
An Action Recognition Approach with Context and
Multiscale Motion Awareness

Danilo Barros Cardoso, Luiza C.B. Campos, and Erickson R. Nascimento
Computing Science Department, Universidade Federal de Minas Gerais (UFMG), Brazil

{danilo.cardoso, luiza.chagas, erickson}@dcc.ufmg.br

Abstract—Despite the substantial progress made by computer
vision approaches in solving image classification, object detection,
and pose estimation, to name a few, activity recognition remains
one of the key challenges in computer vision and pattern
recognition. This paper proposes a new learning framework
based on multiscale spatiotemporal graph convolution layers
and a transformer architecture. Even though several approaches
present high accuracy in more traditional datasets like NTU,
their performance significantly drops when tested in datasets with
a high level of ambiguity among activities and an unbalanced
number of samples for each class. We evaluated our architecture
in the challenging BABEL dataset, where we achieved state of
the art in terms of accuracy (65.4%) in action classification when
considering both ambiguity and class unbalance. The source code
and trained models are publicly available at https://github.com/
verlab/AnActionRecognitionApproach SIBGRAPI 2022.

I. INTRODUCTION

Humans are very good at making sense of what is going on
with movements and assigning labels to the observed action.
We have an innate ability to understand human behavior
by analyzing a small set of human poses. Although in the
past decade we have witnessed the performance gap between
humans and computers, in many tasks such as image classifi-
cation [1], scene recognition [2], and object detection [3], the
same does not hold for action recognition - especially when
recent and large-scale video datasets such as BABEL [4] are
concerned. Although high accuracy values have been achieved
in datasets with simple actions (e.g., NTU [5], [6], MSR
Action3D Dataset [7]–[9], and Kinetics [10]), the proposal of
a new dataset with more natural and complex human motions
has led several methods to a significant drop in performance.

Human action recognition techniques face several chal-
lenges. Foremost is the high level of motion ambiguity when
classifying natural and routine human movements. For in-
stance, more general actions such as interacting with or using
an object are easily misclassified with specific actions with
finer and low-scale motions like taking or picking something
up. Run and jog actions, for their turn, have very similar
motions for the joints and links in a human skeleton, albeit they
are easily separable when considering the spatiotemporal rela-
tion of joints. Recent advances on human pose estimation [11],
[12], self-attention layers [13], and graph architectures [14]–
[16] have shed new light on action recognition approaches.
However, modeling the multiscale nature and spatiotemporal
relation of the skeleton joints remains a key challenge in the
action recognition field.

Fig. 1. Learning to recognize actions with ambiguous motions. Our archi-
tecture is based on a set of downsampling operations that are applied to the
skeleton graphs until they are reduced to a series of pose embeddings. The
sequence of feature vectors and a summary token feed the Transformers layers,
which give context to the poses. Finally, the summary token is given as input
to a classifier that infers the action class.

In this paper, we present a new action recognition frame-
work based on a Transformer [13] architecture and multi-
scale spatiotemporal graph convolution layers. Our learning
approach applies a stage-wise strategy to train our architecture,
where we first pre-train a multiscale encoder-decoder model
with self-supervision in an auto-regressive task to create rich
representations for a sequence of poses. Then, the feature
vector extracted from the encoder is provided as input to a
classifier. Our encoder uses a transformer architecture, which
enriches the pose representation with context information. The
experimental results show that our architecture is superior to
the state-of-the-art methods in key metrics when using the
challenging BABEL dataset. In summary, our contributions
are as follows:

• We investigate the use of a stage-wise strategy in an
action recognition problem;

• A multiscale component to support capturing fine-grained
movements;

• We present an architecture that uses the multiscale com-
ponent and Transformers layers to mix multiscale motion
and context into an action embedding.

II. RELATED WORK

A. Skeleton Based Action Recognition

The usage of skeleton and joint trajectories to classify
an action has advantages over other methods thanks to its
robustness to illumination change and scene variation. Yan et
al. [14] proposed the Spatial-Temporal Graph Convolutional
Network (ST-GCN) for skeleton-based action recognition.
Their technique innovates by modeling poses into a graph with
temporal connections and applying a series of convolutions in
space (single pose) and time dimensions.

https://github.com/verlab/AnActionRecognitionApproach_SIBGRAPI_2022
https://github.com/verlab/AnActionRecognitionApproach_SIBGRAPI_2022

Li et al. [17] introduced two structures: actional links
that learn action-specific dependencies and structural links,
which extend the existing skeleton graphs connections with
higher-order dependencies. Their proposed layer, the Actional-
Structural Graph Convolutional Network (AS-GCN), is a com-
bination of the two structures that, when stacked, can be used
for action recognition. Another extension was proposed by
Shi et al. [18] where structural information, i.e., the adjacency
matrix, is complemented by a set of learned weights capable
of establishing higher-order topology connections.

Cheng et al. [15] adapted the shift convolution operation
from CNN architectures to graphs, improving the results
while using fewer parameters. More recently, Chen et al. [16]
proposed the Multi-Scale Spatial Graph Convolution Module
(MST-GCN). It increases the receptive field of the model in
spatial and temporal dimensions by partitioning the feature
space and applying convolutions in cascade, each time adding
a new partition and increasing the receptive field.

B. Transformers in Vision Data

The Transformer architecture, proposed by Vaswani et
al. [13], is currently the basic build block for Natural Language
Processing (NLP) models due to its power of linking context
between words in a sentence, even in situations in which two
related words are separated by many others. It is based on
an encoder-decoder structure where its components are self-
attention blocks. Since its proposal, significant advances have
been achieved in the NLP area. Devlin et al. [19] used the
Transformer power in a language representation model called
BERT, designed to pre-train deep bidirectional representations
from unlabeled text, and then fine-tune the model to a specific
task with just one additional output layer.

The Transformer’s success inspired many researchers to
apply its model components in computer vision tasks. Lu et
al. [20] proposed ViBERT connecting NLP and computer
vision in task-agnostic self-supervised pre-trained models that
produce rich representations which can be fine-tuned later.
Dosovitskiy et al. [21] explored the usage of Transformers
blocks in computer vision tasks with only minor changes to
adapt the input, an image, to a series of tokens. Wu et al. [22]
proposed The Visual Transformer, a model to tokenize the
image feature map into semantic groups through self-attention.
For human action recognition, Mazzia et al. [23] proposed
a method entirely based on the Transformer. The skeleton’s
keypoints are mapped to the Transformer input space by
a simple linear transformation and a class token is added
to the beginning of the sequence to aggregate information
through the layers. The class token final representation serves
as input for the classifier. Plizzari et al. [24] used the self-
attention blocks to replace ST-GCN architecture spatial con-
volution (GCN) and temporal convolution (TCN) components
by spatial-transformer and temporal Transformer, respectively.

In our work, we aim to exploit the benefits of graph con-
volutional networks and the Transform architecture to model
multiscale features and the context in motion to improve the

Fig. 2. Downsampling operation. The skeleton graph is reduced by each layer
k accordingly the steps above and condensed into a single feature vector. The
eliminated nodes in each step are highlighted in red.

robustness of action recognition in the presence of ambiguous
activities and an unbalanced dataset.

III. METHODOLOGY

Our architecture is based on an encoder-decoder structure,
where the encoder is composed of a multiscale downsampling
and a context component. While the first is responsible for
transforming a sequence of poses into a sequence of feature
vectors, the latter is based on a Transformer encoder that
enriches the pose representations with context information.
The decoder, for its turn, has three components: the multiscale
downsampling, a Transformer decoder, and an upsampling
layer. The downsampling weights in both encoder and decoder
branches are shared, since they have the same objective.
The decoder receives the action embedding from the encoder
branch as memory, and the upsampling layer predicts the next
pose considering the sequence of poses received as input.

A. Multiscale downsampling

Let X0 ∈ RT×V×C be an input tensor, where T is the
number of poses, V is the number of vertices of the skeleton
graph, and C is the number of spatial dimensions. In our case
C = 6, i.e., the Euclidean coordinates of the 3D position of
the node and its 3D velocity between two frames.

The multiscale downsampling is a series of k layers that
gradually reduces the number of nodes V of the input tensor
Xk, simplifying the skeleton graph, but keeping semantic
information necessary to describe the pose. In our case the
pose skeletons are reduced from V0 = 25 in the input tensor,
V1 = 19 after layer k = 0, V2 = 13 after layer k = 1, V3 = 5
after k = 2 and V4 = 1 after k = 3. Figure 2 shows the
downsampling scheme adopted in our implementation.

Each layer k is composed of two modules. First, the data
passes through an aggregation step implemented by a graph
convolution network that is responsible for extracting features
regarding skeleton pose and motion. The aggregation module
can be any spatiotemporal convolution block such as those
proposed by Yan et al. [14], Li et al. [17], Shi et al. [18],
and Chen et al. [16]. We use the AGCN convolution block
proposed by Shi et al. [18] and defined as

hk = WhkXk(Ak +Bk + Ck), (1)

where hk is the tensor after the aggregation operation, Whk

are weights learned by the network, Ak is the adjacency matrix
of the graph that models the skeleton in layer k, and Bk is a

Fig. 3. Multiscale Downsampling and Context components. The downsam-
pling component (left) receives a sequence of poses that are downsampled
to a single vector. After the downsampling step, features from the body,
arms, and legs are extracted and max-pooled. The features are concatenated to
form the multiscale features that are injected into all nodes in all subsequent
layers and producing pose embeddings. The pose embeddings feed a stack
of transformer layers together with a summary token (right). The transformer
encoder enriches each token with context information and the summary token
collects context information in each layer to produce the action token.

matrix of weights learned by the model to allow the network
establish connections between nodes that are not linked by
Ak. Ck matrix measures similarities between two node feature
vectors and acts like an attention mechanism, considering that
nodes with similar features should communicate with each
other. The matrix Ck is given by

Ck = softmax(XT
k W

T
θkWϕkXk), (2)

which applies a linear transformation of the input vector by the
parameters Wθk and the weights Wϕk learned in the training.

The second step is the downsampling module that is respon-
sible for simplifying the skeleton. It decreases the number of
nodes from Vk to Vk+1 by applying the operation

Yk = WskAkhk, (3)

where Wsk is a weight matrix of dimension Vk+1 × Vk and
Yk is the output tensor of layer k.

The multiscale features are extracted from the output tensor
Y0, and injected into the upstream layers. Let Va, Vl and Vb

be the set of node indexes i in dimension V1, representing arm
nodes, leg nodes, and body nodes. The multiscale features are
constructed through the following rule:

xarms = max(y0i) ∀i ∈ Va,

xlegs = max(y0i) ∀i ∈ Vl,

xbody = max(y0i) ∀i ∈ Vb.

(4)

Then each component is concatenated to form the final mul-
tiscale vector xms, as

xms = xarms ⊕ xlegs ⊕ xbody, (5)

where ⊕ is the operation of concatenation.
The vector xms is stored internally and, in each subsequent

layer, it is expanded into the matrix Xmsk to meet the number

Fig. 4. Learning rich pose features. The model architecture during pre-training
is composed of an auto-regressive encoder-decoder pair whose objective is to
reconstruct a sequence of poses. The encoder is connected to the decoder by
an action token which is trained to encode the whole action into a single
vector. In the classification step, the decoder branch is dropped, and an MLP
is added after the encoder. The classifier uses the action token as input and
outputs score values for each class.

of nodes in each pose inputted into that layer. Finally, next
layer input is given by

Xk = Xmsk ⊕ Yk−1. (6)

where the expanded vector is concatenated to the previous
layer output. The multi-scale downsampling process is illus-
trated in Figure 3.

B. Context Component

The context component is a transformer’s encoder-decoder
pair as proposed by Vaswani et al. [13]. In our method, a stack
of three identical layers composes the encoder. Each layer
is composed of two sub-layers: a multi-head self-attention
mechanism and a fully connected feed-forward network. The
decoder is also composed of three identical layers. Besides the
sub-layers already described for the encoder layer, it adds a
third sub-layer, which performs multi-head attention over the
output of the encoder stack.

The layer’s input is the sequence of pose embeddings Yds

produced by the downsampling component. A summary token
is concatenated to the sequence of pose embeddings, whose
values are parameters learned by the network. The token is
used to collect and summarize context data from transformers
layers and therefore, describe the complete action. Finally,
a positional encoding vector is added to the embeddings, as
proposed by Vaswani et al. [13]. It allows the network to know
the relative position of each token in the sequence.

The encoder is present both in the pre-training and in the
classification phase. The encoder outputs a sequence of arrays,
where the first vector is the summary token after passing
through the transformer’s layers and collecting context data.
We call this token Action Embedding Token. The remaining
vectors are pose embeddings enriched by context information.

The decoder is present only during the pre-training phase.
It receives a series of pose embedding produced by the
downsampling component as input. In the decoder branch,

the poses are shifted back one time step, and a subsequent
mask is applied to the self-attention block to model an auto-
regressive task. The encoder information is provided by the
action embedding token, which is inputted to the encoder-
decoder attention block of each decoder layer. The output
of the decoder is a sequence of arrays, one for each pose,
with features capable of describing the pose with sufficient
information to reconstruct the pose.

C. Upsampling layer

The upsampling block is used in the pre-training phase. It
generates a pose skeleton in three-dimensional space from a
pose embedding outputted by the decoder. The upsampling
component is similar to the downsampling component but the
upsampling operation replaces the downsampling operation.
This operation is responsible for increasing the number of
nodes in the graph following the inverse order of the down-
sampling. The upsampling operation is defined by

Yuq = WuqAqhq, (7)

where Wuq is a weight matrix of dimension Vq+1 × Vq and
Yuq is the output tensor of upsampling q-th layer.

D. Training and classification

We adopted a stage-wise training strategy. First, we train
the model in a self-supervised and auto-regressive manner to
create rich representations for a sequence of poses stored in
the tensor X0. Then, we extract the encoder branch and add
a final layer responsible for the activity recognition. Figure 4
depicts an overview of these two steps in our training phase.

The output of the encoder branch can be interpreted as an
action embedding that summarizes the whole action. There-
fore, we feed an MLP classifier with the action embedding.
We used two fully connected layers as classifier, where the
last layer is responsible for producing logits that classify the
action. The complete classification architecture is represented
in the bottom row of Figure 4.

IV. EXPERIMENTS

In this section, we first present the dataset, testing setup, and
implementation used in the experiments. Then, we present and
discuss the results, comparing our method with the state of the
art. Finally, we present the ablation study to analyze the effect
of each component of our architecture.

A. Dataset

In our experiments, we used the BABEL [4] dataset for
action recognition. BABEL is a large dataset with language
labels describing actions captured by mocap sequences. Its
objective is to support research focused on understanding
human movement semantics. The authors proposed a pre-
processed version of the dataset as a new benchmark for action
recognition, on account that current state-of-the-art models
reach above 95% of accuracy in the most used benchmark
datasets - NTU RGB+D 60 [5] and NTU RGB+D 120 [6] -
leaving short space to measure progress. The pre-processed

Class ID

sa

m
pl

es
 p

er
 c

la
ss

0

2000

4000

6000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 10
2

10
5

10
8

11
1

11
4

11
7

Distribution of samples per class

Fig. 5. Distribution of samples per class, showing that BABEL is a very
unbalanced dataset. The first ten classes amount to over 50% of all samples.

version of the dataset has the characteristics desired for this
work, i.e., a high level of ambiguity and an unbalanced
distribution of samples, as shown in Figure 5.

The BABEL dataset for action recognition is organized into
two subsets. BABEL 60 with 45,473 samples representing
the 60 most common action labels of the original dataset
and BABEL 120 with 120 classes and 48,978 samples that
comprises same samples from BABEL 60, plus 3,505 addi-
tional samples of the following 60 most common classes of
the original dataset.

B. Data pre-processing

Each pose skeleton was normalized by transforming the co-
ordinates such that the middle spine is fixed in origin, shoulder
blades are parallel to the X-axis, and the spine to the Y-axis,
following methods proposed by Shahroudy et al. [5] and used
by Punnakkal et al. [4]. All pose sequences are sampled at 30
fps and truncated to five seconds. After normalization, velocity
features are calculated and concatenated to the input tensor.
The velocity is calculated by subtracting node spatial features
of two adjacent temporal frames.

C. Implementation details

For the pre-training phase, we used the L1 loss to measure
the distance of the predicted position of a given pose key-point
in 3D space to ground-truth coordinates. For the fine-tuning,
we experiment using focal loss [25]. Focal loss compensates
for class imbalance by up-weighting the cross-entropy loss for
inaccurate predictions. The experiment could be early stopped
to prevent overfitting. In both phases, we use the AdamW
optimizer [26] with a learning rate of 0.00005, batch size of
64 samples, and a maximum of 300 epochs.

D. Results

To analyze the method, we used the same metrics of
Punnakkal et al. [4]. Top-1 measures the accuracy of the
most activated class. Top-5 measures if the correct class ranks
among the top five highest-scoring predictions. Top-1-norm is
the mean Top-1 accuracy across classes.

Since Top-5 accuracy accounts for labeling noise and ambi-
guity, it is considered the best indicator to evaluate the model

TABLE I
RESULTS - FOCAL LOSS.

Variation Top-5 Top-1 Top-1-Norm
B

A
B

E
L

60

Dataset Benchmark [4] 69.0 34.0 30.0
ST-GCN [14] 44.2 24.2 14.4
2s-AGCN [18] 67.8 33.8 30.4
MST-GCN [16] 70.3 36.3 35.4
Ours 70.4 36.4 30.3

B
A

B
E

L
12

0 Dataset Benchmark [4] 59.0 29.0 23.0
ST-GCN [14] 28.6 20.5 5.5
2s-AGCN [18] 58.0 27.9 26.2
MST-GCN [16] 60.1 29.9 29.8
Ours 65.4 31.4 28.4

for BABEL. The results for Top-5 using focal loss can be seen
in Table I. Our methods could outperform competitors by 0.1
p.p. for the BABEL 60 and 5.3 p.p. for the BABEL 120.

Our method also presented significant results for the Top-1
metric when optimizing with focal loss. Our method outper-
formed all competitors for both BABEL 60 and BABEL 120
(0.1 p.p. and 1.5 p.p., respectively). The results for the Top-1
metric with focal loss optimization are summarized in Table I.

For the Top-1 metric with accuracy normalized by the
number of samples we see a good performance, but not enough
to outperform all competitors. Our method can surpass or
equal the ST-GCN and 2s-AGCN methods in both versions of
the dataset. However, we perform below MST-GCN by 4.1 p.p
and 2.0 p.p for BABEL-120 and BABEL 60, respectively. It is
worth mentioning that although this metric considers dataset
imbalance, it cannot measure performance between ambiguous
classes. The results for this metric are compiled in Table I.

E. Ablation Study

In the ablation study, we examine several parts of our
architecture in order to analyze the impact of each component
in the results. First, we execute experiments directly for action
recognition to evaluate the contribution of the pre-training for
the final result. Then, we analyzed the effect of the transformer,
changing the size of the stack of transformer blocks. Finally,
we remove the multiscale mechanism to verify its effect. The
results are reported in Table II.

The results show that, especially in the metrics taken as a
reference, i.e., the Top-5 and Top-1 accuracy, all components
contribute to the result. The element with the highest impact
on main metrics was the use of the multiscale component.
This mechanism alone contributed to an increase of 4.2 p.p.
in Top-5 accuracy, both for the BABEL-60 and BABEL-120
datasets, when trained with focal loss. In the case of the Top-
1 accuracy, the result is a gain of 3.2 p.p. and 2.4 p.p. for
BABEL-60 and BABEL-120, respectively.

The use of pre-training shows a relevant effect on the
final result, since the results was consistent in both versions
of the dataset. For the BABEL-60 dataset, one can see an
increase of 0.7 p.p. in the Top-5 and 1.9 p.p. accuracy. In
the case of the Top-1 accuracy, the use of pre-training had

TABLE II
ABLATION STUDY.

Top-5 Top-1 Top-1-Norm

B
A

B
E

L
60 No pretrain 69.7 34.5 30.3

Transformer (1 layer) 68.2 34.2 31.4
Transformer (2 layer) 69.2 33.8 31.2
No multiscale mechanism 66.2 33.2 29.4
Complete model 70.4 36.4 30.3

B
A

B
E

L
12

0 No pretrain 63.5 29.8 25.3
Transformer (1 layer) 61.9 29.9 26.8
Transformer (2 layer) 64.8 30.3 28.6
No multiscale mechanism 61.2 29.0 24.7
Complete model 65.4 31.4 28.4

(a) Cross-entropy (b) Focal loss

Fig. 6. Comparison between the activation averages of the ‘Actions with
ball’ class samples. a) Model trained using cross-entropy loss. Classes with
similar semantics have unbalanced activation levels, indicating difficulty in
dealing with ambiguity. b) Model trained with focal loss. Actions with similar
semantics have similar activation, indicating better ambiguity handling.

no observable effect on the normalized Top-1 metric. For
BABEL-120, pre-training was responsible for an increase of
1.9 p.p. in performance measured by the Top-5 metric and 1.6
p.p in the performance measured by the Top-1 metric.

F. Dealing with ambiguity

A relevant aspect of our work is how to tackle ambiguity.
In this section, we present a qualitative analysis seeking
a better understanding of the results and why using focal
loss is fundamental when dealing with ambiguity, and what
this means in practical terms. For that, we observed the
accumulated activation profile of selected class samples when
presented to models trained with cross-entropy compared to
models trained with focal loss. The activation profile is built
from all samples of a specific class inputted in a trained model.
The activation levels outputted by each sample accumulate,
resulting in a histogram.

Figure 6 shows the result of this analysis for the class
‘action with ball’. It is noteworthy that for the model trained
using cross-entropy, a peak stands out from ‘action with ball’
class bin. Classes with similar meanings have significantly less
intense activation. We argue that this difference in semantic
terms is not justified, i.e., the level of certainty presented by
the network does not match the real meaning of the available
options. On the contrary, when we observe the activation
profile for a model trained using focal loss, classes with
close semantics also show relevant activation. Furthermore, we

observe that the profile represents better the movement itself,
with the inclusion of action classes like ‘kick’ in the set of
highly activated.

V. CONCLUSION

In this paper, we propose a new learning framework based
on multiscale features and the context of motions. The ex-
perimental results showed that the use of pre-training and the
proposed multiscale mechanism contributed to improving the
overall performance in the BABEL dataset, particularly when
analyzing the results of Top-5 trained with focal loss. Since
this metric is the only one that considers, at the same time,
the imbalance and ambiguity of the dataset, the fact that we
outperformed the other competitors by a significant margin
shows the effectiveness of the proposed approach.

Moreover, the use of focal loss was fundamental in achiev-
ing the objective of dealing with ambiguous motions, as it
allowed the model to similarly represent classes with similar
semantics, as demonstrated in the activation histograms.

ACKNOWLEDGMENTS

The authors would like to thank CAPES, CNPq, and
FAPEMIG for funding different parts of this work. We also
thank NVIDIA for the donation of a Titan XP GPU.

REFERENCES

[1] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2017, pp. 4700–
4708.

[2] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu,
“CoCa: Contrastive Captioners are Image-Text Foundation Models,”
2022.

[3] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, and H.-
Y. Shum, “DINO: DETR with Improved DeNoising Anchor Boxes for
End-to-End Object Detection,” arXiv preprint arXiv:2203.03605, 2022.

[4] A. R. Punnakkal, A. Chandrasekaran, N. Athanasiou, A. Quiros-
Ramirez, and M. J. Black, “BABEL: Bodies, Action and Behavior with
English Labels,” in Proceedings IEEE/CVF Conf. on Computer Vision
and Pattern Recognition, Jun. 2021, pp. 722–731.

[5] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “NTU RGB+D: A Large
Scale Dataset for 3D Human Activity Analysis,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 1010–1019.

[6] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C. Kot,
“NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity
Understanding,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 42, no. 10, pp. 2684–2701, 2020.

[7] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of
3d points,” in 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition - Workshops, 2010, pp. 9–14.

[8] A. W. Vieira, E. R. Nascimento, G. L. Oliveira, Z. Liu, and M. F. M.
Campos, “STOP: Space-time occupancy patterns for 3d action recog-
nition from depth map sequences,” in Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications, L. Alvarez, M. Me-
jail, L. Gomez, and J. Jacobo, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 252–259.

[9] A. W. Vieira, E. R. Nascimento, G. L. Oliveira, Z. Liu, and M. F.
Campos, “On the improvement of human action recognition from
depth map sequences using space–time occupancy patterns,” Pattern
Recognition Letters, vol. 36, pp. 221–227, 2014.

[10] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and
A. Zisserman, “The Kinetics Human Action Video Dataset,” CoRR, vol.
abs/1705.06950, 2017.

[11] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime Multi-Person
2D Pose Estimation Using Part Affinity Fields,” in IEEE Conference on
Computer Vision and Pattern Recognition, July 2017.

[12] Y. Xu, J. Zhang, Q. Zhang, and D. Tao, “ViTPose: Simple Vision
Transformer Baselines for Human Pose Estimation,” arXiv preprint
arXiv:2204.12484, 2022.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998–6008.

[14] S. Yan, Y. Xiong, and D. Lin, “Spatial Temporal Graph Con-
volutional Networks for Skeleton-Based Action Recognition,” in
Thirty-Second AAAI Conference on Artificial Intelligence, ser.
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[15] K. Cheng, Y. Zhang, X. He, W. Chen, J. Cheng, and H. Lu, “Skeleton-
Based Action Recognition With Shift Graph Convolutional Network,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 183–192.

[16] Z. Chen, S. Li, B. Yang, Q. Li, and H. Liu, “Multi-Scale Spatial
Temporal Graph Convolutional Network for Skeleton-Based Action
Recognition,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 2, 2021, pp. 1113–1122.

[17] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, “Actional-
Structural Graph Convolutional Networks for Skeleton-based Action
Recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 3595–3603.

[18] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-Stream Adaptive Graph
Convolutional Networks for Skeleton-Based Action Recognition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 12 026–12 035.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
1. Minneapolis, Minnesota: Association for Computational Linguistics,
Jun. 2019, pp. 4171–4186.

[20] J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining
Task-Agnostic Visiolinguistic Representations for Vision-and-Language
Tasks,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[21] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale,” in International Conference on Learning Representations,
2021.

[22] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka,
J. Gonzalez, K. Keutzer, and P. Vajda, “Visual Transformers: Token-
based Image Representation and Processing for Computer Vision,” arXiv
preprint arXiv:2006.03677, 2020.

[23] V. Mazzia, S. Angarano, F. Salvetti, F. Angelini, and M. Chiaberge,
“Action Transformer: A Self-Attention Model for Short-Time Pose-
Based Human Action Recognition,” Pattern Recognition, vol. 124, p.
108487, 2022.

[24] C. Plizzari, M. Cannici, and M. Matteucci, “Spatial Temporal Trans-
former Network for Skeleton-based Action Recognition,” in ICPR In-
ternational Workshops and Challenges: Virtual Event. Springer, 2021,
pp. 694–701.

[25] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss
for Dense Object Detection,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 2980–2988.

[26] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”
in ICLR, 2018.

	Introduction
	Related Work
	Skeleton Based Action Recognition
	Transformers in Vision Data

	Methodology
	Multiscale downsampling
	Context Component
	Upsampling layer
	Training and classification

	Experiments
	Dataset
	Data pre-processing
	Implementation details
	Results
	Ablation Study
	Dealing with ambiguity

	Conclusion
	References

