.


