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Abstract—Urban forest surveillance relies on several aspects
that involve the analysis of green area preservation and the
monitoring of individual trees. Urban trees are essential to
maintain the good quality of the cities and reduce the effects
of carbon dioxide emissions in the atmosphere. In this sense,
one can cite the tree species diversity as essential to ensuring
the preservation and proper functioning of the urban ecosystem
and the conservation of the wildlife species in the urban forest
environment. Furthermore, tree species play an essential role in
assessing the tree risk of falling since the species are related
to the wood density, thus providing further details for the tree
structural analysis. However, tree species classification involves a
time-consuming process that requires allocating human resources
for fieldwork. Also, the tree species are quite imbalanced in the
urban landscape, requiring a more efficient approach to provide
accurate results for minority species. Therefore, computer-aided
methods are helpful to support the rapid analysis of the tree
species for tasks involving inventory and analysis of the tree
conditions. This paper proposes a multiclass extension of the
O’PF, an Optimum-Path Forest-based oversampling method, to
generate synthetic samples based on features extracted from
images of five urban tree species. Further, we present the so-called
“Street Level Tree Species Classification”, a novel dataset for tree
species classification based on tree images from the ground-view
perspective. Four variants of the multiclass O?PF were tested and
compared to several state-of-the-art oversampling methods found
in the literature. The obtained results confirm the effectiveness
and superior accuracy of the proposed approaches in most cases.

Index Terms—Optimum-Path Forest; deep learning; convolu-
tional neural networks; tree classification; urban forest.

I. INTRODUCTION

Tree management in the urban environment becomes es-
sential for monitoring the green area conservation, analyzing
the tree structure conditions, and cataloging the tree species
for inventory purposes [1f, [2]. Regarding the latter aspect,
one can cite the counting of the tree species to assess the
urban forest diversity. Furthermore, in combination with other

physical measures, the species is one of the factors that assist
the forecast of the possible risk of the rupture of the trunk
and branches of the tree. However, manual observation and
counting of the tree species is a laborious and time-consuming
task that demands effort from the field staff. Also, trees in
the urban landscape are diverse in species and sometimes
imbalanced depending on aspects of the region’s climate and
geography. Therefore, computer-aided methods are desirable
and essential to accelerate the tasks related to urban tree
assessment.

In this context, machine learning and deep learning-based
approaches have been successfully employed for similar tasks
in several application domains. In forestry management, one
can cite the tree detection and the tree health assessment
in remote sensing-based images [3[|-[5]]. Furthermore, tree
species classification is frequently employed for tree inventory
and forest diversity analysis. Usually, tree species classification
relies on satellite imagery and data derived from the aerial
point of view. Regarding the latter strategy, Light Detection
and Ranging (LiDAR) [6] and aerial RGB images [7] are
the long-established data used to map vegetation regions and
detect the tree canopies using image processing and machine
learning-based algorithms. From the ground-view perspective,
Terrestrial Laser Scanner (TLS) is also an alternative for urban
tree species classification [8]-[10]. However, street-view RGB
images are not fully explored yet beyond the detection and
segmentation of trees. Street-level pictures are affordable,
easy to capture, and accessible with reasonable resolutions.
Furthermore, photographs from the ground-view perspective
can offer additional data for the tree condition analysis, like
the extraction of the tree dendrometry.

Regardless of the employed data for tree species classifi-
cation, the performance of such models is severely impacted
by a well-known drawback related to machine learning so-



lutions, i.e., data imbalance. The data imbalance problem is
characterized by datasets composed of an unbalanced number
of samples per class, i.e., some categories have much more
instances than others, thus leading the model to familiarize
itself with the majority classes’ behavior and neglect patterns
present in minority classes.

Many works addressed the abovementioned problem using
data undersampling [[11], [12f], which consists of pruning
the dataset and rebalancing it by removing selected sam-
ples, and data oversampling, which comprises a mechanism
for synthetic data generation. Regarding the latter, some re-
searchers addressed the problem using Generative Adversarial
Networks [[13[], [14] in the context of artificial image gen-
eration. For general scenarios, Chawla et al. [15] proposed
the Synthetic Minority Over-Sampling Technique (SMOTE), a
successful method for data oversampling considering the inter-
polation of minority class samples to generate new instances.
Further, several works improved the technique with a diverse
range of variations [16]-[19], to cite a few. However, such
methods usually produce some noise data since labels among
all classes are not considered in the interpolation process.

Recently, Passos et al. [20] proposed an Optimum-Path For-
est (OPF) [21]-based algorithm for data oversampling, namely
O?PF, to tackle this problem. The Optimum-Path Forest is a
graph-based framework developed for supervised [21]] and un-
supervised [22]] learning with successful application in a wide
variety of fields [23]]-[25]]. Further, Passos et al. [26] proposed
a set of OPF-based solutions for data imbalance, comprising
four variants of the O?PF, as well as four undersampling
and three hybrid models. Despite the success observed in the
experiments, such techniques lack in the sense that they are
suitable for binary problems only.

Therefore, this paper proposes a novel dataset composed of
street-level tree images, namely “Street Level Tree Species
Classification”, for the task of tree species classification.
Further, it also proposes a multiclass oversampling approach
based on the OPF framework for tree species classification.
The proposed method extends the O?PF model to handle the
class imbalance issue in the multiclass domain, particularly in
urban tree analysis. The technique employs the unsupervised
OPF to capture the inherent aspects of the minority class
samples. Afterward, new synthetic instances are created for the
training set based on the Gaussian distribution of the minority
sample’s features. Compared to the previous binary O2PF, the
proposed approach is iteratively applied to all minority classes
of the dataset.

This paper provides the following three contributions:

« To propose a model for tree species classification based
on images captured from the ground-view perspective;

« To extend the O?PF for oversampling in the multiclass
domain and evaluate its impact on the class imbalance
aspect of the tree species classification;

« To provide a novel dataset composed of street-level tree
images, namely “Street Level Tree Species Classifica-
tion.”

The remainder of this paper is presented as follows.
Section [lI] provides a theoretical background regarding the
unsupervised OPF and the O?PF, as well as its variants,
while Section introduces the proposed approach for tree
species classification from the ground-view perspective and the
O2PF variation for multiclass problems. Further, Section
describes the novel Street Level Tree Species Classification
dataset and the experimental setup. Finally, Sections [V|and
state the experimental results and conclusions, respectively.

II. THEORETICAL BACKGROUND

This section provides a brief description of the O?PF and its
variants, as well as the unsupervised OPF, the basis on which
O?PF was built.

A. Unsupervised Optimum-Path Forest

The main objective of the Optimum-Path Forest [22]] un-
supervised version is to represent every dataset’s sample as
a node in a graph for further grouping such instances into
clusters with similar properties. The clustering procedure is
conducted by connecting the training samples to their k-
nearest neighbors through edges, whose weights are given by
their distances d in the euclidian space. Besides, the nodes
are also weighted by a probability density function (pdf), as
follows:
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where ¢ is given by “z=, with m,, describing the maxi-
mum weight among all edges, and Aj(s) denotes the k-
neighborhood of sample s.

Supposing a graph G = (V,.A), where V denotes the
set of vertices (instances) and A the set of edges connect-
ing such vertices, one can estimate the probability density
by discovering the optimum number of nearest neighbors
k* € {1 < kmax < |V|}, ie., the value of k* that minimizes
the graph cut over V. In this case, k.45 is @ hyperparameter
representing the maximum possible value of k.

Further, the algorithm has to select a set of prototypes P
containing one element per maximum of the pdf. The node
7 is attached to the path whose f,,;n, i.e., the minimum
density value along its course, is maximum. The f,,;, value
is computed as follows:
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where ¢ is a constant small value.

B. O?PF

Recently, Passos et al. [20] proposed the O?PF, an algorithm
for data oversampling based on the unsupervised Optimum-
Path Forest. The algorithm comprises two main steps to gen-
erate synthetic samples: (i) producing synthetic elements with



coherent characteristics; and (ii) introducing sample variability
to avoid subsets of similar features. In the first step, the algo-
rithm clusters the minority class training samples to extract
intrinsic properties of the class, i.e., the samples’ average
position and variance. In the sequence, O?PF assumes that
all characteristics from a class follow a normal distribution,
thus generating a new sample z € R™ by sampling such a
distribution from some of the discovered clusters considering
a proportion of samples by cluster size. The distribution is
computed as follows:

z~N(p, %), 3)

where p € R™ stands for the cluster mean, m is the number of
features per instance, and ¥ € R""*™ is the covariance matrix,
computed as follows:
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such that X € R™*"™ is a matrix comprising a concatenation
of all n cluster feature vectors.

Further, Passos et al. [26] proposed a set of methods
to tackle data imbalance, comprising oversampling, under-
sampling, and hybrid approaches. Among such practices, the
authors proposed four O2PF variants, described as follows:

1) O?PFg;: The O*PF with Radius Interpolation replaces
the cluster mean by its geometric median, making the
model more robust to outliers.

2) O?PF,,;: The O?PF with Mean Interpolation generates
the new sample z and then interpolates it with its nearest
neighbor within the cluster.

3) O?PFp: The O?PF Prototype employs the prototype
sample instead of using the cluster’s mean as a parameter
of the Gaussian distribution.

4) O*PFyy;: The O*PF with Weight Interpolation employs a
strategy that weights each sample according to its density
(Equation E]) Therefore, the cluster’s mean stands for the
weighted average of its samples. The sampling process
remains the same as O2PFM I.

III. PROPOSED APPROACH

This section presents the proposed model for tree species
classification and the multiclass oversampling approach based
on the O%PF.

A. Tree species classification

Figure [I] depicts the entire process of producing the fea-
ture vector of the input image. The image passes through
a MobileNet CNN architecture that performs the feature
extraction and dimensionality reduction using a set of pre-
trained weights. The model has been previously trained to
detect the tree elements in images captured from the ground
view perspective of the urban landscape [27]. This process
helps identify the inherent aspects of the trees while using
transfer learning and inductive bias of the pre-trained net-
work’s weights. The last layer comprises 1,024 neurons whose

outcome is then used by classical machine learning algorithms
to classify the tree species.

~

Tree species
classification

)

Fig. 1: Illustration of the proposed model for tree species clas-
sification: Top: an image of the entire tree; Bottom: illustration
of the network proposed for feature extraction and tree species
classification.

The feature extraction is performed by the same architecture
used by Jodas et al. [28]]. The architecture comprises con-
volutional blocks that execute a sequence of depthwise and
pointwise convolutions with batch normalization and Recti-
fied Linear Unit (ReLU) activation function. This approach
reduces the network size without decreasing the predictions’
efficacy [29]]. Moreover, residual blocks are employed to avoid
gradient vanishing and reinforcing the feature maps for the
subsequent layers. Ultimately, the model ends with a Max
Pooling and a Global Average Pooling on the last feature map.
In total, the entire CNN model is composed of 3,228, 864
parameters.

B. Multiclass oversampling

The proposed approach extends the binary O?PF to each
minority class until the dataset is wholly balanced according to
the number of samples in the majority class. The oversampling
steps are summarized as follows:

1) Generate clusters from the minority class samples;

2) For each minority class cluster, estimate a Gaussian
distribution according to Equation [3}

3) Generate n new synthetic samples using the mean @ and
the covariance matrix ¥ as shown in Equation [3] where
n stands for the number of samples in the majority class;

4) Repeat steps 1 — 3 for each minority class of the dataset.

Compared to the binary O?PF, the algorithm above includes
a fourth step for the oversampling in the multiclass domain.

IV. METHODOLOGY

This section presents the proposed “Street Level Tree
Species Classification” dataset and experimental setup adopted
in the experiments.



A. Street Level Tree Species Classification Dataset

This paper proposes the “Street Level Tree Species Classifi-
cation” dataset, which comprises 727 street-level photographs
obtained from five species of trees in the city of Sdo Paulo,
Brazil El The images are clippings from bounding boxes that
enclose the trees in the whole photography (Please refer to
Jodas et al. [27] for more details.). All images were resized to
a 416 x 416 resolution to fit the input shape of the MobileNet
architecture for feature extraction. Table [l presents the number
of images in each tree species.

TABLE I: Number of images in each tree species.

Species ID Number of images
Cenostigma pluviosum CP 273
Holocalyx balansae HB 48
Ligustrum lucidum LL 46
Pleroma granulosum PG 109
Tipuana tipu TT 251

B. Experimental setup

The cross-validation procedure was used to split the image
set into twenty folds of training and test sets with stratified
sampling. Support Vector Machine (SVM) and Random Forest
were used for the supervised classification of the original and
the oversampled training sets at each fold. Notice that the
standard OPF classifier was not employed to avoid biased
results since the oversampling mechanism follows similar
principles. A fine-tuning procedure was employed to find
the best hyperparameter values that maximize the prediction
performance of the machine learning models. Grid Search
and Randomized Search are the gold-standard methods for
hyperparameter optimization. However, Grid Search is time-
consuming on large datasets and high hyperparameter spaces.
Randomized Search is prone to high variance because of the
random selection of the hyperparameter values, although it is
relatively fast compared to Grid Search. The third approach
is called Bayesian Optimization, and it relies on previous
decisions to find the next set of hyperparameters that optimize
an objective function [30]. In this sense, we perform the
Bayesian Optimization to find the best hyperparameter values
that optimize each classifier. An inner cross-validation ap-
proach is performed for each fold of the outer cross-validation.
This method splits the training set into five folds of subsets
for training and validation. The Bayesian Optimization is
applied to the subsets at each inner fold to find the best
hyperparameters that maximize the F1-Score. At last, the best-
performing model is selected for predictions on the test set of
the outer fold. This process is repeated for each fold of the
external cross-validation. Figure [2] illustrates the strategy for
one fold of the outer cross-validation.

Table [[] presents the hyperparameter space assigned to each
classifier.

Uhttps://github.com/recogna-lab/datasets/tree/master/TreeSpecies
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Fig. 2: Pipeline for the hyperparameter optimization.

TABLE II: Hyperparameter space for each classifier.

Model Hyperparameter Values
Random Forest Number of trees [10,100,200,500]
Cost C [1,2,3,...,20]
Support Vector Machine [Radial Basis Function,
Kernel Sigmoid,
Linear,
Polynomial]
Degree* [1,2,3,...,20]

*Only applied to the Polynomial kernel

We compared the multiclass O?PF and its variants against
three state-of-the-art oversampling methods: Synthetic Mi-
nority Oversampling Technique (SMOTE) [15]], BorderlineS-
MOTE [31]], and Majority Weighted Minority Oversampling
Technique (MWMOTE) [17]. The oversampling methods’
hyperparameters where set to default values, i.e., ke = D
for the O?PF and its variants, k = 5 for SMOTE [15]
and BorderlineSMOTE [31], and k&1 = ko = k3 = 5
considering MWMOTE [17]. We used the macro F1-Score
as the standard metric to evaluate the effectiveness of the
oversampling methods. The evaluation process was performed
over 20 runs to compute the mean and the standard devia-
tion from each oversampling technique and classifier. Then,
the Wilcoxon signed-rank test was employed to evaluate
the statistical similarity among O2PF and the baselines over
each classifier with 5% significance. Ultimately, we computed
the confusion matrix from predictions obtained by the best-
performing classifier and oversampling technique to confirm
the prediction improvements of the minority class samples.
For each external fold, a confusion matrix is computed from
predictions on the test set. Afterward, the sum of all cross-
validation matrices yields a general confusion matrix with hits
and misses for each classifier.

The O2?PF relies on the Python-based OPFython Ili-
brary [32], and the source code is available at the Github
repository

V. EXPERIMENTS AND RESULTS

Table [ITI] presents the average F1-Scores obtained from the
original dataset after employing the oversampling techniques
for both classifiers. The highest average values are stressed

2 Available at https://github.com/Leandropassosjr/OpfImb
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in bold, while the underlined values denote similar results
according to the Wilcoxon signed-rank test for both classifiers,

i.e., Random Forest and SVM.

TABLE III: Average F1-Score for each oversampling tech-

nique and classifier.

Dataset version

Random Forest

SVM

Original
BorderlineSMOTE-1
BorderlineSMOTE-2
MWMOTE

O?PF

O2PF 1

O2PFp

02PFR;

O2PFy 1

SMOTE

0.4365+0.0896
0.5284+0.1135

0.4325+0.0623
0.5956£0.1064

0.5299+0.1063

0.6002+0.1349

0.4532+0.0676
0.5441+0.1238
0.5247+0.1258

0.5276+£0.0941

0.6088+0.1069

0.5953+0.1146

0.4789+0.1037

0.4431+0.0778

0.5306+£0.0971

0.5319+0.1111

0.5510+£0.0950
0.5576+0.1079
0.6170-+£0.1081
0.6160+0.1127

For both classifiers, the multiclass O?PF attained the best
results among the other oversampling approaches. The SVM
model obtained the highest score with the O*PFyy; as the
underlying oversampling strategy, thus achieving an average
F1-Score of 0.6170+0.1081. For the Random Forest classifier,
the average F1-Score increased by 10% when the O?PF
was applied, while the SVM model improved the prediction
ability by 18% considering the best oversampling technique
(O%PFyy ;). Compared to MWMOTE, which employs a similar
cluster-based analysis of the minority class samples, the O?PF-
based approaches attained remarkable results over the original
version of the dataset. Moreover, MWMOTE requires more
hyperparameters in contrast to all O?PF variants, which require
only one parameter, i.e., ky,q, for clustering the samples.

The statistical analysis also presents similarities between
the O?PF and the other methods used for comparison pur-
poses. The O?PF was statistically similar to SMOTE and the
two versions of the BorderlineSMOTE when considering the
results obtained by the Random Forest classifier. The same
behavior is also noticeable in the SVM results. Furthermore,
since the O?PF variants work similarly and share the same
mechanism for the oversampling task, a statistical similarity
is also expected in some circumstances. One can notice the
statistical similarity among all O?PF results, except for the
O?PFy; obtained from the Random Forest classifier, and the
statistical similarity between OZ2PF, O2PF,,, and O?PFyy s for
the SVM.

Figure [3] shows the confusion matrices computed from
predictions of the SVM classifier before and after applying the
oversampling with the O?PFyy ;. The significant improvement
is perceptible in predictions of tree species with few samples.
For the sake of comparison, no sample of the Holocalyx
balansae was correctly predicted in the original version of
the dataset. On the other hand, the number of successful
predictions increased a lot for the oversampled version with
the O%PFyy ;. The same behavior is noticeable for the other

minority classes. Despite the improvement in detecting the
minority class samples, the increase in errors is noticeable for
the species Cenostigma pluviosum (CP) and Tipuana tipu (TT).
Since some tree species are similar to each other, the feature
vector of new synthetic samples may induce some errors in
the balanced version of the dataset.
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1] 123
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Fig. 3: Confusion matrix computed from predictions of the
SVM classifier: a) Original dataset; b) Predictions after ap-
plying the oversampling with O%PFyy ;.

Finally, Figure [] depicts the sample’s distributions before
and after applying the best-performing oversampling technique
(O*PFyy ).

Original version Oversampling with O?PFy,

Fig. 4: Distribution of the samples before (left) and after (right)
applying the oversampling with the O?PFyy ;. Projection per-
formed using t-SNE.

The data distribution reveals regions with well-defined
sparse clusters after using the O?PFyy; as the underlying
oversampling approach. The oversampled distribution follows
a similar behavior as presented by the original version of the
dataset, where the data clusters also show a sparse arrangement
for each class of tree species. Notice that the new synthetic
samples are created for each cluster yielded from each mi-
nority class illustrated in the original version of the dataset.
We used the t-Distributed Stochastic Neighbor Embedding (t-
SNE) [33]] method to project the sample’s feature vector into
a two-dimensional space.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a new multiclass oversampling ap-
proach based on the Optimum-Path Forest framework for tree
species classification. The method relies on the normal distri-
bution of minority class clusters generated by the unsupervised



Optimum-Path Forest algorithm. The previous method, named
O?PF, was extended to cope with datasets in the multiclass
domain through a simple iterative process that oversamples the
minority class samples of each generated cluster. Similar and
even superior results confirmed the effectiveness of the mul-
ticlass O?PF against three state-of-the-art methods in the tree
species classification domain. Future studies will be conducted
to extend the proposed approach to over- and undersampling
tasks in multiclass datasets of general purpose.
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