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Abstract—Auscultation is an essential part of clinical examination
since it is an inexpensive, noninvasive, safe, and one of the
oldest diagnostic techniques used to diagnose various pulmonary
diseases. In literature, machine learning models were proposed in
various studies for lung sound classification to overcome the ear
acuity and the inherent inter-listener variability. In this work, we
propose a hybrid Convolution-Vision Transformer architecture
that explores the usage of Convolutional with Vision Transform-
ers in a single system. We evaluate our proposed method on
ICBHI 2017 database for the four-class sound classification of
lung sounds to demonstrate the effectiveness of our method which
has achieved a score of 57.36% surpassing many state-of-art
models.

Index Terms—Auscultation, Lung Sound Classification, Vision
Transformer, ICBHI dataset

I. INTRODUCTION

Auscultation is one of the main methods used in the diagnosis
of respiratory systems due to its simplicity, practicality and low
cost. This process consists of listening to the internal sounds
of the human body through a stethoscope in order to verify
the integrity of lung function [1].

These internal sounds are produced by the flow of air along
the respiratory tract [2], during the process of expiration and
inspiration. The pulmonary auscultation method requires a
well-trained professional capable of interpreting lung sounds
and providing the diagnosis [3].

Therefore, even if it is an effective form of diagnosis,
auscultation is a subjective method that is subject to false
diagnosis [4]. Palaniappan et al. [5] surveyed a range of studies
about the process of monitoring lung health using techniques
of machine learning on handcrafted features while in [6] and
[7] showed that Convolutional Neural Networks can works
as well or outperform classical models demonstrating that
machine learning techniques can assist health professionals,
such as nurses and doctors.

In this work, we aim to successfully detect and classify
the adventitious sounds, a sound whose presence usually
indicates a pulmonary disorder [8], and the normal breath
sounds through a combination of machine learning models
and signal processing techniques. We also present works that
propose the use of machine learning for the classification of
respiratory anomalies through auscultation, exploring the indi-
vidual approach to the problem, as well as its methodologies.

For short, the main contributions of this work are described
as follow:

1) Proposed hybrid model, which combines Convolutional
Neural Networks (CNNs) and Vision Transformer (ViT).
To the best of our knowledge, this is the first to explore
these combinations in the ICBHI challenge [9].

2) We demonstrate it’s performance in the ICBHI 2017
dataset achieving excellent results at specificity and score
metrics outperforming other state-of-the-art approaches.

II. RELATED WORKS

In literature, Deep Learning mainly based on convolutional
neural networks is widely used for sound classification and
recognition. Ma et al. [10] proposed a bilinear bi-ResNet
neural network in the task of respiratory sounds classifica-
tion, which was training on the features extracted via Short-
time Fourier transform (STFT) and wavelet analysis. Their
experimental results achieved a score of 50.16% on the official
ICBHI 2017 60-40 split.

Ma et al. [11] introduce LungRBN+NL, a model in the
ResNet backbone with a non-local block [12] to calculate
the relationship across time and frequency domain. They also
use short-time Fourier transform (STFT) and wavelet feature
extraction. In the official split, their LungRN+NL architecture
has reported a performance score of 52.26%.

On the other hand, Gairola et al. [13] proposed a Deep
Neural Network (DNN) called RespireNet, It is formed by
ResNet34 and fully connected layers, additionally, They in-
troduced data augmentation based on concatenation, device-
specific fine-tuning, blank region clipping and smart padding
to improve the accuracy. Their best score for the 4-class task
was 56.2% in the 60-40 split.

Meanwhile, Zhao et al. in [14] proposed to explore the ef-
fectiveness of a multi-branch Temporal Convolutional Network
(TCN) architecture integrated with Squeeze-and-Excitation
Network. They denoted their system as MBTCNSE making
use of spatial and temporal information from the log mel
spectrogram features for respiratory sound classification. The
authors reached a score of 75.7% in the 80-20 train/test split.

Using the ResNeSt [15] as a backbone, which is a model
based on ResNe, ResNeXt, SK-Net, and SE-Net, Wang et al.
[16] tested data augmentation methods like circular padding,



splice and also mixup in the spectrogram features. Their score
on the ICBHI dataset using the official 60-40 train/test split
was 55.7.%

The ARSC-Net proposed by Xu et al. [17] make use of
two types of features from adventitious respiratory sound,
the Mel-Frequency Cepstral Coefficients (MFCCs) and Mel-
spectrogram. The two types of features are entered into the
parallel encoder paths with residual attention for extracting
feature representation and then fused into a channel-spatial
attention mechanism. They achieved a great score of 56.76%
for the four-class sound classification in the 60-40 official split.

Finally, Using CRNN (Convolutional Recurrent Neural Net-
work) by inputting multiple respiratory sound image features
such as spectrogram, scalogram and Constant-Q Transform,
Asatani et al. [18] obtained a score of 72% using 5-fold
validation.

III. PROPOSED SCHEME

Our proposed framework illustrated in the Fig. 1 is composed
of two parts: Feature Extraction, a Convolutional block formed
by three independents kernels and an attention module to
enhance channel and spatial information and last, a Vision
Transformer Network, the last two parts compose the model.
In this section each one will be described.

A. Feature Extraction

For the classification of respiratory sounds, we extract three
types of features such as Mel-Frequency Cepstral Coefficients
(MFCCs), Mel Spectrogram and Constant-Q Transform (CQT)
as frequency-time representations, each one will be discussed
hereafter.

1) Mel Spectrogram: Mel Spectrogram is a combination
of the spectrogram and the Mel scale, where the first one
is the magnitude squared of the short-time Fourier transform
(STFT) a tool designed to analyze the way the frequency of
non-stationary signal changes over time. The STFT can be
described mathematically as [19]:

Xm(ω) =

∞∑
n=−∞

x(n)w(n−mR)e−jωn (1)

Where:
Xm - Is the Discrete Fourier Transform of windowed data
centered about time mR;
w(n) - Is Window function of length M (e.g., Hamming);
R - The difference between the window length M and
the overlap length L, known as Hop size.

A Hamming window is applied to each frame to greatly
reduce spectral leakage before conducting DFT. The Hamming
window has the form [20]:

w(n) = 0.54− 0.46 cos

(
2πn

M

)
, 0 ≤ n ≤ M (2)

The frequency bands are extracted by applying the Mel
filter bank on the power spectrum of each frame to obtain the
Mel Spectrogram. The Mel scale simulates the way how the
human ear reacts to a sound, being more sensitive at the lower

frequency and less so at the higher frequency. To compute the
Mel Scale, a non linear transformation is applied in the original
frequency using the formula as below::

fmel = 2595log10

(
1 +

f

700

)
(3)

where f and fmel denotes respectively, the physical and
perceived frequency in hertz.

2) MFCC: Mel Frequency Cepstral Coefficients (MFCC)
is a representation of a sound’s short-term power spectrum. It
refers to the inverse Fourier transform of the logarithm of the
estimated signal spectrum. The magnitude frequency response
of each frame is obtained by computing the Discrete Fourier
Transform (DFT) of each frame using pre-processed sound
data. DFT computation can be expressed as;

X(k) =

n−1∑
n=0

x(n)e
−j2πkn

N , 0 < k < N − 1 (4)

here N is the number of points to compute de DFT. Like
the Mel Spectrogram, Mel spectrum is computed by passing
the Fourier transformed signal through a set of Mel-filter
banks. The Mel spectrum of the magnitude spectrum X(k)
is computed by multiplying the magnitude spectrum by each
Mel weighting filters.

s(k) =

N−1∑
k=0

|X(k)|2Hm(k), 0 < m < M − 1 (5)

where M is total number of Mel weighting filters. Hm(k) is
the weight given to the k−th energy spectrum bin contributing
to the m− th output band and is expressed as:

Hm(k) =


0, k < f(m− 1)
2(k−f(m−1))
f(m)−f(m−1) , f(m− 1) ≤ k ≤ f(m)
2(f(m+1)−k)
f(m)−f(m−1) , f(m) ≤ k ≤ f(m+ 1)

0, k > f(m+ 1)

(6)

To conclude, the Discrete Cosine Transform (DCT) is
performed on the Logarithm compressed Mel spectrum. The
DCT can be expressed as:

Cn =

M−1∑
m=0

log10sm
cos(πn(m− 0.5)

M
(7)

3) Constant-Q Transform: when the window function is
set larger In the Short-Time Fourier Transform we obtain
higher frequency resolution but with low time resolution which
concentrates much more information in the high-frequency
region. Constant-Q Transform, CQT [21], allows changing the
length of the window function to allow harmonic frequencies
to be represented in equal intervals in the transform domain.
The Constant-Q Transform equation is shown below

X(k) =
1

Nk

Nk−1∑
n=0

W (n, k)x(n)e
−j 2πQ

Nk
n (8)

Where:
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Fig. 1. Proposed Framework.

W (n) - is the window function;
x(n) - is the original signal and
Q - is a constant.

Furthermore, N(k) is represented by:

N(k) =
fs
fk

Q (9)

Here fs is the sampling frequency and fk is the center
frequency. The range of k is can be found like the equation
10.

k =

⌈
b log2

(
fmax

fmin

)⌉
(10)

b is the number of octave divisions, and fmax and fmin are
the maximum and minimum frequencies, respectively. The
CQT representation increase the low-frequency resolution [22]
which can be useful for classifying adventitious sounds.

B. Convolutional Block

Convolutional Neural Networks - CNN is a class of artificial
neural networks more suited for image-focused tasks [23],
[24]. It takes this name from the linear operation called
convolution. CNNs have including convolutional layers, non-
linearity such as ReLu, pooling, and fully-connected layers
[25]. In this work the Convolutional module is first designed
with three branches convolution blocks using a 3×3 kernel size
to extract each channel’s feature separately while maintaining
the size of the original spectrogram input. We aim to increase
and learn more generalizable features representations from
fewer data while maintain a low cost model.

Second, according to Woo et al. in [26], We include the
Convolutional Block Attention Module (CBAM) which con-
tains two sequential sub-modules called the Channel Attention
Module (CAM ) and the Spatial Attention Module (SAM ).
The CAM module is defined as the expression in Eq. 11

Fig. 2. CBAM Attention Module [26].

where it is used multi-layer perceptron (MLP) with one hidden
layer, Global Average Pooling (GAP) and Global Max Pooling
(GMP) to leverage global information of the input feature
x ∈ RC×H×W [27].

CAM(x) = σ(MLP (GAP (x)) +MLP (GMP (x))) (11)

here σ is the sigmoid activation.
In the SAM module, the goal is to generate a spatial

attention map by utilizing the inter-spatial relationship of
features. It works in the principle of ’where’ is an informative
part. To compute the spatial attention first is apply average-
pooling (AV G) and max-pooling (MP ) operations along the
channel axis and concatenate them to generate an efficient
feature descriptor. The spatial attention module is computed
as:

SAM(x) = σ
(
f7x7 ([AVG (x) ;MP (x)])

)
(12)

where f7×7 is the 7× 7 kernel size of the convolution opera-
tion. CBAM is suitable to explore relationships of features to
tell the network what and where to pay attention enhancing
informative local regions [27].

C. Vision Transformer

The Vision Transformer (ViT) in Fig 3, is a model similar to
initial transformer [28] applied in natural language processing



Fig. 3. Vision Transformer architecture [29].

tasks but created to deal with images. To avoid the quadratic
computational cost, the ViT computes relationships among
pixels in small fixed-sized patches of the image, each of them
are then linearly embedded, position embeddings are added
and the resulting sequence of vectors is fed to a standard
transformer encoder.

To perform classification, the standard approach of adding
an extra learnable “classification token” to the sequence is
used. In the original Vision Transformers (ViT) [29], the
authors concluded that to perform on par with Convolutional
Neural Networks (CNNs), ViTs need to be pre-trained on
larger datasets. This is mainly due to the lack of inductive
biases in the ViT architecture unlike CNNs, which don’t
have layers that exploit locality. To deal with this problem,
Touvron et al [30] proposed a novel model called Data-
efficient image Transformers, (DeiT). The authors introduced a
new distillation procedure based on a distillation token, which
plays the same role as the class token, except that it aims at
reproducing the label estimated by the teacher.

IV. EXPERIMENTS

A. Dataset

Dataset ICBHI 2017 challenge is a scientific challenge orga-
nized by International Conference on Biomedical and Health
Informatics in 2017, which provides a respiratory sound
database and an official scoring method [31]. This database
consists of a total of 5.5-hours recordings containing annotated
respiratory cycles from 126 subjects. For simplicity, a record
is defined as the lung sounds collected from one patient and a
cycle is defined as a respiratory cycle from a patient. Hence,
the total recording contains 6,898 cycles which comprise 3,642
“normal”, 1864 “crackles”, 886 “wheezes”, and 506 “crackle
plus wheeze” cycles.

B. Loss Function

Due to the high imbalance of the dataset we used the class
balance loss proposed by Cui et al. [32]. This loss uses a
re-weighting that uses the effective number of samples, the

TABLE I
PERFORMANCE COMPARISON OF OUR PROPOSED MODEL WITH SOTA IN

FOUR CLASS CLASSIFICATION AND OFFICIAL 60-40 SPLIT.

Method Se (%) Sp (%) Sc(%)
LungBRN [10] 31.12 69.20 50.16
LungRN+NL [11] 41.32 63.20 52.26
ResNeSt+augmentation [16] 40.20 70.40 55.30
CNN+CBA+BRC [13] 39.60 71.80 55.70
CNN+CBA+BRC+FT [13] 40.10 72.30 56.20
ARSC-Net [17] 46.38 67.13 56.76
Ours 36.41 78.31 57.36

expected volume of samples, for each class. This method is
agnostic and can be applied in any loss, in the cross entropy
loss it can be written as:

CB(p, y) =
1− β

1− βny
L(p, y) (13)

Where:
ny - Is the number of samples of the class y;
β - Is a hyper parameter and
p - Is the model output.

C. Settings

The proposed model was all built in an open source frame-
work. We use Pytorch for machine learning and librosa to
extract sound features, the Adam optimizer, and a fixed
learning rate of 0.0001 in the Four-Class Task study.

We use the pre-trained weights provided by DeiT to ini-
tialize the transformer model. All others layers without pre-
training are randomly initialized. In the four-class respiratory
sound classification, we adopt the official 60-40 data split
and the score as evaluate metric according to the original
challenger. The score, Eq. 16, is the mean of sensitivity (Se)
Eq. 14 and specificity (Sp) Eq. 15. We extract 96-dimensional
MFCCs, Mel-spectrogram and Constante-Q transform, all fea-
tures were processed with a window length of 2048 and hop
length of 512.

Se =
TP

TP + FN
(14)

Sp =
TN

TN + FP
(15)

Sc =
Se+ Sp

2
(16)

D. Performance Comparison

Table I shows the SOTA for only published four-class classi-
fication task on official 60-40 split. Compared to the current
state-of-the-art works, our model outperforms all compared
models achieving the highest score which was improved
from 56.76% to 57.36%. However, it is observed that our
model does not perform well while trying to differentiate the
adventitious lung sounds, resulting in a lower sensitivity score
which can be seen in the Fig 4 which shows the confusion
matrix where the ”Both” class contains both Wheezes and
Crackles adventitious sounds.



Normal

Crackles

Wheezes
Both

Predicted Class

N
or

m
al

C
ra

ck
le

s
W

he
ez

es
Bo

th
A

ct
ua

l C
la

ss

816 394 277 92

249 265 69 66

169 64 105 47

58 24 24 37

Fig. 4. Confusion matrix. where W C contains both Wheezes and Crackles
adventitious sounds.

E. Ablation Studies

Table II shows the results of different analyses while using
distinct DeiT models. The two first models were tested without
CNN and attention mechanism while the last two were done
with aggregation of these modules. We can see that, combining
CNN and attention module performs better than the DeiT
model alone demonstrating that a hybrid approach is effective
to identify adventitious sounds.

TABLE II
THE ABLATION STUDY TABLE

Model Params Se (%) Sp (%) Sc(%)
DeiT Small 21M 30.18 76.72 53.45
DeiT Base 86M 32.22 77.37 54.80
Deit Base + CNN 86M 33.78 77.70 55.74
Deit Base + CNN + Att 86M 36.41 78.31 57.36

V. CONCLUSION
In this paper we demonstrated how pre-trained new models
like Vision Transformers can be a useful tool and jointly
with CNN, learn on small datasets. Experimental results
show our best model, which uses an attention mechanism
block outperforms state-of-the-art score metric, leading by
it’s specificity, systems when evaluate on the ICBHI 2017
database proving the effectiveness of our proposed method.
In the future, we want to evaluate two-class and lung sound
disease classification tasks and improve the sensitivity of our
model using data argumentation techniques.
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