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Abstract—Aircraft visual inspections, or General Visual In-
spections (GVIs), aim at finding damages or anomalies on
the exterior and interior surfaces of the aircraft, which might
compromise its operation, structure, or safety when flying. Visual
inspection is part of the activities of aircraft Maintenance, Repair
and Overhaul (MRO). Specialists perform quality inspections to
identify problems and determine the type and importance that
they will report. This process is time-consuming, subjective, and
varies according to each individual. The time that an aircraft
stays grounded without flight clearance means financial losses.

The main goal of this work is to advance the state-of-the-art
of defect detection on aircraft exterior with deep learning and
computer vision. We investigate improvements to the accuracy of
dent detection. Besides, we investigate new classes of identified
defects, such as scratches. We also plan to demonstrate that
it is possible to develop a complete system to automate the
visual inspection of aircraft exterior using images of the aircraft
acquired by drones. We will use deep neural networks for the
detection and segmentation of defective regions. This system will
aid in the elimination of subjectivity caused by human errors
and shorten the time required to inspect an aircraft, bringing
benefits to its safety, maintenance, and operation.

I. INTRODUCTION

Aircraft traveling is one of the safest transportation modes,
capable of carrying many passengers and considerable cargo
loads for long distances [1], [2]. The risk of death per passen-
ger boarding has been falling consistently over the decades [3].
Accidental deaths caused by equipment failure have sharply
dropped since the 1960s as aviation safety has increased over
the years by technological improvements in aircraft, avionics,
and engines [3]. Commercial airline safety also dramatically
improved with the development of ground proximity warning
devices, more sophisticated pilot training with simulators,
enhanced regulations due to a better understanding of human
factors, navigational aids, air traffic management, and more
accurate weather forecasting [2].

Even though aviation safety is constantly improving, the
scientific and technical communities have not solved several
related challenges yet, and others emerge with new and
advanced technologies. The extensive usage of composite
materials alters maintenance and inspection procedures since
they require different techniques and equipment [2]. Newer

aircraft that travel longer distances have original demands for
reliability and performance. Maintenance and safety checks for
Maintenance, Repair and Overhaul (MRO) and non-scheduled
operations, as well as for older airplanes, may be limited by
time and resources.

In addition to airplanes, helicopters also go through sim-
ilar inspection procedures and share some of these open
challenges. The development of aerial and space vehicles
is also growing and improving constantly, where companies
are developing new vehicles and technologies. New aircraft
and vehicles mean there will be new requirements and needs
for visual inspection procedures. There is an opportunity to
solve challenges related to the automation of these procedures,
where automatic systems can eliminate subjectivity and hu-
man error from manual tasks and increase the speed of the
inspection. Faster and automated data processing reduces the
time compared to how long inspectors spend investigating the
vehicle, making decisions, and generating reports.

Operators execute several of these inspection procedures
manually or visually, and they commonly use their judgment
and experience to make subjective decisions [4], [5]. Some
tasks involve visually inspecting parts of the aircraft, where
trained workers look for manufacturing defects, assembly
faults, components failures, or damages that may have hap-
pened during a flight event (departure, flight, landing). It is
critical to identify these issues and correct them before the
aircraft is approved for flight, as they could cause accidents
and unforeseen events.

The identification of fuselage defects and visual checks are
commonly addressed topics in the aircraft inspection literature
[6]–[9]. These visual checks are inspections performed during
MRO, before takeoff, and after landing to guarantee that the
vehicle is in good condition and ready to fly. Several items,
such as doors, valves, sensors, and other manually operated
components, may cause accidents if left unattended at an
inappropriate state [6], [10], [11].

The main goal of this work is to advance the state-of-the-art
of defect detection on aircraft exterior with deep learning and
computer vision. We will improve the accuracy of detection
and identification of dents and augment the range of identified



defect classes from the literature. We will also demonstrate
that it is possible to develop a complete automatic aircraft
inspection methodology and system based on computer vision
and deep learning. This system will extend works in the
literature by offering integration of solutions and techniques
for the detection of a wide range of defects. It will combine
concepts from the literature to build a complete visual inspec-
tion architecture. We use images (photographs and videos)
of the aircraft exterior and detect anomalies, such as defects,
damages, and external structural elements that require attention
or even repair. We will use object detection and segmentation
deep learning techniques and models for the identification of
anomalies, as well as traditional computer vision and image
processing techniques we found during the literature review.

II. BACKGROUND AND RELATED WORKS

Inspection in industrial environments is an essential quality
control component in many different fields. The main goal
of this process is to verify that a product does not have any
defects, especially ones that may compromise its use. Areas
such as the food industry, medicine, nuclear technology, and
aircraft maintenance rely on inspections to guarantee that the
quality of their product is acceptable. This is required since
defects may cause significant consequences. If we consider
aircraft maintenance, structural defects will compromise the
safety of its operation and potentially cause accidents [12].

Surprisingly, humans still manually perform several inspec-
tion tasks in aircraft maintenance. While recent advances
in robotics, computer vision, and artificial intelligence have
contributed to research in this field, it is not common to
find real-world examples of companies that apply automated
systems for inspection. Visual inspection tasks require an
expert to look for defects and anomalies on the airplane
surface, and this process depends heavily on their visual acuity,
mood, and assiduousness [13], [14].

The work from See [12] presents a review of visual inspec-
tion that includes 212 documents. They investigate inspection
models, techniques to measure performance, and the parame-
ters that may impact the execution of this task. They discuss
that human visual inspection is subjective since it is prone
to errors, variability, and execution misunderstanding. They
concluded that more effective training, well-defined inspection
procedures, and the availability of tools could improve the
visual inspection process.

Machine learning and deep learning are also gaining popu-
larity in the field of aircraft visual inspection. Recent publica-
tions presenting the usage of neural networks show promising
results and encourage further investigation in this area of
research. A comparison of machine learning techniques for
defect detection is presented in [15]. The authors compare
Support Vector Machines (SVMs) with neural networks for
detection of paint defects on images acquired with an Un-
manned Aerial Vehicle (UAV).

Malekzadeh et al. [16] show the application of a Con-
volutional Neural Network (CNN) for detection of defects
on aircraft fuselage, such as dents and scratches. Authors

use Speeded-Up Robust Features (SURF) key-point detector
to identify defect candidates and a linear SVM classifier. A
crack detection network for aircraft structures is described
in [17], which uses a CNN to extract crack features and
detect on images of the fuselage and engine blades. Bouarfa
et al. [18] used a Mask R-CNN to detect dents in the aircraft
fuselage. The authors also provide ideas to extend their work
for further improving their method. They expanded their work
and improved accuracy for dent detection in [19].

III. METHODOLOGY

A. Materials

Inspired by the works from [18] and [19], we decided to use
the Mask R-CNN system [20] for identification of fuselage
defects in the initial experiments. In both works [18], [19],
authors only consider dents, which is a type of defect that
deforms the fuselage surface without necessarily removing
paint. They mention other types of defects, such as lightning
strikes, paint defects, cracks, and holes, claiming that their
method could also detect these in addition to dents. Other
works that we found in the literature also used CNN for
detection of aircraft fuselage defects [16], [17].

The Mask R-CNN system [20] combines ResNets with
Faster R-CNN to create a framework for object instance seg-
mentation. This approach detects objects in an image through
the identification and classification of individual objects inside
bounding boxes. It also generates a semantic segmentation
mask for each instance by classifying each pixel regardless of
the objects instances. We chose this CNN model to start the
experiments as it was used with success in similar works in
the literature, and it can also solve other instance-level tasks.
We will consider other CNN models as well, such as Yolo
[21], [22], to compare with Mask R-CNN and find the highest
accuracy in defect detection.

We will initially use the ResNet-50-FPN [23], [24] as the
backbone of the pre-trained Mask R-CNN model. The model
provided by PyTorch is pre-trained on the COCO dataset [25],
and it performs object detection and instance segmentation.
We will consider other backbones as well, which may be
pre-trained on other datasets or trained from scratch with our
annotated data.

B. Methods

We will use use the PyTorch1 framework to build and train
the detection system. We chose PyTorch for its popularity in
the academic and research fields and the large documentation
and community support. We performed the first experiments
using a code example from the torchvision module of Py-
Torch2. We modified this example to read our dataset and to
run it on the training machine.

The VGG Image Annotator (VIA) [26], [27] software pro-
vided the tools we needed to create the dataset with defect
annotation. The VIA is a lightweight web browser-based

1https://pytorch.org/
2https://pytorch.org/tutorials/intermediate/torchvision tutorial.html



software for annotation of images, videos, and audio, free for
academic and commercial applications (BSD-2 license).

C. Dataset

The dataset that we created includes images of an aircraft
with multiple fuselage defects. These images were acquired
with a drone and provided by our partner Autaza3 for usage
in this work. We selected 13 images from the airplane and
annotated approximately 200 defects classified into six types
of defects. Among these defects, we identified dents, dings,
scratches, lightning strikes, missing fasteners, and corrosion.

IV. PRELIMINARY RESULTS

The dataset that we created includes images of an aircraft
with multiple fuselage defects. These images were acquired
with a drone and provided by our partner from the industry for
usage in this work. We selected 13 images from the airplane
and annotated six types of defects. Among these defects, we
identified dents, dings, scratches, lightning strikes, missing
fasteners, and corrosion.

We finetuned the Mask R-CNN model with ResNet-50-
FPN for defect detection. The example code from PyTorch
documentation uses for training a dataset with images and
binary masks, which are the input for the network. We
exported our dataset annotations from VIA to a JSON file
with the contours and classes. The first modification to this
sample code was to read this annotations file and create all
the masks before using them to train the network. The second
modification we did was to change the number of classes of
defects. The example only considers two classes, which are
one object type plus background. Our dataset has six classes of
defects plus background for a total of seven classes in training.
The third change we made was the replacement of standard
Stochastic Gradient Descent (SGD) optimizer to Adam [28].

We trained the network for ten epochs with a batch size
of eight. We used random horizontal flip on the input images
to increase variability and set the optimizer learning rate to
10−4. Figure 1 shows one preliminary example of a correct
defect detection from this trained network. This image shows
the side of an aircraft, where we see a scratch defect on the
paint that is marked with a red box. This defect is visible as a
region that contrasts with the paint on the upper right corner
of the photo. This photo was acquired with a drone at an open
area, with ambient light and no special lighting. The trained
CNN found the defect automatically. Even though other parts
of the aircraft have similar contrasting regions, the network
was able to distinguish the defect from other geometries of
the fuselage.

V. DISCUSSION AND FUTURE WORK

We presented in this work an unsolved problem from the
aerospace industry that requires visual inspection for the detec-
tion of defects and anomalies on aircraft exterior. Even though
there are partial solutions in the literature and commercial
systems that provide automated inspection services, we found

3https://autaza.com/

Fig. 1. Photo the side of an aircraft with defect detection result from the
trained CNN. The detected scratch is marked with a red box on the upper
right corner of the photo.

gaps in the literature that, as we understand, are not filled
yet and require further study. The first gap worth mentioning
is the lack of reviews about the visual inspection of aircraft.
The second gap we found is the deficiency of studies about
the integration of partial defect detection solutions to address
the identification of a wide range of anomalies and noncon-
formities. The third gap is the lack of complete solutions that
consider other inspection procedures, besides defect detection,
to build a complete and automated aircraft visual inspection
system.

This paper presents concepts and recent advances in com-
puter vision, deep learning, and visual inspection of aircraft.
We also showed initial results of a visual inspection system for
identifying defects on aircraft exterior. We annotated fuselage
defects on images from aircraft acquired by drones using the
VIA tool. We modified a finetuning example from PyTorch
documentation to read these annotations and train a detection
and segmentation network. We trained the CNN with part of
the dataset, and we ran the prediction on an image that was
not used for training. The trained network was able to identify
one scratch defect correctly.

Even though the dataset has few images and we trained
the network mostly with default configuration for only ten
epochs, we see promising results for automatic defect detection
with deep learning. We will experiment with different network
configurations and more data to achieve higher detection and
segmentation accuracy. As mentioned in 1, the main goal
of this work is to improve accuracy from the state-of-the-
art results while detecting more types of aircraft defects. We
expect to achieve accuracy comparable to other recent works
in this area while providing a complete inspection system.

The next steps for this work include further improvements to
the deep learning model since there are more parameters and
network configurations to run and evaluate. We will collect
more data and acquire photos and videos of airplanes to
increase the number of samples in the dataset. This increased
dataset will provide more examples and information for the
deep learning model to use in training, increasing the accuracy
of defect detection as well. We are working on partnerships
with private companies and research institutes for collabora-
tion in this project.



The defect detection model will be part of a complete
inspection system, which we will design and build according
to the requirements from the industry we found in the literature
review. This inspection system will provide a sequence of
automated procedures from the input of images to report
generation according to detected defects and other aircraft
data. We will test and validate this system with experts in
the visual inspection industry. The validation will include real
aircraft images from drones that contain actual defects and
anomalies.
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