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Abstract—We present a new images dataset called PTL-AI
Furnas Dataset as a new benchmark for fault detection in power
transmission lines. This dataset has 6,295 images, with resolution
1280×720, extracted from the maintenance process of the energy
transmission lines at Furnas company. It contains annotations
of 17,808 components classified as baliser, bird nest, insulator,
spacer and stockbridge. Furnas is a company that generates
or transmits electricity to 51% of households in Brazil and
more than 40% of the nation’s electricity passes through their
grid enabling generating the dataset in different backgrounds
and climatic conditions. We performed experiments using data
augmentation techniques to train Faster R-CNN, Single-Shot
Detects (SSD) and YoloV5 models. The benchmark result was
obtained using the metrics of Mean Average Precision (mAP) and
the Mean Average Recall (mAR) with values mAP=91.9% and
mAR=89.7%. The PTL-AI Furnas Dataset is publicly available
at https://github.com/freds0/PTL-AI Furnas Dataset.

I. INTRODUCTION

Visual inspections are crucial for fault detection in power
transmission lines. For power transmission, visual inspection is
considered the main preventive maintenance activity in trans-
mission lines. In Brazil, this process complies with the criteria
established by the regulatory agent named National Electric
Energy Agency (ANEEL) through Normative Resolution No.
906/2020.

Traditionally, the inspection of transmission lines can be
carried out in the terrestrial and aerial modalities. In the
terrestrial inspection, teams need to observe the defects using
binoculars or Unmanned Aerial Vehicles (UAV) with on-board
cameras instead of climbing the structures. In aerial inspection,
the entire process is done with the use of manned helicopters,
and it can be carried out in a much shorter time.

Due to its relevance, the energy sector has been looking for
ways to improve the inspection process, for example, using
cameras embedded in different platforms, which can capture
more accurate images and at a lower cost when compared to
traditional inspection. According to Liu et al [1], inspection

using UAVs divides traditional inspection into two stages: data
collection and analysis. In the first step, the UAV collects the
images or videos, and in the second step, they are analyzed by
a technical team or a specialized system. Due to its advantages,
such as low cost, greater safety and high efficiency, several
researches have been carried out on the use of UAVs in the
inspection process and, therefore, they have great potential to
replace the traditional methods [2], [3].

Automating the inspection of power transmission lines is
a challenging task, as it involves locating and classifying
highly complex individual components. Several works using
object detection techniques based on Deep Learning have
been published in recent years for fault detection, looking for
components such as insulators [4]–[6], spacers [7], vibration
dampers [8], [9], balisers [3], U-bolts [10], transmission cables
[11], and also looking for faults from natural causes, such as
proximity to vegetation [12], [13], bird nests [14], and the
freezing of transmission lines [15], [16]. In Brazil, [17] it is
an example of application in the area of power transmission.
A review of the status of research can be found at [18].

Although methods based on deep learning present excellent
results, public datasets for inspecting transmission lines with
high quality images are not common in the literature. Some
works, as [6], [19]–[22], present public datasets, but they have
either just a few components, or few images, or low resolution.
As an alternative to the scarcity of data, data augmentation
techniques have been used extensively in this area [4]–[6].
Liu et al [1] carry out an extensive review of the available
datasets.

The development of algorithms, conducting research and
improving solutions come up against the lack of benchmarks
and public datasets. In this sense, we collected, annotated and
organized a dataset, named Power Transmission Lines using
Aerial Images Furnas Dataset (PTL-AI Furnas-Dataset), to
be used as a benchmark, which has real data from the power
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transmission lines of one of the largest energy generators in
the world, the company Eletrobras-Furnas. We also present
baseline results considering state-of-the-art deep learning ar-
chitectures to guide further research. In Section II, we present
some works related to fault detection in power transmission
lines using deep learning. In Section III, we describe the
process of creating the PTL-AI Furnas-Dataset. In Section IV,
we detail the experiments performed and, in Section V, the
results of these experiments. In Section VI, a conclusion and
some final considerations of this work are presented.

II. RELATED WORKS

Tao et al [6] present CPLID, a dataset containing 848 images
of insulators, with a resolution equal to 1152×864. CPLID was
created using data augmentation techniques, mostly segmen-
tation, to increase the volume of images and the diversity of
backgrounds. Tomaszewski et al [19] also present a dataset
of insulators, however, the images were artificially created,
strategically positioning the insulators to obtain lighting and
background variations.

Bian et al [20] developed a dataset consisting of 1,300
images of power transmission towers taken from the internet,
with different pixel resolutions. Lee et al [23] built two
datasets, Dataset 1 for training, with 4000 cable images for
training with resolution 128×128, and Dataset 2 for testing,
with 200 cable images with resolution 512×512, from Turkish
Electricity Transmission Company. The total of annotated
cables is not reported.

Abdelfattah et al [21] created TTPLA, a dataset com-
posed of 1,100 images 3,840×2,160, containing annotations
of towers (tower-lattice, tower-tucohy, tower-wood) and power
transmission cables for instance segmentation. The authors
present results using Resnet-50 and Resnet-101 [24] models.

Vieira-e-Silva et al [22] presents a new training pipeline
and a new dataset, called STN Power Line Assets Dataset
(STN-PLAD), containing high resolution images of towers,
insulators, spacers, plates and dampers. Experiments are per-
formed using the Single Shot MultiBox Detecton (SSD) [25]
and Faster R-CNN [26] models. Table I shows a comparison
of the main publicly available datasets.

Dataset #Imgs #Obj/img Img Size #Objs
STN-PLAD 133 18.1 5472×3078 5
CPLID 848 1.9 1152×864 1
TTPLA 1,100 8.1 3840×2160 4
Bian et al 1300 1.2 - 1
Tomaszewski et al 2,630 1 5616×3744 1
Lee et al 4000 - 128×128 1
PTL-AI Furnas Dataset 6,295 2.8 1280×720 5

TABLE I
COMPARISON OF THE MAIN PUBLICLY AVAILABLE DATASETS.

III. PTL-AI FURNAS-DATASET

The PTL-AI Furnas-Dataset creation process involves three
steps: (1) recording videos, (2) extracting and selecting im-
ages, and (3) annotating the components. Next, we present
details of this creation process.

Video recording: PTL-AI Furnas-Dataset was obtained
from videos of aerial inspections of power transmission lines,
using a crewed helicopter that performed inspections during
the day in different environments and weather conditions.
During the inspections, video recordings with audio are made,
in which the components that need maintenance are informed.

Image Extraction and Selection: the images were ex-
tracted from the videos, one frame every 3 seconds, with a
resolution of 1280×720, using FFmpeg tool. For the selection
of images, first the audios of the videos were transcribed
using a transcription tool, in order to search for the following
keywords: failure detected, maintenance required, verification
required, component defective, bird nest found, critical situa-
tion. Upon finding a keyword, images within a window of ±
15s were selected. Subsequently, only the images containing
the components were manually chosen. Finally, padding is
performed on the images to make them square. In Figure (1),
it can be seen some samples from PTL-AI Furnas-Dataset.

Fig. 1. PTL-AI Furnas-Dataset samples.

Image Annotation: it was defined that the following classes
are of interest: insulator, baliser, bird nest, separator and
stockbridge. The objects insulator, baliser and separator also
have different states, shown in Table II, which indicate whether
or not they need maintenance according to the criteria estab-
lished by the technical team.

The image annotation process was performed gradually
in order to facilitate annotator’s task, reducing errors. In
this process, a pre-trained model was used as an auxiliary
tool, the SSD MobileNetV2 [27] model, which was trained
with 2,000 images that were manually annotated using the
Make Sense tool. The training was performed for 100k steps,
fine tuning from a version trained in COCO dataset. SSD
MobileNetV2 was chosen because it is a light and fast training
model. The annotations were manually verified and corrected
when necessary. This process was repeated two more times,
including the verified images, until reaching a total of 6,295
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Class Label #Train #Test #Obj/img
Insulator Good insulator ok 7,854 821 1.37

Insulator Problem insulator nok 1,840 214 0.32
Insulator Unknown insulator unk 1,638 181 0.28

Baliser Good baliser ok 125 11 0.02
Baliser Problem baliser nok 184 20 0.03

Baliser Almost Good baliser aok 319 46 0.05
Bird Nest bird nest 340 31 0.05

Separator Good separator ok 1,016 100 0.17
Separator Problem separator nok 21 2 0.01
Stock Bridge Good stockbridge ok 2,808 237 0.48

Stock Bridge Problem stockbridge nok 0 0 0.00
Total — 16,145 1,663 2.82

TABLE II
PTL-AI FURNAS-DATASET STATISTICS. IN CLASS AND LABELS

COLUMNS, THE SUFFIX ok INDICATES A COMPONENT IN GOOD
CONDITION, nok THERE IS A PROBLEM, aok THAT MAINTENANCE MAY BE

REQUIRED, AND unk IT CANNOT BE DETERMINED. #Train AND #Test
INDICATES THE AMOUNT OF COMPONENTS IN THE SET AND #Obj/img THE

AVERAGE AMOUNT OF COMPONENTS PER IMAGE.

Fig. 2. PTL-AI Furnas-Dataset annotated samples.

images. Examples of the annotated images can be seen in
Figure (2).

IV. EXPERIMENTS

In this work, we defined a series of experiments in order to
train the state-of-art models for object detection and thus create
baselines to evaluate the performance of the models using
PTL-AI Furnas-Dataset. The images were randomly divided
into the training and testing set, with 90 and 10 percent of
the total images, respectively, as shown in Table II. In order
to assess whether an object was correctly detected, it was
defined that the Intersection over Union (IoU) between the
bounding box of the ground-truth and the prediction must have
a minimum value of 0.5. The experiments were performed on
a DGX-1 V100 GPU with 32GB of memory up to the limit of

one week of execution. Each experiment was also configured
with an early stopping equal to 100 epochs, analyzing Mean
Average Precision (mAP) in a validation set, extracted from a
selection of five percent of the train set images.

Faster R-CNN [26], SSD [25] and YOLO [28]–[32] models
were selected for training because, according to Liu et al
[1], they are the main models used in the power transmission
lines inspection task. The works [2], [5], [7], [8], [13], [14],
[33] confirm this statement. Three different versions of each
of these models were used: Inception [34], ResNet-152 and
ResNet-101 [24] backbones for Faster R-CNN model; ResNet-
152, 101 and 50 for SSD model; v5m6 (medium), v5l6 (large)
and v5x6 (extra large) for YOLO model [32].

The following available source-codes were used: Faster
R-CNN and SSD source-code from Tensorflow 2.x Object
Detection API, and YOLO source-code from Ultralytics, in
Pytorch. The parameters used during training can be checked
in Table III. All the models were fine tuned from a pre-trained
version in the COCO dataset. The training of the Faster R-
CNN and SSD models was interrupted when reaching the
maximum time of one week, and the training of the YOLOv5
models was interrupted by the early-stopping technique. All
the source-code, as well as the checkpoints of each model, are
available for download at https://github.com/freds0/PTL-AI
Furnas Dataset, in order to facilitate the reproduction of the
presented experiments.

Faster R-CNN
Backbone LR Momentum Batch Size Images Size
Inception 0.008 0.9 4 1280× 1280

ResNet 152 0.04 0.9 5 1280× 1280
ResNet 101 0.04 0.9 5 1024× 1024

Single Shot MultiBox Detector - SSD
ResNet 152 0.04 0.9 5 1280× 1280
ResNet 101 0.04 0.9 5 1024× 1024
ResNet 50 0.04 0.9 7 1024× 1024

You Only Look Once - YOLO
YoloV5m6 0.01 0.99 16 1280× 1280
YoloV5l6 0.01 0.99 16 1280× 1280
YoloV5x6 0.01 0.99 10 1280× 1280

TABLE III
PTL-AI FURNAS-DATASET TRAINING PARAMETERS.

In Table III, it can be seen that the models considered more
robust, Faster R-CNN Inception, Faster R-CNN ResNet 152,
SSD ResNet 152 and all versions of YOLO, were trained using
the images in format 1280 × 1280. This decision was made
in order to avoid losses in the quality of the images, and thus
obtain better results in these models. The shallower models,
Faster R-CNN ResNet, SSD ResNet 101 and 50 were trained
with images in the format 1024 × 1024 in order to perform
faster training.

A. Data Augmentation

The training set was expanded using data augmentation
techniques, following Song et al [35], through the Imgaug
tool. For each image, another five were created using data
augmentation. Two functions were applied randomly selected
from a set of functions that include basic changes, such as
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color, position, scale, noise and dropout, as well as more
complex changes, such as deformations, degradations and
weather. In Table IV, the data augmentation functions used are
shown, grouped according to the technique applied. A sample
of the generated images can be seen in Figure (3).

Group Functions

Color and Contrast Gamma Contrast, Linear Contrast,
Add to Hue and Saturation.

Dropout
Dropout, Course Dropout, Pepper,
Coarse Pepper, Salt, Coarse Salt,

Salt and Pepper, Coarse Salt and Pepper.

Arithmetic Add, Add Element Wise, Impulse,
Add Gaussian, Add Lapplace,

Geometric
Scale, Translate, Rotate, Shear, Piece Wise,

Perspective Transform, Elastic Transformation.
Flip Horizontal Flip.

Corruption Jpeg Compression.
Blur Gaussian, Average, Median, Bilateral, Motion.

Weather Snowflakes, Rain, Fog, Clouds.
TABLE IV

PTL-AI FURNAS-DATASET DATA AUGMENTATION USED FUNCTIONS.

Fig. 3. PTL-AI Furnas-Dataset data augmentation samples.

V. RESULTS

The models are evaluated using the PTL-AI Furnas-Dataset
test set. For each of the training performed, it can be verified
the results of the metrics Mean Average Precision (mAP) and
Mean Average Recall (mAR) in Table V. The Yolov5l6 model
achieved the higher mAP results, with a value equal to 91.9%,
and the Yolov5x6 model the higher mAR value, with 89.7%.

Among the family of Faster R-CNN models, the model with
backbone Inception stood out, presenting 89.6% of mAP and
80.6% of mAR. Among the SSD family models, surprisingly
the shallowest model, with backbone ResNet 50, presented the
best mAP results, with 75.8% and also mAR, with 77.9%.

To assess which classes the models have more difficulty
in predicting, in Figure (4), one can visualize the confusion
matrices of the two best models: Yolov5x6 and Yolov5l6. In

Faster R-CNN
BackBone Image Size mAP mAR

Inception ResNet 1280× 1280 0.896 0.806
ResNet 152 1280× 1280 0.808 0.673
ResNet 101 1024× 1024 0.806 0.632

Single-Shot Detector - SSD
ResNet 152 1280× 1280 0.710 0.752
ResNet 101 1024× 1024 0.688 0.749
ResNet 50 1024× 1024 0.758 0.779

You Only Look Once - YOLO
YOLOv5m6 1280× 1280 0.913 0.856
YOLOv5l6 1280× 1280 0.919 0.855
YOLOv5x6 1280× 1280 0.917 0.897

TABLE V
MEAN AVERAGE PRECISION (MAP) AND MEAN AVERAGE RECALL

(MAR) FOR DIFFERENT MODELS ON PTL-AI FURNAS-DATASET.

this image, it can be seen that the models have problems in
classifying mainly balisers and insulators. This type of error
is understandable, since among these classes, in some cases,
doubts even occur among the annotators. This occurs mainly
in the baliser class, where there is no rigid definition between
the aok and nok states, since color is the main deciding factor,
and between the insulator class, given the difficulty in deciding
whether the component is in good condition or too far away
to define.

The baliser nok, insulator nok, bird nest, and spacer nok
classes are critical for the task of fault detection in power
transmission lines, as they indicate components failures. In
Figure (4), it can be seen that none of these classes had a false-
negative percentage (Background FN in the image) greater
than 5% in any model. About the stockbridge component,
because it is very small, it was difficult even for the technical
team to detect failures and, therefore, the stockbridge nok
label were not annotated.

In Figure (5), it can be seen the Precision × Recall
graph referring to the Yolov5x6 (top) and Yolov5l6 (bottom)
models of each of the components. For the Yolov5x6 model
the classes baliser ok, spacer ok, insulator unk had mAP
lower than 0.9, while for the Yolov5l6 model the classes
baliser ok, baliser aok, spacer ok and insulator unk had a
negative influence on the results.

In Figure (6), there are some examples of the predictions
obtained using the Yolov5l6 model.

VI. CONCLUSIONS

In this work, we proposed a new image dataset, named PTL-
AI Furnas Dataset, publicly available, to be used as a bench-
mark in the area of fault detection in power transmission line
components, which contains images of components of great
importance for the inspection activity of power transmission
lines. Images are taken in different landscapes, with a wide
variety of components, at different angles and positions. A
dataset creation process was also presented, in which the SSD-
MobileNetV2 model was used as a aid tool during the image
annotation process.

PTL-AI Furnas-Dataset aims to fill an existing gap in the
area of fault detection in power transmission lines, which is



Fig. 4. Confusion matrix of Yolov5l6 model. On the top, results from the
Yolov5x6 model, and on the bottom, results from the Yolov5l6 model.

the lack of public datasets with high quality images and a
considerable number of annotated components. In this way, it
will be possible to advance the development of research and
to improve solutions for the task of fault detection in power
transmission lines.

We carried out experiments using state-of-art models in the
area of object detection. From these experiments, we found
that the Yolov5l6 and Yolov5x6 models showed the highest
mAPs. Therefore, with this work we created the baselines to
be used as benchmarks for future works. In the future, we
should evaluate trained models on our dataset using images
from UAVs, in order to verify that models may experience
a performance loss due to variations in capture devices,
recording angles and image quality.
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