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Abstract—With the COVID-19 pandemic’s emergency, using
facial masks and contactless biometric systems became even more
relevant to reduce the risk of contamination. Several direct and
indirect problems gained relevance with the pandemic. Among
them, masked face recognition (MFR) aims to recognize a person
even when the person is wearing a face mask. Some state-of-the-
art algorithms that work well for unmasked faces have suffered a
severe performance drop when receiving masked faces as input.
In this sense, the scientific community proposed approaches and
competitions related to this topic. In this paper, we introduce
a comparative study of four prominent solutions pipelines that
use different techniques to tackle the masked face recognition
problem, proposed by Huber et al. [1], Neto et al. [2], Boutros
et al. [3], and Hsu et al. [4]. The performance evaluation was
conducted on a real masked face database (MFR2 [5]), and using
synthetic masks in three mainstream databases (LFW, AgeDB-
30, and CFP-FP). We report results regarding unmasked-masked
(U-M) and masked-masked (M-M) face verification performance.
The unmasked-unmasked (U-U) scenario was also reported as a
baseline to evaluate the drop of the selected models on non-
occluded face verification. We further analyze the obtained
results, generating a comprehensive comparative study of the
selected approaches.

I. INTRODUCTION

Face recognition is one of the core topics in the field of
computer vision. Due to its non-intrusive nature and high
discriminability for identity authentication, face recognition
has been a prevalent biometric technique, and it has been
used in a wide range of applications like video surveillance,
security, and access control [6], [7].

The onset of the COVID-19 pandemic and the proliferated
use of protective masks resulted in an indirect challenge to
the facial recognition pipelines since they were designed to
discriminate identities using full face information (i.e., non-
occluded faces). When such systems receive faces occluded
by masks as inputs, which hides valuable biometric cues, their
overall performances drop significantly. Moreover, the use of
facial recognition has become increasingly important because
it fits in the scope of contactless biometric systems and can
help avoid the virus spread (w.r.t fingerprint authentication, for
instance).

This context motivates the research on masked face recog-
nition, as the challenge of masked faces for automatic face
recognition (FR) models was stated by studies conducted by
the National Institute of Standards and Technology (NIST) [8],
Department of Homeland Security [9], and the scientific com-
munity [10], [11]. These studies confirmed that wearing masks
significantly negatively affects the accuracy of FR systems.

After a new volume of research [12], NIST promotes a
second comparative study [13] involving post-pandemic algo-
rithms, thus potentially designed with covered faces in mind,
and concludes the performance of face recognition with face
masks is comparable to the state of the art on unmasked images
in mid-2017. In this sense, the community has developed
new studies aiming to solve the masked face recognition
(MFR) problem, resulting in different methods [1]-[4], [14],
competitions, and case study papers [12], [15]-[17].

With the masked face recognition problem in mind, this
work presents a comparative study of four prominent methods,
namely by Huber et al. [1], Neto et al. [2], Boutros et al. [3]
and Hsu et al. [4], that use different techniques to tackle this
problem. We evaluate the models’s performance on the face
verification task using a real masked database, named Masked
Faces in Real-World for Face Recognition (MFR2) [5]. and
three mainstream databases (i.e., LFW [18], AgeDB-30 [19],
and CFP-FP [20]) augmented with synthetic masks.

We report results regarding unmasked-masked (U-M) and
masked-masked (M-M) face verification performance. In (U-
M) scenery, a single face is covered by the mask, while both
faces are covered by masks in the (M-M) scenery. We also
report the unmasked-unmasked (U-U) scenery to evaluate the
drop of the selected models on common face verification
compared to a state-of-the-art non-masked face recognition
pipeline. We aim with these experiments to present a vivid
benchmark of the area, contrasting approaches that are not
explicitly compared in the literature and evidencing the diverse
techniques used to approach this problem. To the best of our
knowledge, there is no such benchmark in the literature.

The remainder of this paper is structured as follows.
Section II presents related works. Section III describes the
methodology. Section IV shows results and a discussion about
them. Section V concludes and points out some future work
directions.

II. RELATED WORKS

In recent years, research on face recognition has continued
pushing the state of the art on non-occluded face recog-
nition [21]-[24]. Motivated by the negative effect of the
protective masks on facial recognition performance [8]-[10],
[25], solutions to this problem were proposed recently by
several works. Some works focused on presenting solutions
to detect the presence of a mask on a face [26], [27] while
not addressing the recognition of an occluded face. Nizam Ud
Din et al. [28] presented a GAN-based solution to unmask a



face, which is achieved by using a pipeline with two stages,
where initially, a model produces a binary segmentation for
the masked region. Then the second stage removes the mask
and synthesizes the affected region with fine details while
retaining the global coherency of face structure. Anwar and
Raychowdhury [5] finetuned a model on synthetically masked
images using the Inception-ResNet v1 [29] with the triplet-loss
FaceNet [30]. In that work, the authors proposed an open-
source tool, MaskTheFace, to generate synthetic images, so
that an effective masked face recognition system was trained
on a large dataset of masked faces. A new, but small, collected
from the web, ready-to-use real-world aligned masked face
dataset of identities, proposed by the same authors, MFR2
was used to evaluate the model trained with synthetic images.

Studies of comparative nature were also published, high-
lighted by the work proposed by Jeevan et al. [31], which
conducts a series of experiments by testing existing CNN
architectures available in the literature and reports possible
changing in loss functions, architectures, and training methods
to enhance the masked face recognition performance. Also,
two major competitions related to MFR were conducted: the
IJCB-MFR-2021 [32] and the ICCV21-MFR [33]. The former
evaluated all models using a private dataset containing masked
faces, named MFR2. As described in the competition paper,
the most competitive submissions are based on ResNet [34]
architectures and the ArcFace [21] loss as a foundation, using
synthetic data in the training process. The latter proposed two
main tracks: a track for models trained on MS-Celeb-1M [35]
and Glint360K [36] datasets and another track for models
trained on WebFace260M [37]. The objective of having two
tracks is to conduct a fair comparison. Models were evaluated
on a private large-scale real masked faces dataset.

Following the competition’s trends, recently published
methods use ResNet as the feature extraction architecture
and the MSIMV2 [38] dataset as the base training set.
Huber et al. [1] propose a different approach, which employs
Knowledge Distillation (KD) to produce similar embeddings
for masked and unmasked faces. In their approach, the pre-
trained teacher and student networks receive the same image,
but the student network has a probability of 0.5 to add a
synthetic mask on the face. The difference between the teacher
and the student network embeddings is added to the total loss
function inducing the embeddings to be similar even when a
face is wearing a mask. To generate similar embeddings for
masked and unmasked faces, Boutros et al. [3] propose an
Embedding Unmasking Model (EUM) that operates on top of
facial recognition systems, thus not requiring the existent facial
recognition to be retrained with to deal with masked faces.
They use a loss function called Self-restrained Triplet Loss
(SRT) to minimize the distance between pairs of unmasked and
masked face embeddings of the same person and to maximize
the distance between pairs of masked face embeddings of two
different people.

Neto et al. [2] propose a multi-task network that consists of
one component for facial recognition, and another for mask
face detection. They trained the model using a contrastive

learning technique, with the MS1MV?2 dataset augmented with
synthetic masked faces. Both the aforementioned approaches
achieve competitive results when compared to the solutions
submitted for the IJCB-MFR-2021 competition. Hsu et al. [4]
train a RestNet-100 with augmented masked synthetic images
and conducts experiments evaluating different loss functions
for tackling the MFR problem. The trained models were
evaluated using different datasets that reproduce different face
recognition challenges, e.g., changes in pose, illumination and
expression, cross-age and low resolution images.

In this work, we selected the last four mentioned ap-
proaches to compose our comparative study. Hence, Section III
describes in more detail each method that delineates our
benchmark.

III. METHODOLOGY

In this section we describe in more detail the methods in the
set of experiments carried out, present the datasets used and
the method chosen to add synthetic masks to the images. We
also describe the metrics and protocols used in the evaluation.

A. Selected approaches

In [1], the proposed approach employs the Knowledge
Distillation (KD) technique using a training paradigm aiming
to produce embeddings of masked faces that are similar to
those of unmasked faces for a given subject. The proposed
solution uses a pre-trained face recognition model as the
teacher model combined with a state-of-the-art loss [22]. The
proposed models are trained with images of the same subject
wearing, and not wearing, a mask, such that the resulting
model can handle with both situations, while the KD process
ensures that the yielded embeddings of masked face images
are similar to unmasked face ones of the same subject. In
that work, two training strategies were investigated: Mask-
invariant Low Guidance (MaskInv-LG) and Mask-invariant
High Guidance (MaskInv-HG). In the former strategy, the
weight that parameterize the importance between the face
embedding of the teacher and the student network remains
constant in the training, while in the latter, the weight is
increased in the final stages of the training, aiming to em-
phasize the adaption of the network to the masked data.
Moreover, that work also evaluated a model without the use of
KD, named ElasticFace-Arc-Aug, where the student network
is trained independently using the ElasticFaceLoss [22] on
faces augmented with a synthetic mask using the probability
0.5. From the experimental results, the authors concluded
the Mask-inv HG model yields the best results in the used
benchmarks.

In [3], a new loss function and a new face recognition
model are proposed, named Self-restrained Triplet (SRT) and
Embedding Unmasking Model (EUM), respectively. The EUM
architecture consists of a Fully Convolutional Neural Net-
work (FCNN) operating on top of face recognition models,
receiving as input embeddings of a masked face (generated
by a ResNet-100 [39]). Its output is a new embedding, which
is similar to the one generated by the Convolutional Neural



Network (CNN) if it received the same unmasked face as
input. For such aim, the FCNN is trained with the SRT, which
is similar to a triplet loss [40]. The main goal of SRT is
to decrease the distance between genuine pairs (same person
with and without mask) while keeping the distance between
imposters (two different people). This goal is supported by
results pointed by recent studies [8], [11] that show that
embeddings extracted from genuine pairs without masks have
their distance increased (at some extend) when one or both
faces are masked, while the same result is not observed to
imposter pairs, where their distance are kept.

In [2], a contrastive learning called FocusFace is employed
in a multitask way to train a masked face recognition (MFR)
model, which also detects a mask on the face. Generally
speaking, the training process consists of feeding masked and
unmasked face images to a CNN (ResNet-100 [39]), which
computes the embeddings for each input image. The last
layer of the original network was replaced by two parallel
fully-connected layers with different lengths. The smaller one
is trained with cross-entropy loss for mask detection, while
the larger one is trained using the ArcFace loss [21] for
face recognition. To complete the loss formulation, a third
component is also included as the mean squared error between
the two embeddings.

In [4], a Resnet-100 was used as the feature extractor and
trained separately with five different loss functions, named
Center Loss, the Marginal Loss, the Angular Softmax Loss, the
Large Margin Cosine Loss and the Additive Angular Margin
Loss (ArcFace). The base training set used the MSIMV2
dataset augmented with synthetic masked images, for all
losses. They further benchmark the trained pipelines, using
facial recognition datasets that address three different chal-
lenges: variations on pose, illumination and expression (PIE),
cross-age and low resolution images, by using the IJB-C-
IJB-B, FG-Net and SCface for each purpose respectively.
The network trained with the ArcFace loss, hereafter called
MaskInvArcface, achieved better results in all benchmarks.
Hence, they further tested this network for recognizing faces
on a real masked face dataset, demonstrating the effectiveness
of the approach. Due to the highest results achieved by
ArcFace, we select this model for our study.

B. Datasets for the benchmark & method to add synthetic
masks to faces

To compare the approaches on masked data we used the
LFW [18], AgeDB-30 [19], and CFP-FP [20] datasets, which
are mainstream publicly available datasets that cover different
challenges for face recognition. The LFW is an in-the-wild
unconstrained face recognition dataset, that contains 13,233
images of 5749 different individuals. We follow the origi-
nal protocol, which contains 3000 genuine pairs and 3000
impostor pairs. AgeDB is focused on comparison of images
across age, and the most challenging scenario was used, named
AgeDB-30, which has a gap of 30 years between the face
images of the individuals, and contains 3000 genuine pairs
and 3000 impostor pairs. On the other hand, the CFP-FP

Fig. 1. Samples of unmasked reference and masked probe with synthetic
masks added on (columns 1, 2, and 3) and a real mask (column 4). Columns 1
and 3 are impostor pairs from the AgeDB-30 [19] and LFW [18] respectively,
column 2 and 4 are a genuine pairs from the CFP [20] MFR2 [5].

dataset contains images to evaluate differences in face pose
(i.e., frontal and profile faces). The protocol contains 3500
genuine pairs and 3500 impostor pairs.

Given that these datasets do not have pairs of unmasked-
masked individuals, we generate the masked versions of the
images, using the publicly available method of the JDAI-
CV toolkit [41], which was used with the same purpose on
the ICCV21-MFR competition [33]. In order to generate the
masked face, a 3D face is reconstructed on the input 2D face
image. The UV texture map, the face geometry and the camera
pose are obtained, and a facial mask is projected into the
UV space. Due to the failure to detect landmark, the method
was unable to generate masked images from a few images of
the CFP dataset, thus the pairs related to those images were
excluded, resulting in a reduced number of 3347 genuine pairs
and 3353 impostors pairs to be compared. Meanwhile, for the
AgeDB-30 and LFW the method generates well all the masked
images, not affecting the original protocol.

Due to the lack of publicly available real large scale masked
face datasets [31], we evaluate the models on a small scale real
masked dataset, by using the MFR2, that consists of masked
images collected from the web of 53 identities with a total of
269 images. We use the provided list of 848 pairs of images to
be compared. Some of the pairs are shown in Fig. 1. With this
dataset we can analyze the face verification performance of the
models when exposed to real images, since all the evaluated
models were originally trained with synthetic images.

C. Metrics and protocols used for evaluating the models

To conduct the evaluation we collect the publicly available
codes from Huber et al. [1]', Boutros et al. [3]%, Neto et
al. [2]%, and Hsu et al. [4]*. The images of all the used datasets
were aligned and cropped using the Multi-task Cascaded
Convolutional Networks (MTCNN) [29] detector. After this
preprocessing step, all the dataset images were inputted into
the four models resulting in four sets of 512-D feature vectors.
In the verification phase, to decide if a pair of images is an
impostor or a genuine, the cosine similarity scores between
the pairs of images are taken.

Uhttps://github.com/fdbtrs/Masked- Face-Recognition- KD
Zhttps://github.com/fdbtrs/Self-restrained- Triplet-Loss
3https://github.com/NetoPedro/FocusFace
“https://github.com/AvLab-CV/Face_Mask_Generator



TABLE I
RESULTS OF THE UNIFIED BENCHMARK RELATED TO THE FOUR SELECTED
MFR PIPELINES FOLLOWING THE AGEDB-30 DATASET PROTOCOL, IN
TERMS OF UNMASKED-UNMASKED (U-U), UNMASKED-MASKED (U-M),
MASKED-MASKED (M-M) FACE VERIFICATION PERFORMANCE.

TABLE II
RESULTS OF THE UNIFIED BENCHMARK RELATED TO THE FOUR SELECTED
MFR PIPELINES FOLLOWING THE CFP DATASET PROTOCOL, IN TERMS OF
UNMASKED-UNMASKED (U-U), UNMASKED-MASKED (U-M),
MASKED-MASKED (MM) FACE VERIFICATION PERFORMANCE.

No masks EER | ZeroFMR | FRMI1000 FMR100 | FMRI10 No masks EER | ZeroFMR | FRMI1000 FMR100 | FMRI10
Arcface [21] 03.7 15.5 09.1 05.9 02.4 Arcface [21] 04.0 14.6 13.0 07.4 02.5
MaskInvArcface [4] 04.1 28.6 26.2 08.4 02.7 MaskInvArcface [4] 04.7 25.1 15.9 08.7 03.4
MaskInv-HG [1] 02.7 15.2 08.7 03.7 01.7 MaskInv-HG [1] 02.9 20.1 08.6 04.4 01.9
FocusFace [2] 05.1 32.1 25.0 12.9 03.3 FocusFace [2] 13.7 66.5 46.8 30.3 15.4
EUM [3] 06.2 41.2 32.7 18.4 07.1 EUM [3] 07.7 56.1 329 18.9 06.5
Mask vs. No-Mask Mask vs. No-Mask
Arcface [21] 13.6 86.8 67.8 41.8 16.5 Arcface [21] 18.7 77.0 64.0 50.6 26.9
MaskInvArcface [4] 10.7 62.6 58.8 30.1 10.9 MaskInvArcface [4] 14.9 66.2 50.1 37.1 17.7
MaskInv-HG [1] 04.7 26.1 234 09.6 03.1 MaskInv-HG [1] 10.3 48.4 39.3 20.1 10.4
FocusFace [2] 10.2 65.6 53.6 335 10.4 FocusFace [2] 30.2 87.5 79.2 61.3 40.6
EUM [3] 18.0 92.8 77.8 50.7 32.7 EUM [3] 26.8 96.6 91.0 74.0 452
Mask vs. Mask Mask vs. Mask
Arcface [21] 16.5 87.9 78.9 56.0 24.5 Arcface [21] 18.2 95.9 79.4 54.6 25.0
MaskInvArcface [4] 14.1 82.3 64.5 46.0 17.6 MaskInvArcface [4] 15.7 72.5 65.8 443 19.3
MaskInv-HG [1] 06.1 31.8 28.4 16.5 04.5 MaskInv-HG [1] 11.0 43.1 38.3 24.2 11.6
FocusFace [2] 11.9 69.0 58.3 41.6 13.4 FocusFace [2] 26.7 91.9 88.6 60.9 37.3
EUM [3] 20.5 93.9 82.9 62.0 32.5 EUM [3] 24.4 98.4 88.2 70.1 40.2

The results of the benchmark are reported in terms of the
Equal Error Rate (EER), which determine the common value
of the False Acceptance Rate (FAR) and the False Rejection
Rate (FRR) of a biometric system. We also report the value
of False Non-Match Rate (FNMR) at three operation points:
FMR1000, FMR100 and FMR10, which refer to the points
which provide the lowest FNMR for a False Match Rate
(FMR) <0.1%, <1.0%, <10.0% respectively.

IV. RESULTS

In this section, we present and discuss the results of the
models considered in the experiments. Tables I, II, III, and IV
summarize the face verification performance of the selected
models in terms of the metrics described in Section III, in
the scenarios where the reference image is unmasked and the
probe image is masked (U-M) and where both images are
masked (M-M), following the AgeDB-30, CFP, LFW protocol
adopted by ArcFace [21] and the MFR2 original protocol [5].

We also report the case where the pair of images in the com-
parison are both unmasked (U-U), to evaluate how the training
procedure with augmented masks affects the performance of
common face verification. This evaluation is relevant since the
system trained to recognize masked faces should be resilient
to the absence of masks as well, being capable of using the
additional information a maskless face presents [31].

On the AgeDB-30, as shown in Table I, Masklnv-HG
performs better on all aspects, having an FMR1000 of 23.4
and 08.7 in the (U-M) and (U-U) scenarios, respectively,
presenting even better results in comparison to the non-masked
face recognition pipeline (Arcface) in the non-occluded sce-
nario (U-U), which achieves a higher FMR1000 of 09.1. This
performance gain can be correlated to the use of Elastic Face
Loss, that advanced the SOTA (such as ArcFace [21] and
MagFace [24]) on six challenging mainstream benchmarks in

the training phase of the MaskInv-HG solution. In the (M-
M) scenario, the MaskInv-HG solution achieves an FMR1000
of 28.4, resulting in the worst scenario for the model. As
described by the authors of the model, “this is the case
as the masked vs. masked setting benefits less from the
main goal of the MaskInv solution, which is to create face
representations similar between masked and unmasked faces,
while the masked vs. masked setting require only the similarity
between masked faces” [1]. However, the method significantly
outperforms the ArcFace model by a large margin, which
achieves a higher FMR1000 of 78.9.

The models FocusFace [2] and MaskInvArcFace [4] achieve
better results when compared to the Arcface model in the
(U-M) and (M-M) scenarios, corroborating that the training
procedure boosts the performance in these scenarios. When
compared to MaskInvArcface, in the (U-M) scenario, Focus-
Face presents better performance on the FMR1000 metric
(53.6 vs. 58.8) but has a higher FMR100 (33.5 vs. 30.1).
In the (M-M) scenario, FocusFace performs better on all the
metrics. In contrast, in the (U-U) scenario, FocusFace and
MaskInvArcface have a significantly higher FMR1000 of 25.0
and 26.2, respectively, when compared with ArcFace, which
achieves 09.1, revealing the trade-off between higher accuracy
in masked scenarios but less accuracy in the non-occluded
one. In contrast, the MaskInv-HG performs better in the two
masked scenarios than the FocusFace and MaskInvArcface and
without sacrificing performance in the non-occluded scenario.
The EUM models do not enhance the performance of masked
faces on the evaluation set.

For the CFP dataset (Table II), the MaskInv-HG consistently
achieved better results in all scenarios, including the (U-U)
scenario, but having the gap related to the MaskInvArcface
in the (U-M) and (M-M) scenarios reduced, when com-
pared to the AgeDB-30 results. This is demonstrated by the
FRM1000 of 58.8 vs. 23.4 achieved by the MaskInvArcface
and MaskInv-HG, respectively, on the AgeDB-30 with un-



masked reference and masked probes, and the FMR100 of
50.1 vs. 39.3 achieved on the CFP with unmasked reference
and masked probes by the same methods respectively.

When compared to the SOTA non occluded pipeline (Arc-
face), the models MaskInv-HG and MaskInvArcface perform
better in the masked scenarios, presenting a better FMR1000
of 50.1 - 39.2 and 65.8 - 38.3 respectively, in the (U-M) and
(M-M) scenarios, when compared to the FRM1000 of 64.0,
79.4 achieved by the Arcface model in the aforementioned
scenarios.

As observed by Hsu et al. [4], the Arcface and MaskInvAr-
cface performance on cross-age is the lowest among the other
factors, such as pose, illumination and expression. This can be
observed on the higher FMR presented in all masked scenarios
of the AgeDB-30 dataset, in comparison to the CFP and LFW
masked results. On the other hand, despite having a lower
FMR1000 on CFP (U-U) scenario in relation to the AgeDB-
30, the MaskInv-HG solution archive higher FMR1000 values
on the two masked protocols (U-M) and (M-M), FRM100 of
39.3 and 38.0, when compared to the FMR1000 of 23.4, 28.4
on the AgeDB-30, showing that a cross-pose facial verification
can be significantly degraded on masked faces, especially for
this solution. For the FocusFace and EUM approaches, this
degradation in performance is more pronounced by observing
that the solution’s FMR on all operation points is higher
than the Arcface, showing that the training paradigms do
not enhance the masked face verification performance of this
dataset.

We can verify similar behavior to the other datasets’ evalua-
tion for the LFW dataset benchmark (Table III). The MaskInv-
HG achieves the best performance on all protocols, followed
by MaskInvArcface, which in this specific dataset, yields a
lower FMR1000 of 07.7 and 12.8 in the (U-U) and (U-M)
scenarios, respectively, when compared to the ArcFace, which
achieves higher FMR100 of 11.8 and 17.0 in these same
scenarios, respectively. Moreover, MaskInvArcFace does not
sacrifice performance in the non-occluded one, presenting a
similar FRM100 of 0.9 against the 1.0 of the Arcface model.

As already verified on the CFP benchmark, for the LFW
benchmark, the FocusFace does not enhance the masked face
recognition performance compared to Arcface. We can verify
the same situation for the EUM model, which notably does
not boost the masked face recognition on our evaluation set.

Finally, we evaluate the solutions in a real masked dataset
named MFR2, presented in Table IV. As verified in all
the other benchmarks, the MaskInv-HG solution followed by
the MaskInvArcface presents better results, proving that the
synthetic approach used to train the original models boosts
the performance on real data. In third came the Arcface
pipeline, which achieves slightly better results when compared
to FocusFace, and EUM.

V. CONCLUSIONS

In this study, we verify the performance drop when existing
models trained on non-occluded faces are exposed to masked

TABLE III
RESULTS OF THE UNIFIED BENCHMARK RELATED TO THE FOUR SELECTED
MFR PIPELINES FOLLOWING THE LFW DATASET PROTOCOL, IN TERMS
OF UNMASKED-UNMASKED (U-U), UNMASKED-MASKED (U-M),
MASKED-MASKED (MM) FACE VERIFICATION PERFORMANCE.

No masks EER | ZeroFMR | FRMI1000 FMR100 | FMRI10
Arcface [21] 00.7 01.4 01.0 00.6 00.3
MaskInvArcface [4] 00.7 01.3 00.9 00.5 00.2
MaskInv-HG [1] 00.3 00.6 00.3 00.3 00.2
FocusFace [2] 01.3 06.4 02.3 01.4 00.5
EUM [3] 01.4 07.1 03.8 01.6 00.7
Mask vs. No-Mask
Arcface [21] 03.9 14.3 11.8 07.0 03.0
MaskInvArcface [4] 02.8 08.4 07.7 03.7 02.2
MaskInv-HG [1] 01.9 03.6 02.9 02.2 01.6
FocusFace [2] 06.3 36.5 16.3 09.8 05.5
EUM [3] 08.9 48.5 419 23.4 08.1
Mask vs. Mask
Arcface [21] 05.4 232 17.0 09.1 03.9
MaskInvArcface [4] 04.3 16.0 12.8 06.6 03.4
MaskInv-HG [1] 02.8 06.1 05.6 03.5 02.4
FocusFace [2] 07.6 34.8 21.4 12.9 07.3
EUM [3] 07.9 60.9 31.1 18.4 06.8
TABLE IV

RESULTS OF THE UNIFIED BENCHMARK RELATED TO THE FOUR SELECTED
MFR PIPELINES FOLLOWING THE MFR2 DATASET PROTOCOL.

Unmasked-Masked EER | ZeroFMR | FRM1000 FMR100 | FMRI10
Arcface [21] 07.8 26.2 26.2 13.7 06.6
MaskInvArcface [4] 06.8 149 149 11.6 06.6
MaskInv-HG [1] 05.4 08.3 08.3 07.5 04.5
FocusFace [2] 15.3 26.4 26.4 19.3 15.3
EUM [3] 12.0 40.1 40.1 29.0 12.7

faces during evaluation by evaluating the Arcface model on
masked data, corroborating the need for tailored solutions to
masked face recognition compared in this document. With
this benchmark, we contrast four diverse approaches not
explicitly compared in the literature, evidencing the diverse
techniques that can be used to deal with this problem. We
especially highlight the MaskInv-HG solution, which archives
consistently better results in the masked scenarios of all the
datasets while retaining similar and even better performances
concerning the SOTA Arcface non-occluded pipeline, in the
unmasked-unmasked scenario.

As a natural extension of the comparative work done here,
we identified two paths: 1) To evaluate computer vision
models such as Vision Transformers [42], DeiT (Data-Efficient
Image Transformers) [43] and the recent ConvNeXt [44] as
backbones to the masked face recognition model; 2) To collect,
using a script, images from the Internet of celebrities and
politicians using and not using real masks, aiming for a fair
and natural comparison of the studied models. Moreover, this
dataset will be publicly released since it will be constructed
using only public images.
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