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Abstract—Omnidirectional media are becoming widespread
with the increasing popularization of devices for capture and
visualization. Unlike traditional pinhole-based images, omnidi-
rectional images are defined on the surface of a sphere, present
a full field of view, and store light intensities from a whole
scene. In particular, applications exploring immersive augmented,
mixed, and virtual reality experiences can strongly benefit from
omnidirectional vision. Though omnidirectional images are de-
fined on the spherical domain, they are commonly mapped to
one or multiple planes. Those sphere-to-plane mappings generate
distorted images, and, if directly applied, most traditional visual
computing algorithms tend to present some quality degradation.
This tutorial paper revises the spherical imaging model, common
capture device types, and prominent representation formats. It
also discusses the significant challenges of spherical visual com-
puting and showcases the advances in three selected applications.

Index Terms—360◦ images, spherical images, omnidirectional
images, panoramas

I. INTRODUCTION

Omnidirectional images (a.k.a. spherical, 360-degree, or
panoramic images) are gaining popularity mainly because
the devices involved in capture are becoming cheaper [1].
When visualized in head-mounted displays (HMDs), 360◦

media help provide immersive user experiences in augmented,
mixed, and virtual reality (AR/MR/VR) applications [2].

Unlike regular pinhole-based images that are defined on the
plane, omnidirectional imagery lie on the sphere surface [3],
[4]. 360◦ images present a full field of view (FoV) and capture
the whole scene information (360◦×180◦). Fig. 1 depicts two
images taken by regular and spherical cameras placed at the
same pose within a realistic 3D model1. Despite the benefits,
traditional visual computing algorithms designed to work on
the planar domain are not directly applicable to panoramas
because of the topology discrepancy.

Panoramas are indeed defined on the spherical domain, but
they are commonly represented in a (multi-)planar form [5].
Many sphere-to-plane functions can be used to generate the
planar representation, but none is free of distortions [6], [7].
Even though a panorama is represented in the plane (like
in “world map” format), the algorithm still needs to take

1The Classroom model is available under CC0 license in https://www.
blender.org.
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Fig. 1: Two captures of the same 3D model at the same pose.
The first view is taken by a (a) narrow-FoV pinhole-based
camera and the second one comes from a (b) 360◦ camera.

into account the introduced deformations to be accurate in
its task [8], [9].

Compared to the traditional visual computing field, spheri-
cal visual computing is still embryonic so that few problems
are addressed under this renewed optics. This tutorial paper
sheds some light on how one may expect spherical visual
computing to differ from traditional and what efforts can be
employed to account for these discrepancies.

The rest of this tutorial paper is organized as follows.
Section II revises the fundamentals of the spherical imag-
ing model. Common image acquisition systems and widely
adopted representation formats are detailed in Section III.
Challenges of processing spherical images and possible so-
lutions are discussed in Section IV. Selected applications that
benefit from the full FoV of spherical images are considered
throughout Section V. Finally, some final remarks are drawn
in Section VI.

II. FUNDAMENTALS

A pinhole-based camera is modeled by central projection
where a ray comes from a three-dimensional (3D) world point,
passes through its center of projection, and reaches the image
plane [10]. The particularities of the 3D-2D mapping, such as
the scene coverage in the image, depend on the camera matrix
which combines intrinsic and extrinsic parameters [10].

The spherical imaging model derives from central and
spherical projections [11] and abstracts the camera itself as
a space-localized and oriented unit sphere [12]. As this type
of camera covers the full FoV, each non-occluded surrounding
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Fig. 2: Projection of a 3D world point X onto two spherical
cameras with different extrinsic parameters.

3D world point is imaged using spherical projection [13]. This
imaging model considers no intrinsic parameters and assumes
that the spherical camera is fully represented by its six-degrees
of freedom (6-DoF) extrinsics [14], [15].

More precisely, once a world coordinate system is preset,
one can place the camera at position C ∈ R3 and orientate
it using a rotation matrix R ∈ SO(3). Thus, we explain the
camera by its extrinsics [R|t], where t = −RC ∈ R3 is called
a “translation vector”.

A 3D world point X ∈ R3, parameterized by the same
coordinate system, is then projected to that camera by

x =
RX+ t

∥RX+ t∥2
, (1)

where the imaged point x lies on the surface of a unit sphere,
i.e., x ∈ S2 ⊂ R3 [13].

Fig. 2 depicts a 3D world point X projected onto two
360◦ cameras. One of the cameras is placed at the origin of
and aligned to the world coordinate system, having extrinsics
[R1 = I|t1 = −R1C1 = 0]. The other camera is not at
the origin and has a different orientation, presenting extrinsics
[R2|t2 = −R2C2 ̸= 0]. Note that the imaged points x1

and x2 are described in local image coordinates (w.r.t. each
camera), having no explicit information about the original
camera poses in the preset coordinate system.

III. ACQUISITION AND REPRESENTATION

The most common pipelines for acquiring omnidirectional
images involve using one or more regular, planar silicon
sensors [16]. In fact, differently from what the spherical
imaging model suggests, there is no single-sensor device for
capturing all the scene information at once [17].

Catadioptric imaging devices combine a regular camera
with a convex-shaped (conic, spherical, parabolic, or hy-
perbolic) mirror, and allow capturing the whole horizontal
FoV [18]. This approach, however, suffers from sensor/mirror
self-occlusion and commonly outputs images represented in
cylindrical form [8]. Since they have restricted vertical FoV
and fragile mirror components, catadioptric devices are rare in
recent research and industrial applications.

A polydioptric imaging system, on the other hand, organizes
a variable number of regular cameras pointing outwards in a
rig. Each camera captures a narrow portion of the scenario,
and all the views are combined in a software-based procedure
called image stitching (mosaicking) [19]. Polydioptric rigs
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Fig. 3: Two planar representations of the same 360◦ image.
The first view is in (a) equirectangular format and the second
one is in (b) cube map format.

are often bulky and expensive, but they can produce high-
resolution panoramas with customizable FoV [20].

A more recent approach employed by many manufacturers
combines two opposite located sensors equipped with fish-eye
lenses [21]. Each sensor captures a hemispherical image suit-
able for two-view full-FoV stitching [22]. These portable and
cheap devices simplified and democratized the acquisition of
real-world 360◦ content and boosted the AR/MR/VR industry
and research on related areas [23].

Regardless of the acquisition pipeline, if the camera matri-
ces are known, one can warp the (single or multiple) image(s)
onto the (potentially incompletely covered) unit sphere [13].
Still, various sphere-to-plane functions can be used for storing
and processing 360◦ images that might be more convenient.

The equirectangular projection is considered the de facto
planar representation of the sphere [12], [24]. It is also known
as a latitude-longitude map [25] and allows easy pixel mapping
from plane to sphere and vice-versa. As a given imaged point
x lies on the surface of a unit sphere, it can be rewritten in
spherical coordinates (r = 1, θ, ϕ) as [13]

x = [cos θ sinϕ sin θ sinϕ cosϕ]⊤, (2)

where θ ∈ [0, 2π) and ϕ ∈ [0, π).
Since an omnidirectional camera covers the full FoV, there

is information associated to every position (θ, ϕ) on the sphere,
and the image can be represented in a [0, 2π)× [0, π) plane. In
fact, the light intensity associated to an imaged point x maps
to the pixel position (x, y) of a w× h equirectangular image,
where x = ⌊ θw

2π ⌋ and y = ⌊ϕh
π ⌋.

The equirectangular projection has a non-uniform sampling
that distorts the scene objects depending on their location in
the image [8], being particularly heavy near the poles [26].
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Fig. 4: Support of an ideal filter kernel in different positions
of (a)–(c) pinhole-based and (d)–(f) equirectangular images.

Many other sphere-to-plane mappings can be applied, but
they all introduce some distortion [6]. Since the distortions
induced by spherical projection depend on the FoV ampli-
tude [27], some authors propose to map the sphere onto a
circumscribed cube. This process results in six narrower-FoV
images and it is known as cube-map projection [27], [28] or
sky-box [29]. Fig. 3 illustrates the mapping of the 360◦ image
in Fig. 1b to the equirectangular and cube-map representations.

Other emerging representations are based on successive
divisions of a 3D geometric form and try to mitigate the distor-
tions from the spherical imaging model even more. Prominent
approaches are the icosphere/tangent planes projection [30]
that derive from an icosahedron and those based on an octa-
hedron [31]. It is worth mentioning that exchanging formats
may lead to loss of information and introduce artifacts [7] due
to the required sub-pixel transformations [32].

IV. CHALLENGES

Most challenges faced in spherical visual computing relate
to the adopted sphere-to-plane mapping. Processing panoramas
on the spherical domain avoids tackling topological issues
but requires adaptations of algorithms originally devised for
perspective images.

Let us recall that the equirectangular format is the standard
planar representation of 360◦ images, widely employed in
industry and research [6]. As briefly discussed in Section III,
an equirectangular image is non-uniform sampled on the
sphere [8], which translates to a “stretching effect” particularly
prominent near the poles [26]. In fact, the poles are highly
oversampled, i.e., the first and last image rows collapse to the
north and south poles of the sphere, respectively. Hence, they
replicate information in all columns. In general, the spacing
between adjacent points along a row in the equirectangular
format is proportional to sinϕ [33], leading to a strong
imbalance between the equator line and the poles. Moreover,
equirectangular images have a cyclical property [16], [31],
i.e., its left and right boundaries should connect. We refer the
reader to Fig. 3a for an illustration of the abovementioned
issues.

The use of equirectangular images comes from their sim-
plicity and because they contain all the scene information.

Exploring the whole scene context through a single image with
a rectangular domain is very appealing, especially in the deep
learning era. We conduct the following discussion considering
the deep learning context, but understanding the common
issues faced in spherical visual computing can be applied to
other computational solutions that extrapolate learning-based
approaches.

The core idea behind a convolutional layer is that it contains
filters with spatially-invariant support (receptive field size) and
weights [34]. Standard convolutional kernels are rectangular
or, more commonly, squared and are applied over the image
in a sliding window fashion. Because of the distortions of
the equirectangular projection, applying these regular filters to
a panorama causes uneven (spherical) regions to be covered
depending on the filter position. In fact, the support of the
kernel filter should ideally be adjusted depending on the
latitude ϕ of the image [6].

Figs. 4a and 4d show the ideal support of a hypothetical
filter (larger than common for better visualization) on the mid-
dle of pinhole-based and equirectangular images, respectively.
When the filter center is at the equator (ϕ = π

2 ) of the spherical
image, its support is barely distorted. Fig. 4e illustrates the
adjustment required for the filter to cover the same area on
the sphere surface as it approaches the north pole (ϕ → 0)
of an equirectangular image. As we can observe, the shape of
the filter is no longer rectangular, with wider support closer
to the pole (top row). Fig. 4b, on the other hand, shows the
effect of a standard convolutional kernel, which is fixed and
covers a smaller spatial portion of the sphere compared to the
equator line. Finally, Fig. 4c depicts what happens when a
traditional filter touches a lateral border of a regular image.
Often, the filter is simply applied after zero-padding or data
extrapolation in a regular convolution. In the spherical case,
an ideal filter should perform a circular convolution instead,
as shown in Fig. 4f.

The circularity issue can be solved in a simple manner by
applying a circular padding treatment, as done in [35]–[37].
The deformation of the kernel, on the other hand, is harder to
handle. Some approaches propose to adjust the convolutions
(and sometimes pooling operations) to tackle the geometry-
induced distortions [6], [38]–[40]. Dilated convolutions are
used in [38] so that their horizontal receptive field increases
when approaching the image poles. Alternatively, the authors
in [6] propose to learn weights that adjust the responses of a
flat filter to accommodate to the equirectangular distortions.
Distortion-aware convolutions, proposed in [39], adjust the
receptive field to sample points within the ideal support as
discussed early. A similar idea is explored in [40], where
deformable convolutions are adjusted to the sampling induced
by the equirectangular mapping.

It is worth mentioning that other sphere-to-plane mappings,
like the cube-map planar representation, alleviate the distor-
tions since they involve tangent plane projections with smaller
FoVs. In fact, there is a context-deformation trade-off linked
to the image FoV [27]. Dealing with any multi-plane represen-
tation may alleviate the problem with distortions but introduce



Fig. 5: Omnidirectional capture (in equirectangular format)
that is not gravity aligned.

a less controllable discontinuity issue along the boundaries of
each adjacent projection. The reader can look back to Fig. 3b
and perceive how intricate the cube faces connections are.
Dealing with cube-maps requires adequate treatment, such as
face padding [41] or post-processing stitching [27].

Other issues that may impact applications related to the con-
tent rather than the sphere-to-plane mapping include imperfect
image stitching after acquisition [7], highly variable object
appearance [8], and bad horizon alignment [31], [40].

Finally, the availability of standardized benchmarks for
comparing 360◦ visual computing techniques is still an open
issue. For the first problem discussed in the next section, the
authors often adopt general-purpose datasets (such as [42])
and assume the images are rectified. The nature of the prob-
lem allows generating an arbitrary number of annotations
by synthesizing rotations, and quantitative results are often
obtained using angular distances [23], [43], [44]. The recent
survey from [16] compiles tens of datasets and figures of
merit (omitted here due to space restrictions) for the other
two applications discussed in the next section. Annotations
and metrics are much more intricate for those two problems.

V. SELECTED APPLICATIONS

Some works have started addressing visual computing prob-
lems using spherical images in the last few years. Omnidirec-
tional vision boosts many applications, and we selected three
of them that greatly explore the full FoV of panoramas: gravity
alignment, layout estimation, and depth estimation.

A. Gravity Alignment

Gravity alignment (a.k.a. horizon alignment or upright ad-
justment) aims to realign the image content upright [43] so that
the equator line of the panorama is parallel to the ground plane.
Fig. 5 illustrates a capture of the same scene as in Fig. 1, but
with a different camera orientation. Note that the ground plane
presents a sinusoidal form. Recall that panoramas are defined
on the sphere surface, and thus they naturally present three
DoFs. This means that, aside from inaccuracies caused by
sphere-to-plane reprojection [45], 360◦ images can be rotated
to any orientation without loss of information.

Thus, the goal of an upright adjustment method is to
estimate a rotation matrix R↑ ∈ SO(3) that aligns the ground
plane with the equator and stands up the scene objects.
Note that using the equirectangular format allows exploring
full contextual information. Adjusting the orientation of a
panorama is accomplished by projecting the image to the unit

sphere using the relation in Eq. (2), rotating the sphere by
R↑⊤, and backprojecting the light intensities to the plane. For
example, correcting the upright vector of the image in Fig. 5,
which was captured with a tilted 360◦ camera, would ideally
result in the image shown in Fig 3a.

Some works try to estimate R↑ looking for geometric
cues in the images, such as vanishing points and straight
lines [46], [47]. These approaches tend to fail in nature scenes
where those primitives are not clearly visible. More recently,
some authors started tackling this problem from a learning-
based perspective. Some of them propose to regress the Euler
angles [23] or the upwards unit vector [43] that aligns the
image, whereas others estimate rotation parameters from a
discrete set of possible values [44], [48].

Although gravity alignment is essential for helping
AR/MR/VR users get comfortable immersive experiences [23],
it might also be helpful as an intermediate step for other
applications. For example, several existing single-image layout
or depth estimation approaches require upright rectified images
as input to be accurate [43].

B. Layout Estimation

Layout (room) estimation aims to recover a scale-arbitrary,
sparse 3D representation of the corners/joints between the
walls/ceiling/floor of an indoor capture [16]. Early methods
were semi-automatic or explicitly used geometric primitives
to estimate the layout [49], [50]. Recent methods address
layout estimation from a learning perspective and use a single
panorama as input.

The choice over the representation of the input image varies,
but the equirectangular format is by far the most used [16]. If
an equirectangular image is gravity-aligned, the layout joints
are parallel, and efficient 1D features in the latent space can
be explored [35], [51]. Some methods opt for regressing the
walls/ceiling/floor joints and others their edges [52].

Layout estimation methods often add geometric constraints
to guide the optimization process [16]. The simplest yet real-
istic room layout is the cuboid/box-shaped layout [53]. More
generic approaches follow the Manhattan assumption, which
comprises more intricate room layouts such as “L-shaped” and
others where the walls are perpendicular to each other [40],
[54]. Finally, the Atlanta assumption allows even curved walls
and approaches an unrestricted layout scenario [55].

Fig. 6 depicts the 3D representation of the layout inferred
from the image in Fig. 3a using the approach from [54].
Note that, for this application, only the rough (box) layout
is expected to be adequately projected to the 3D space.

C. Depth Estimation

Estimating depth from perspective images is a well-known
problem in visual computing. Classical approaches use two or
more overlapping views from the same scene but might require
thousands of them to cover the full FoV [16]. Depth estimates
can be either sparse by matching keypoints or dense by
adopting approaches like optical flow to find correspondences.
In the dense case, every pixel in a given reference image has



Fig. 6: Layout estimate from a single 360◦ image using [54].

an associated depth value, and, except by occlusions, the scene
can be fully 3D reconstructed.

From a geometrical point of view, only two 360◦ captures of
the same scene are required for full-FoV depth estimation [36].
Stereo-based 3D reconstruction methods match N correspon-
dences (xi

1,x
i
2), i = 1, 2, . . . , N, in both images to infer the

relative pose by exploring the epipolar geometry [13] via

xi
2

⊤
Exi

1 = 0, (3)

where E = [t]×R is the Essential matrix and [·]× is the skew-
symmetric matrix corresponding to the cross-product with
t [12]. Then, the depth αi ∈ R associated to the points in a
canonical view, e.g., αix1

i = X̃i ≈ Xi, can be estimated via
direct linear transformation (DLT) or similar approaches [14].

Multi-view-based 3D reconstruction adds robustness to out-
lier correspondences [36]. In this case, after the two-view
reconstruction, the “Spherical n-Point” [14] problem is solved
by matching estimated world points X̃i to image points xi

k

of the k-th capture, k ∈ N, k > 2, estimating the pose
and the depth of novel points via a DLT-based calibrated
reconstruction procedure [14], [56]. In stereo- and multi-
view-based reconstructions, it is common to add non-linear
refinement procedures for the pose, depth, and the pose and
depth together [14], [36], [56].

More recently, many works started inferring dense depth
from a single panorama, configuring it as an ill-posed but very
appealing problem. Most methods either use equirectangular
images [39], [57], which contain heavy distortions, or cube-
map projections [27], which have face discontinuities. Some
techniques adopt both representations and encode their map-
ping in the learning process to mitigate these problems [41],
[58]. Other approaches consider more refined multi-plane
representations and specialized network architectures [31].

Fig. 7 shows the point cloud associated with the depth
map estimated from the image in Fig. 3a by the U-Net-based
learning model in [57]. Note that each pixel has a depth value
associated, unlike in the layout estimation problem.

It is worth mentioning that monocular depth estimation
should work outdoors, unlike in the layout estimation problem.
However, most methods may not generalize to these environ-
ments because of the lack of annotated datasets and might not
handle infinity depth values, such as in the sky.

Fig. 7: Depth estimate from a single 360◦ image using [57].

VI. FINAL REMARKS

This tutorial paper aims to pave the way for the first con-
tact of researchers in spherical visual computing. We review
the spherical imaging model, the most common acquisition
pipelines, and prominent representation formats. Then we dis-
cuss the significant challenges faced in the area and highlight
recent advances in three applications that fully explore full-
FoV images. We expect this paper to be a brief yet solid source
addressing this renewed subject.
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[15] B. Krolla, M. Diebold, B. Goldlücke, and D. Stricker, “Spherical light
fields,” British Machine Vision Conference, no. 67.1-67.12, 2014.

[16] T. L. T. da Silveira, P. G. L. Pinto, J. Murrugarra-Llerena, and C. R.
Jung, “3d scene geometry estimation from 360° imagery: A survey,”
ACM Computing Surveys, 2022, just Accepted.

[17] J. D. Adarve and R. Mahony, “Spherepix: A data structure for spherical
image processing,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 483–490, 2017.

[18] S. K. Nayar, “Catadioptric Omnidirectional Camera*,” in Conference on
Computer Vision and Pattern Recognition, 1997, pp. 482–488.

[19] S. Im, H. Ha, F. Rameau, H.-G. Jeon, G. Choe, and I. S. Kweon, “All-
around depth from small motion with a spherical panoramic camera,”
in European Conference on Computer Vision, 2016, pp. 156–172.

[20] G. Fangi, R. Pierdicca, M. Sturari, and E. S. Malinverni, “Improving
spherical photogrammetry using 360◦ OMNI-Cameras: Use cases and
new applications,” International Archives of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, vol. 42, no. 2, pp. 331–
337, 2018.

[21] Y. Shan and S. Li, “Descriptor Matching for a Discrete Spherical Image
With a Convolutional Neural Network,” IEEE Access, vol. 6, pp. 20 748–
20 755, 2018.

[22] I. Lo, K. Shih, and H. H. Chen, “Image stitching for dual fisheye
cameras,” in IEEE International Conference on Image Processing, 2018,
pp. 3164–3168.

[23] R. Jung, A. S. J. Lee, A. Ashtari, and J.-C. Bazin, “Deep360Up:
A Deep Learning-Based Approach for Automatic VR Image Upright
Adjustment,” in IEEE Conference on Virtual Reality and 3D User
Interfaces, 2019, pp. 1–8.

[24] M. Eder, P. Moulon, and L. Guan, “Pano Popups: Indoor 3D Reconstruc-
tion with a Plane-Aware Network,” in 2019 International Conference on
3D Vision (3DV). IEEE, 2019, pp. 76–84.

[25] C. C. Gava, D. Stricker, and S. Yokota, “Dense Scene Reconstruction
from Spherical Light Fields,” in IEEE International Conference on
Image Processing, 2018, pp. 4178–4182.

[26] L. S. Ferreira, L. Sacht, and L. Velho, “Local Moebius transformations
applied to omnidirectional images,” Computers & Graphics, vol. 68, pp.
77–83, 2017.

[27] T. L. T. da Silveira, L. P. Dalaqua, and C. R. Jung, “Indoor Depth Estima-
tion from Single Spherical Images,” in IEEE International Conference
on Image Processing, 2018, pp. 2935–2939.

[28] F. Dai, C. Zhu, Y. Ma, J. Cao, Q. Zhao, and Y. Zhang, “Freely Explore
the Scene with 360° Field of View,” in IEEE Conference on Virtual
Reality and 3D User Interfaces, 2019, pp. 888–889.

[29] S. Song, A. Zeng, A. X. Chang, M. Savva, S. Savarese, and
T. Funkhouser, “Im2Pano3D: Extrapolating 360° Structure and Seman-
tics Beyond the Field of View,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition, vol. 1, 2018, pp. 3847–3856.

[30] M. Eder, M. Shvets, J. Lim, and J.-M. Frahm, “Tangent images for
mitigating spherical distortion,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2020.

[31] Y. Lee, J. Jeong, J. Yun, W. Cho, and K.-J. Yoon, “Spherephd: Ap-
plying cnns on 360° images with non-euclidean spherical polyhedron
representation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–1, 2020.

[32] B. Coors, A. P. Condurache, and A. Geiger, “SphereNet: Learning spher-
ical representations for detection and classification in omnidirectional
images,” European Conference on Computer Vision, pp. 525–541, 2018.

[33] F. De Simone, P. Frossard, P. Wilkins, N. Birkbeck, and A. Kokaram,
“Geometry-driven quantization for omnidirectional image coding,” 2016
Picture Coding Symposium, PCS 2016, 2017.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT
Press, 2016.

[35] C. Sun, C.-W. Hsiao, M. Sun, and H.-T. Chen, “HorizonNet: Learning
Room Layout with 1D Representation and Pano Stretch Data Augmen-
tation,” pp. 1047–1056, 2019.

[36] T. L. T. da Silveira and C. R. Jung, “Dense 3D Scene Reconstruction
from Multiple Spherical Images for 3-DoF+ VR Applications,” in IEEE
Conference on Virtual Reality and 3D User Interfaces, 2019, pp. 9–18.

[37] N. Zioulis, F. Alvarez, D. Zarpalas, and P. Daras, “Single-shot cuboids:
Geodesics-based end-to-end manhattan aligned layout estimation from
spherical panoramas,” p. 104160, 2021.

[38] N. Zioulis, A. Karakottas, D. Zarpalas, and P. Daras, “OmniDepth:
Dense Depth Estimation for Indoors Spherical Panoramas,” in European
Conference on Computer Vision, 2018, pp. 453–471.

[39] K. Tateno, N. Navab, and F. Tombari, “Distortion-Aware Convolutional
Filters for Dense Prediction in Panoramic Images,” European Conference
on Computer Vision, pp. 732–750, 2018.

[40] C. Fernandez-Labrador, J. M. Facil, A. Perez-Yus, C. Demonceaux,
J. Civera, and J. Guerrero, “Corners for layout: End-to-end layout
recovery from 360 images,” IEEE Robotics and Automation Letters, pp.
1–1, 2020.

[41] F.-E. Wang, Y.-H. Yeh, M. Sun, W.-C. Chiu, and Y.-H. Tsai, “Bifuse:
Monocular 360 depth estimation via bi-projection fusion,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[42] J. Xiao, K. A. E., A. Oliva, and A. Torralba, “Recognizing scene
viewpoint using panoramic place representation,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2012, pp. 2695–2702.

[43] M. A. Bergmann, P. G. L. Pinto, T. L. T. da Silveira, and C. R. Jung,
“Gravity alignment for single panorama depth inference,” in Conference
on Graphics, Patterns and Images (SIBGRAPI). IEEE, 2021, pp. 1–8.

[44] R. Jung, S. Cho, and J. Kwon, “Upright adjustment with graph convo-
lutional networks,” in IEEE ICIP. IEEE, 2020, pp. 1058–1062.

[45] J. Murrugarra-Llerena, T. L. T. da Silveira, and C. R. Jung, “Pose
estimation for two-view panoramas based on keypoint matching: A com-
parative study and critical analysis,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Work-
shops, June 2022, pp. 5202–5211.

[46] J. Jung, B. Kim, J.-Y. Lee, B. Kim, and S. Lee, “Robust upright
adjustment of 360 spherical panoramas,” The Visual Computer, vol. 33,
no. 6, pp. 737–747, 2017.

[47] L. Zhang, H. Lu, X. Hu, and R. Koch, “Vanishing point estimation and
line classification in a manhattan world with a unifying camera model,”
International Journal of Computer Vision, vol. 117, no. 2, pp. 111–130,
2016.

[48] Y. Shan and S. Li, “Discrete spherical image representation for cnn-
based inclination estimation,” IEEE Access, vol. 8, pp. 2008–2022, 2019.

[49] H. Yang and H. Zhang, “Modeling room structure from indoor
panorama,” in ACM SIGGRAPH International Conference on Virtual-
Reality Continuum and Its Applications in Industry, 2014, pp. 47–55.

[50] H. Jia and S. Li, “Estimating structure of indoor scene from a single
full-view image,” in IEEE International Conference on Robotics and
Automation, 2015, pp. 4851–4858.

[51] C. Sun, M. Sun, and H.-T. Chen, “Hohonet: 360 indoor holistic under-
standing with latent horizontal features,” pp. 2573–2582, 2021.

[52] G. Pintore, C. Mura, F. Ganovelli, L. Fuentes-Perez, R. Pajarola,
and E. Gobbetti, “State-of-the-art in automatic 3d reconstruction of
structured indoor environments,” Computer Graphics Forum, vol. 39,
no. 2, 2020.

[53] Y. Zhang, S. Song, P. Tan, and J. Xiao, “PanoContext: A whole-room
3D context model for panoramic scene understanding,” in European
Conference on Computer Vision, 2014.

[54] F.-E. Wang, Y.-H. Yeh, M. Sun, W.-C. Chiu, and Y.-H. Tsai, “LED2-Net:
Monocular 360◦ layout estimation via differentiable depth rendering,”
pp. 12 956–12 965, 2021.

[55] G. Pintore, M. Agus, and E. Gobbetti, “AtlantaNet: Inferring the 3D
indoor layout from a single 360 image beyond the Manhattan world
assumption,” in European Conference on Computer Vision, 2020.

[56] A. Pagani and D. Stricker, “Structure from Motion using full spherical
panoramic cameras,” in IEEE International Conference on Computer
Vision Workshops, 2011, pp. 375–382.

[57] G. Albanis, N. Zioulis, P. Drakoulis, V. Gkitsas, V. Sterzentsenko,
F. Alvarez, D. Zarpalas, and P. Daras, “Pano3d: A holistic benchmark
and a solid baseline for 360° depth estimation,” in 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2021, pp. 3722–3732.

[58] H. Jiang, Z. Sheng, S. Zhu, Z. Dong, and R. Huang, “Unifuse: Unidi-
rectional fusion for 360◦ panorama depth estimation,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 1519–1526, 2021.


	Introduction
	Fundamentals
	Acquisition and Representation
	Challenges
	Selected Applications
	Gravity Alignment
	Layout Estimation
	Depth Estimation

	Final Remarks
	References

