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Abstract—Object detection is a widely explored topic within
the computer vision research field mostly because it is necessary
for almost every system containing some kind of visual scene
understanding or interpretation. Significant advances throughout
the last 40 years allowed us to evolve from early techniques
based on template matching to modern deep detectors capable of
detecting thousands of different classes of objects with reasonable
performance. Nonetheless, as approaches kept improving, more
challenging topics related to object detection have been proposed.
Classic object detectors have to be trained with all classes
that might be presented in the testing phase. However, this is
a problem in real-world scenarios because it is impossible to
know the whole domain of possible objects. Hence, a task has
emerged called class-agnostic object detection that essentially
detects objects without determining their classes. In this paper,
we address this task using a convolutional network and texture
graylevel quantization. Our results showed that our model could
improve 2.1 percentage points (p.p.) from the best baseline on
objects that were not annotated in the training phase.

I. INTRODUCTION

In the past decade, the continuous advances in machine
learning techniques led the computer vision research commu-
nity to new challenging problems in the field. Modern GPUs
allowed it to create deep networks composed of millions of
parameters that can learn patterns at an ever-increasing level
of complexity [1], [2]. For instance, researchers could achieve
outstanding results in the biometrics field, introducing new
high-level and low-intrusive forms of personal identification
such as gait [3] and voice recognition [4].

Another example of a task that had witnessed numerous
advances throughout the last years is object detection [5],
[6]. These systems essentially consist of models trained to
recognize patterns defining the target objects. Therefore, they
need to learn these patterns from a previous training data set.

There are many potential applications in the real world
for object detection, such as in surveillance systems, robotics
vision, semantic segmentation, and other topics related to
scene understanding. For these tasks, generally, state-of-the-
art methods rely heavily on how good and diverse the training
samples are. Thus, despite some efforts of data augmenta-
tion [7], [8] and/or generative approaches [9] to increase data
variance, most techniques can only be as good as the data they
were trained.

In traditional object detection approaches, models need to
be fed by thousands of samples from each class to learn how to
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Fig. 1. Default architecture of a class-aware object detector.

distinguish them. This poses a problem in real-world scenarios
because it is nearly impossible to name each class of objects
that might be present somewhere and even more challenging
to get meaningful samples from each one. Therefore, a new
task emerged in the past years called class-agnostic object
detection [10], [11]. It consists, essentially, of recognizing
different objects in a scene without the need to name each
one. This is different from conventional object detection (from
now on called class-aware) because all objects are treated as
if they are from the same class.

Class-aware object detectors generally have a specific output
to each known class used to rank these classes and assign
the highest score as the correct one. Hence, to train a class-
aware object detector using a dataset with C labeled classes,
the model has to have an output of size C representing the
score for each class. Figure 1 illustrates a simple class-aware
detector pipeline. On the other hand, class-agnostic models are
trained only to distinguish between objects and non-object.
These models can be trained in either box-wise or a pixel-
wise manner. In the former case, the model needs to generate
candidate regions and decide afterward if those regions are
real objects or are to be discarded [11]. In the second case,
the model outputs a score for each pixel representing the
probability of objectness [12].

In this paper, we propose a new pixel-wise class-agnostic
detector. Our approach is a neural network composed of a
convolutional backbone followed by a classification block.
During the training phase, we allowed the model to train only
in those positions where pixels were annotated, effectively
ignoring those that did not have any object labeled. We also
include combinations of two losses as target loss in a multi-
task manner.

There are many challenges in training models for class-
agnostic object detection. One of the main ones is that
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Fig. 2. Architecture of the proposed class-agnostic detector. Inputs are pre-processed before passed towards the resnet50 backbone. Final objectness pixel
score is given by the last bottleneck block.

most datasets only annotate objects belonging to a labeled
class [13], [14]. This does not exclude the possibility that other
objects that do not belong to any labeled class might be present
in the image. Therefore, we assume that these datasets have
some objects annotated but not all.

We train our network in a fully convolutional manner where
the network is fed with images and outputs an objectness
map representing the probability that this pixel belongs to an
object. Our results show that our approach could generalize
very well to unlabeled objects, averaging a recall of 46% in
object classes that were not annotated in the training phase.

The main contribution of this paper can be pointed out as a
new end-to-end model to perform class-agnostic object detec-
tion. This model includes (i) a deep convolutional backbone,
(ii) a training protocol, (iii) and a composite loss to supervise
it.

II. RELATED WORKS

In this section, we detail the most important papers related
to topics addressed in this work.

A. Class-aware Object Detection

Class-aware object detectors are the most common image-
based detectors present in the literature. They concern those
models that need to be trained with samples from each
class they have to detect. Class-aware detectors refer an
extensive range of different techniques varying from early
approaches based on template-matching [15], going through
high-level shape-based descriptors like Scale-Invariant Fea-
tures Transform (SIFT) [16] and Histogram of Oriented Gra-
dients (HOG) [17] to modern deep learning-based detectors
like YOLO [18] and CenterNet [19].

In recent years years, object detection was highly influenced
by the advent of deep neural networks since representation was
one of the main challenges that detectors had to that date, and
this is precisely where deep learning can be more helpful.

Region Based Convolutional Neural Networks (RCNN) [20]
is one of the first deep learning-based object detectors. It
is composed of three steps: (i) generate thousands of region

proposals; (ii) scale them to a canonical size to use a regular
CNN for feature extraction; (iii) apply an SVM to each
vector to decide whether the correspondent region contains
an object. Since the detection and classification tasks are
done separately, this detector is called a two-stage detector.
RCNN was further developed to more robust approaches such
as Faster-RCNN [21] and Mask-RCNN [22]. The latter has
the advantage of outputting masks at pixel level instead of
rectangular bounding boxes.

One-stage approaches are known for performing detection
and classification in a single network forward. Initially, Red-
mon et al. [18] proposed the You Only Look Once (YOLO) de-
tector. Then, Liu et al. [23] designed the Single Shot Detector
(SSD) that also divides the image into a grid. More recently,
Law et al. [24] proposed a new detector called CornerNet.
Their technique uses a CNN to predict top-left and bottom-
right points in the image as was further expanded in Duan et
al. [19] to also enabled center coordinates matching.

Class-aware object detectors achieve far better results than
class-agnostic models when detecting classes they were trained
for. It happens because class-agnostic models cannot focus
on learning how these objects are or how the variety of
perspectives they might appear. As opposed to the approaches
described in the last section, our proposed detector does not
need to see samples from each class it has to detect.

B. Class-agnostic Object Detection

Although one can find early works regarding class-agnostic
object detection task [25], many approaches with promising re-
sults are relatively new and already take advantage of modern
deep learning techniques [11], [26]. In contrast, it is also possi-
ble to find handcrafted approaches like the Binarized Normed
Gradients (BING) [27], or part-based approaches. [28].

Maaz et al. [26] argue that correlating natural language in-
terpretation with visual features helps the model to generalize
novel concepts. They proposed an ambitious approach using
multi-modal transformers to locate generic objects using text-
image alignment semantics.



Fig. 3. RGB and heatmap from coco dataset. In the heatmap, the gray pixels
represent the non-trained areas. Edge pixels are marked with black and object
pixels with white color.

More recently, Jaiswal et al. [11] proposed a neural-based
approach that outputs bounding box coordinates. Their sig-
nificant contribution relies on a discriminator that blocks
the network to learn class-specific features. Therefore, the
network minimizes the discriminator and cannot learn how to
distinguish between the classes. In one of our experiments,
this detector was selected to compare our model with a
literature baseline. Our model is design to output a feature
map representing the objectness score for each pixel in the
image. This idea was also explored other works [12], [29].

Finally, semantic segmentation is closely related task to
class-agnostic detection [30]. It is more generic as it refers
to the problem of assigning class labels to each pixel in
the input. Thus, one can note that pixel-wise class-agnostic
detectors are like semantic segmentation methods with two
classes: object and non-object. Fully-convolutional neural net-
works (FCNN) [30] and DeepLab [31] models were proposed
to address semantic segmentation using fully-convolutional
architectures and were chosen in some steps of this work.

III. PROPOSED APPROACH

First, we detail the deep neural network used to perform
feature extraction. Then, we address the training schema
adopted to handle the specific problem of unlabeled class
detection. Finally, we present a novel composite loss function
used to train the network.

A. Feature Extraction

Deep Convolutional Neural Networks (CNNs) are well-
suitable to train detectors because learning abstract represen-
tations is one of the main deep learning advantages. They
extract features in images because the convolutional layers can
correlate adjacent pixels sequentially. Therefore, the feature
extraction part of our network is performed using a CNN back-
bone called Region-Based Fully Convolutional Network [32]
based on Resnet50 [33]. As mentioned earlier, it was originally
proposed to semantic segmentation tasks.

One challenge to train class-agnostic CNNs is to regularize
it to not learning class-specific features. Therefore, to increase
generalization, we pre-process the input images to forward
only relevant information in the deep network. Instead of
entering a normalized RGB image, our input image also
contains three channels, but instead of one for each color (R,
G, and B), there are two shape-related and one texture-related
channel.

The shape-related channels are necessary to represent the
edges of image as most objects are recognizable by their
forms. To corroborate this hypothesis, Cheng et al. [27]
also proposed a straightforward descriptor to class-agnostic
models based on shape-based features. Therefore, we employ
two directions of the Sobel filter as our image’s two first
input channels. Moreover, the third channel represents texture
information of the image because this can also be relevant to
estimate pixel objectness. However, the texture is also very
relevant to describe intra-class features and is likely to overfit
the training classes [34]. Thus, we decided to quantize the full
grayscale image to an image with only few bits and use it as
a texture descriptor. Since they have very little information
compared to the standard image, we hypothesize it is a better
input to represent the difference of texture between object and
non-object pixels. The whole method workflow is illustrated
in Figure 2.

B. Model Training

Class-aware object researchers are well served of datasets.
The Pascal-VOC [35] and ImageNet [36] were proposed years
before the first deep learning methods arise and are still
used nowadays. Years later, Microsoft proposed the COCO
dataset [13] with thousands of images from dozens of different
classes and pixel-level annotation. Recently, an even more
extensive set called Open Images [14] also brought attention
from researchers as it is a collaborative ever-increasing set of
images.

Despite this increase in size in the past years, these datasets
were proposed to train class-aware detectors. As a result, they
only annotate object instances from the classes labeled in the
dataset. However, we cannot simply assume everything that
is not annotated as non-object to train class-agnostic models.
Because of that, we choose to train our model only allowing
it to learn what is an object and what are object edges. We
implement this by calculating the loss function only when
the pixel is annotated as 1 (is an object-pixel) or 0 (is an
object-edge-pixel). Training the network only in these pixels
forces the model to effectively focus on what defines an object.
Moreover, since the input images have minimal representation
of texture, it cannot learn great class-aware features.

To ease the comprehension, Figure 3 illustrates the ground
truth of an image from the COCO dataset used to train the
network. Note that pixels from the object edges are black
and object pixels have white color because they are an object
pixel. The gray areas are the ones that do not have any object
annotated and are ignored in network training. We also used
multiple types of data augmentation such as rotation, small
translations, gaussian filters, zoom in/out and others.

C. Composite Loss Function

One of the main problems to learn the heatmap of Figure 3
is the imbalance between 0 (object-edge pixel) and 1 (object
pixel). Address this problem is essential because if we ignore
it, the network would overfit most pixels to 1 as there are a
large unbalance between pixel within objects and on its edges.



Therefore, we decided to employ the loss proposed by [37],
known as Focal Loss proposed exactly to handle the problem
of unbalanced clases. he loss function is designed to weight
up and down hard and easy samples, respectively.

We would have a perfect output with 1 in all pixels objects
and 0 otherwise, in the best-case scenario. Unfortunately, this
is not what happens in practice as there are many pixels with
borderline scores such as 0.5. To mitigate this problem, we
employed another loss to our network called Dice Loss. It
is an adaptation of the Sørensen-Dice coefficient [38] used
to measure similarity between two arrays of samples. Hence,
when all pixels are equal, it yields 0 and when they are all
different, the function is 1.

We evaluate three methods to combine Focal and Dice
losses and create a single composite loss. The first is a
naive technique that only sums up both values. The problem
of this technique is that if one loss is naturally larger, it
might overwhelm others contributions. A solution is to include
parameters in the network to represent the losses weights. They
become trainable parameters and are optimized jointly with
the network parameters. We evaluate two weighted compos-
ite losses: a combination proposed by [39] and a weighted
linear combination of both losses. Finally, in testing phase,
we employ a straightforward connected component labeling
technique (CCL) in the heatmap and consider all component
to extract bounding boxes [40].

IV. EXPERIMENT EVALUATION

First, we present the evaluation protocol used in our ex-
periments. Then, we evaluate how to represent the texture
information better. Thirdly, we present an ablation study of
our proposed approach to demonstrate the real improvement
of each contribution. Then we present and experiment to show
which loss is the better one for our class-agnostic problem. For
this purpose, we evaluate which loss yields the model with
best detection rate in objects that were not annotated in the
training phase. Therefore, we split the 80 classes of COCO-
dataset into 5 folds of 16 classes and perform 5-fold cross-
validation. We chose to evaluate only using 5 folds because
of the considerable time necessary to train each model. Finally,
we show the efficacy of our model against another approach
in literature in the Open Images dataset. We chose the work
by [11] as baseline due to the similarity in the evaluation
protocol.

A. Evaluation Protocol

Our resulting end-to-end model contains around 32M learn-
able parameters. Although this is not many if compared with
other methods in literature [41], it still needs a considerable
amount of computational power to learn the weights. In
addition, as a result of our protocol to train only on pixels
where there are objects annotated, the convergence becomes
even more slower so we decided to use a large batch size and
multiple GPUs to improve the variance within batches.

All learning parameters were calibrated empirically and
are presented in Table I. Moreover, the models averaged 55

TABLE I
PARAMETERS USED TO TRAIN THE PROPOSED DETECTOR.

Parameter Value

# of epochs 30
learning rate (lr) 1e− 5

lr decay 2e− 1
lr decay step 9

optimizer adam
focal loss alpha 0.25

focal loss gamma 2

minutes to finalize each epoch, which means that all epochs
averaged 25 hours to complete.

Many available datasets work at a bounding box level [35],
[36], so they only need four coordinates per object as an
annotation. Therefore, we selected a dataset with pixel-level
object annotation to train our model, Common Objects in
Context (COCO)1. This is a large-scale dataset created to
be employed in a variety of tasks such as object detection,
semantic segmentation, and image captioning [13]. COCO
contains more than 200, 000 images from 80 different object
categories (treated as one by our class-agnostic approach).
Moreover, the dataset totalizes more than 1.5 million object
instances.

We also used the Open-Images2, a large-scale crowd-
sourced dataset with around 9 million images, 16 million
bounding boxes from 600 different object classes in our
experiments [14].

All approaches were evaluated using the same metric al-
ready employed in other works in literature [11], [42], average
recall (AR). The average recall is defined as the average of
true positive boxes divided by the total number of annotated
boxes.

B. Texture Graylevel Quantization

We perform tests to evaluate the number of bits that are
needed to describe an object with minimal bias. For this
purpose, we vary the number of bits to represent the texture
and evaluate how the model behaves in the Open Images
dataset. Figure 4 shows a graph of the average recall varying
the number of bits to represent the texture. According to the
figure, the best results were achieved using 4 bits. Therefore,
we use the same value in the following experiments.

C. Ablation Study

This section describes an ablation study of the minor adjust-
ments we proposed in the training phase. We selected the best
proposed model according to the results from this section and
then removed traits one by one. The complete model comprises
Sobel+texture image, full convolutional backbone followed by
the bottleneck block (w/block), Sobel image concatenation,
and the composite loss. Therefore, we evaluate the impact of
the removal of these characteristics.

1https://www.cocodataset.org/
2https://opensource.google/projects/open-images-dataset



Fig. 4. Average recall as a function of the # of bits to represent the image.

TABLE II
ABLATION STUDY OF THE PROPOSED APPROACH. NOTE THAT THE BEST

RESULT WAS ACHIEVED WHEN ALL CHARACTERISTICS WERE EMPLOYED.

approach average recall (AR)
open-images (unseen)

with RGB image 19.7%
w/o block 19.1%
w/o sobel 21.0%

w/o graylevel quant. 20.3%
with all 22.1%

According to results shown in Table II, the detection rate
drops by 2.4 p. p. when using RGB input. This was how we
first approach the problem and, therefore, when we realize
we need to handle this problem of texture regularization. The
block placed after the backbone is also essential as its removal
degrades the result by 2 p.p. Finally, we can see that all
characteristics proposed in Section III are helpful and valid
to achieve better results.

D. Cross-Validation in COCO Dataset

In the third experiment, we intend to select the best loss
version to optimize our model when applied to the class-
agnostic problem. Hence, we perform 5-fold cross-validation
in the COCO dataset and train the models with five different
losses.

The first two losses are the ones described in Section III,
Focal and Dice applied standalone. The second two are the
composite losses described in the same section. One is the
combination proposed by [39] and the other is a weighted
linear combination of both losses using weights activated by
softmax. The last is the simple sum of two losses, which
researchers more commonly use.

We calculate the AR in seen and unseen classes representing
annotated classes and not annotated in the training phase,
respectively. The harmonic mean between the two scores was
also reported.

As one can see in Table III, only the combination proposed
by Kendal et al. [39] was not able to improve the results
when compared to single ones. On the other hand, the softmax
composite loss was the best one, improving the results by
0.6, 2.1, and 0.5 percentage points if looking to seen, unseen
classes, and harmonic mean, when compared to second-best
loss (dice one). Moreover, between the two single ones, dice

TABLE III
PROPOSED LOSSES TO TRAIN OUR CLASS-AGNOSTIC DETECTOR. RESULTS

ARE REPORT IN AVERAGE BETWEEN FOLDS AND THE STANDARD
DEVIATION BETWEEN PARENTHESIS. COMPOSITE LOSSES ARE DENOTED

BY *.

Loss average recall (AR) harmonic
seen unseen mean

focal loss 32.6% (2.4) 44.1% (4.0) 37.4% (1.6)
dice loss 35.0% (1.9) 44.5% (4.2) 39.7% (1.8)

Kendal et al. [39]* 32.9% (2.2) 43.2% (4.8) 37.7% (2.4)
softmax loss* 35.6% (4.3) 46.5% (4.3) 40.2% (3.7)
sum of losses* 30.8% (3.5) 44.3% (3.9) 36.2% (2.8)

TABLE IV
COMPARED BETWEEN THE JAISWAL APPROACH AND OURS IN

NON-OVERLAPPING CLASSES OF Open Images.

approach average recall (AR)

Jaiswal et al. [11] with FRCNN 19.2%
Jaiswal et al. [11] with SSD 21.0%

proposed approach 22.1%

loss was able to achieve slightly better results. The single
losses as well as the one approach to weight losses were not
able to improve the results.

A paired p-test was employed to confirm that these improve-
ments were statistically significant. We compared the compos-
ite softmax approach against dice loss as they were the best
two results. We obtained two p-values meaning comparison
in terms of unseen and seen classes. Values were 0.346 and
0.035, which means that, unfortunately, they were statistically
identical when regards to seen classes. Nonetheless, as the p-
value of unseen classes was inferior to the threshold of 0.05,
we can reject the null hypothesis and consider that softmax
loss is better than the single dice, for that matter.

According to the results, we can conclude that a composite
loss is a good choice to approach the problem and, therefore,
is employed in other experiments of this section.

E. Baseline Comparison in Open Images

In this experiment, we compared our best model against a
baseline in the literature. We choose the approach proposed by
Jaiswal et al. [11] with both backbones (FRCNN and SSD).
To have a standard evaluation environment, we evaluate our
model in non-overlapping classes of Open Images dataset. It
means that we remove all classes that were present in the Coco
dataset.

According to Table IV, we outperform the best baseline in
1.1 percentage point. Although the results might seem low at
first look, this is very hard task as the Open-Images dataset is
very challenging. Finally, we believe our approach was able
to achieve a higher results due the improvement we employed
in training phase. Specifically, removing texture information
allowed the model to determine what defines an object better
than our baseline.



V. CONCLUSIONS

In this work, we proposed a new class-agnostic object
detector composed by a convolutional backbone followed by a
bottleneck block that outputs a binary objectness map. We then
employ Otsu binarization and a connected component labeling
technique to collect object bounding boxes. We proposed a
training schema that only trains what an object and an object
edges are. Moreover, the model was trained with a composition
of two losses, focal and dice loss trained multi-taskly.

Our experiments show that our model was able to detect
an average of 46.3% of classes that were not trained to detect
using the COCO dataset. It also outperforms a class-agnostic
baseline in the literature in an experiment using Open Images
dataset by 1.1 percentage points. We believe class-agnostic
object detection is currently a hot topic within the computer
vision community, therefore, significant advances are expected
to come in next years.

More diverse and well-annotated datasets can also improve
the robustness of our training process, therefore, we intend to
see the feasibility of employing the Open Images dataset in
our training phase, which is challenging due to the absence of
many pixel-level annotated objects.
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