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Abstract—Differences in digitization equipment and techniques
in radiology may hamper the use of data-driven deep learning
approaches. In order to mitigate this limitation, in this work
we merge generative image translation networks with super-
vised semantic segmentation architectures, yielding two semi-
supervised methods for domain adaptation in medical images. We
compare our methods with traditional baselines in the literature
using 3 image domains, 16 datasets and 8 segmentation tasks
organized into three sets of experiments. Analysis of the results
showed that the proposed methods for Domain Adaptation often
reached Jaccard scores of 0.9 or higher in unsupervised or
semi-supervised settings. We observe that unsupervised domain
adaptation performance is close to the performance of fully
supervised adaptation in most cases, bridging an important gap
in the efficacy of neural networks between labeled and unlabeled
datasets.

I. INTRODUCTION

Radiology has been a useful tool for assessing health
conditions since the last decades of the 19th century, when X-
Rays were first used for medical purposes. In recent decades,
Machine Learning was incorporated into the body of knowl-
edge of Computer Aided Detection/Diagnosis (CAD) systems
for biomedical image analysis. Several surveys in Biomedical
Images [1]–[3] show the rapid dissemination of Deep Learning
on the automated analysis of biomedical imaging during recent
years.

The main limitation of Deep Learning models is the amount
of data and labels available for training, as generalizing
useful patterns over unstructured data can be exceptionally
hard. For instance, radiological images from national agencies
such as the brazilian Sistema Único de Saúde (SUS) are
known to be gathered from multiple digitization sensors and
techniques. Those differences in the acquisition process will
inevitably lead to distinct visual patterns when compared to
images from within the same dataset and other countries.
Additionally, large annotated radiology datasets are hard to
obtain due to legal/ethical problems concerning privacy and
because labeling biomedical images is a highly specialized
skill. These problems severely hamper the use of large datasets
in order to gather useful knowledge for local medical imag-
ing applications in smaller hospitals or regions with limited
resources, wherein local data cannot be labeled.

Domain Adaptation (DA) [4] methods are often used to
improve the generalization of Deep Neural Networks (DNNs)
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over biomedical images in an unsupervised or semi-supervised
manner. The most popular method for deep DA is transfer
learning via fine-tuning pretrained neural networks from larger
datasets. However, fine-tuning only learns from labeled data,
ignoring the larger amounts of unlabeled data available in most
real-world scenarios. During the last years, several approaches
have been proposed for Unsupervised Domain Adaptation
(UDA) [5], [6], Semi-Supervised Domain Adaptation (SSDA)
[7], [8] and Fully Supervised Domain Adaptation (FSDA)
[9]. In all of these scenarios there is a reasonably large
source dataset S that can provide labels for the training
of a certain supervised task in the target dataset T . Until
recently these advances in DA were applied only to sparse
labeling (classification) tasks, leaving a considerable gap in
the literature for UDA and SSDA methods in dense labeling
(segmentation) tasks.

Image translation [10], [11] and adversarial training [12]
have been recently repurposed to perform these knowledge
transfer tasks in segmentation scenarios. Following this trend,
the first contribution of the doctoral work [13] summarized
in this text comprised an image translation approach for
pairwise UDA and SSDA for dense labeling in X-Ray images,
which was a novelty at the time of publishing. This initial
strategy was published in SIBGRAPI 2018 [14] and allowed for
the democratization of lung, heart and clavicle segmentation
across Chest X-Ray datasets. Aiming to leverage multiple
data/label sources, we modified this initial method to perform
Conditional DA instead of D2D, while also adding supervision
to an isomorphic representation across the datasets instead
of either the source or target images directly. This was in
contrast to all other Generative Adversarial Networks (GANs)
for Image-to-Image Translation (I2I) applied to DA in the
literature [14]. The proposal of this approach was published at
IEEE Access [15] and is the most thoroughly evaluated part of
this works, serving as a basis for multiple future works. At last,
we also published a paper in Pattern Recognition Letters (PRL)
employing Conditional DA to transfer knowledge between
synthetic and real data [16] in order to leverage the higher
dimensionality of 3D Computed Tomography (CT) to perform
generalizable rib segmentation in 2D Chest X-Rays. These
approaches and some of their most important results are
discussed in Sections II and III of this manuscript, while
current works still in development that branched from the
doctoral work [13] are further described in Section IV.



II. PROPOSED METHODS

A. Pairwise Domain Adaptation

Let {S, T } a pair of source and target datasets, with
S = {XS , Y S} having both images (XS ) and labels (Y S )
and T = {XT } only containing unlabeled samples XT , the
traditional D2D pipeline essentially takes into account the
translation capabilities of an I2I network to learn to predict
Ŷ T without any label Y T used during training. With simple
modifications to the traditional Unsupervised I2I Translation
pipeline, one can adapt a network as UNIT [17] or MUNIT
[18] to perform cross-dataset transfer learning. This was the
aim of our SIBGRAPI 2018 paper [14], which was con-
temporary to multiple other similar works in the literature
focused on DA for segmentation of RGB images [19]–[22].
From now on, such methods for pairwise DA using image
translation will be referred to as Domain-to-Domain (D2D)
approaches. D2D strategies simply combine the supervised
learning from a semantic segmentation network with an I2I
method to perform UDA or SSDA, attaching the supervised
segmentation architecture at either end of the image translation
process. A typical D2D pipeline can be seen in Figure 1.
This simpler pairwise pipeline is able to perform cross-dataset
transfer learning between pairs of domains, even though the
generalization capability of the model is still limited to the
variability in S . The D2D strategy proposed by this work is
discussed in length in Chapter 3.1 of the dissertation [13].

Pairwise Image Translation for DA presented limitations
that would prevent the method to maximize its label efficiency.
For instance, in the task of lung segmentation in thoracic
radiographs there are four labeled large scale datasets that
could have labels used for training. However, D2D only allows
for one of the datasets to be used as source and another
unlabeled dataset to serve as target to the translation. This
was the main motivation to the development of conditional
dataset encoding (Section II-B) in the more recent iteration of
this work: CoDAGANs.

B. Conditional Domain Adaptation

Conditional Domain Adaptation Generative Adversarial
Networks (CoDAGANs) apply a relatively similar framework
to D2D in order to perform UDA, SSDA and FSDA, mixing
the unsupervised learning of Cycle-Consistent GANs with the
supervised pixel-wise learning of deep semantic segmentation.
However, two crucial distinctions between D2D and CoDA-
GANs must be highlighted. Firstly, in contrast to most other
works in the literature, only one Encoder (GE), one Decoder
(GD) and one Discriminator (D) are used in the image transla-
tion process, as the cross-translation of multiple source and/or
target domains is guided by conditional encoding. In other
words, while D2D approaches have two translation networks
(GS→T and GT →S ) trained separately, CoDAGANs repurpose
one single translation generator G capable of translating from
any input domain D(i) to any other output domain D(j). This
distinction solely is responsible for two effects: considerably
lessening the GPU memory requirements of the approach due
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Fig. 1. Traditional pipeline of a Cycle-Consistent GAN for DA. S → T → S
(a) and T → S → T (b) training are conducted simultaneously.

to the repurposing of the same generator for all translations
and allowing for multi-source and multi-target DA.

The second main difference between CoDAGAN and D2D
regards the supervised learning model M. In D2D, MT is
capable of performing segmentation only on the target domain
T due to its placement in the pipeline (see Figure 1). In
contrast, the model M in CoDAGANs operates over a single
space I trained to be isomorphic across all training domains,
as depicted in Figure 2. This is achieved by splitting the
generator G into its encoder (GE) and decoder (GD) halves,
resulting in a bottleneck representation common to all datasets
that corresponds to I. These differences allow for drawing su-
pervised and unsupervised knowledge from multiple datasets,
depending on their label availability, as shown in Figure 3.

CoDAGAN adds a new supervised component Lsup to the
loss of Unsupervised Image-to-Image Translation methods,
which is already a composite loss that pairs a cycle consistency
objective (Lcyc) – typically L1 regression – with an adversarial
component (Ladv). The supervised learning component (Lsup)
for CoDAGANs is the default cost function for supervised
classification/segmentation tasks, the Cross Entropy loss. The
objective LCoDA for CoDAGANs is, therefore, defined by:
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Fig. 2. Comparison between the translation processes of D2D architectures
(a) and CoDAGANs (b) focusing on the generators’ perspectives. While D2D
uses an two generators (GS→T and GT →S ) for a pair of domains {S, T },
CoDAGANs train a single generator G conditioned via a One-Hot-Encoding
hi code for each domain D(i). Readers should notice that D2D does not
explicitly produce an isomorphic representation I across domains, while this
encoding naturally arises in CoDAGANs.

LCoDA =

λcyc [Lcyc(Xa, Xa→b→a) + Lcyc(Xb, Xb→a→b)] +

λadv [Ladv(Xb, Xa→b) + Ladv(Xa, Xb→a)] +

λsup [Lsup(Y a,M(Ia)) + Lsup(Y b,M(Ib)) +
Lsup(Y a,M(Ia→b)) + Lsup(Y b,M(Ib→a))], (1)

where a and b are two randomly drawn domains, M is the
supervised segmentation model and λcyc, λadv and λsup are
multipliers empirically set to 10, 1 and 1, respectively.

Further discussions about the details and advantages of
conditional DA, network architectures, losses, training proce-
dures and implementation details for CoDAGANs can be fully
appreciated in Chapter 3.2 of the dissertation [13] or in our
IEEE Access paper [15].

C. Leveraging Synthetic Data with CoDAGANs

The last development of conducted during the PhD. was the
leverage of Conditional DA in a large domain shift scenario
with synthetic data. For that, we proposed a pipeline capable of
transferring knowledge from 3D CT scans to 2D CXRs using
CoDAGANs [16] in order to achieve rib segmentation without
requiring any per-pixel labels for ribs. We leverage the higher
dimensionality of CTs to extract noisy bone segmentation
masks (Y S

Bones) and use CoDAGANs to perform UDA from

these pseudo-annotations to real CXR data. CoDAGANs are
then used to compensate for the domain shift between the
source dataset S composed of Digitally Reconstructed Radio-
graphs (DRRs) and multiple target CXR datasets (T ) without
annotations for the ribs. The full pipeline for rib segmentation
from noisy labels can be seen in Figure 4.

In order to extract useful unsupervised knowledge for 2D
images such as CXRs from volumetric CT-scans, the proposed
pipeline for rib segmentation begins with two operations
for flattening 3D volumes into 2D planes: Average Intensity
Projection (AIP) and Maximum Intensity Projection (MIP) in
the Posterior-Anterior (PA) axis of CT images; resulting in the
images XS and Y S

Bones respectively. AIP is done by averaging
all pixels in a certain location across all the PA axis, while
MIP applies the max operation to this same pixel column.
These flattening procedures were previously observed by the
literature [23], [24] to generate useful 2D representations that
could be compiled into knowledge for CXRs, especially for
delineating anatomical structures such as bones and organs.
The generation of DRR samples by AIP in the PA axis is
delineated in green in the pipeline.

Bone masks generated by the max operation on the CT-
scans (Y S

Bones) yield an acceptable yet noisy segmentation
of the bones in the resulting DRR. Simple morphological
filtering was observed to fix the noise introduced by the max
operation in the labels. The computation of bone labels from
the max operations in CT volumes can be seen delineated in
red in Figure 4. As bones and other natural/artificial structures
prominently appear in DRRs when flattening is done using the
max operation, undesirable objects as scapula and humerus
bones, other anatomical features, and even pacemakers are
often present as False Positives in the label maps acquired for
the DRRs. These artifacts are often located outside of the lung
field area in the 2D projection, implying that an efficient lung
segmentation could remove most of them from the label set.
Thus, in order to filter all these undesirable artifacts from the
labels, we first used a CoDAGAN (CoDALungs) to perform
UDA for lung field segmentation from labeled CXR datasets to
the DRRs, as highlighted in blue in Figure 4. These networks
yielded semantic prediction maps for the lung pixels and
allowed for filtering the noisy labels acquired from the MIP.
The resulting masks Y S

Ribs are, therefore, computed according
to:

Y S
Ribs = Y S

Bones & Ŷ S
Lungs , (2)

where & represents the pixelwise AND operation.
More information on this project, including the DRR

dataset, noisy masks for the ribs and source code can be found
in the main article [16] and the project’s webpage1. Also,
details about our pipeline for knowledge transfer from DRRs
can be fully appreciated in Chapter 3.3 of the dissertation [13].

III. HIGHLIGHTED RESULTS AND DISCUSSION

A total of 7 tasks were analysed: lung, heart and clavicle
segmentation in CXRs; breast region and pectoral muscle seg-

1https://sites.google.com/view/virginiafernandes/datasets/lidc-idri-drr
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Fig. 3. Overview of multi-source and multi-target DA can be achieved via Conditional DA, only pairwise training is required. For each iteration in the DNN,
one source (DS , in this example, D(1)) and one target (DT , in this example, D(n)) domain are sampled.
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Fig. 4. Proposed rib segmentation pipeline. There are four submodules highlighted in the image: 1) the procedure for acquiring bone labels from CT-scans
in red; 2) average flattening in the PA axis to produce highlighted in green; 3) Conditional DA for DRR lung segmentation from CXR labels delineated in
blue; and 4) CoDAGANs for segmenting CXR ribs in orange.

mentation in MXRs; and teeth and mandible segmentation in
DXRs. Additionally, we use a public CT dataset as source for
computing the synthetic data for rib segmentation according
to the methodology presented in Section II-C. These datasets
vary widely according to label availability, number of samples
and standardization in data acquisition. Here, we focus on

two subsets of experiments: 1) CXR lung segmentation with
CoDAGANs and the D2D baseline (Figure 5); and 2) rib
segmentation for transferring knowledge from synthetic data
(Figure 7). We simulate UDA and SSDA on the labeled
target datasets by ignoring most or all reference annotations
during training, only fixing one source dataset among in each



domain/task pair. All throughout the results, an experiment
referenced to as Eρ% indicates that only ρ% of the labels
from the target dataset are used.

A. D2D Proof of Concept

Table I shows the results obtained by the proposed D2D
method [14] compared with Fine-tuning and From Scratch
training with the limited labels in the case of SSDA. It is clear
that D2D significantly surpasses the effectiveness of Fine-
tuning when using between 0% and 20% of the labels from
the target training set. When using 50% and 100% of the
target labels, Fine-tuning marginally surpassed our method,
even though the difference was not statistically significant.
While Fine-tuning and From Scratch yield poor performance
particularly when label scarcity is more prevalent, the D2D
approach is able to learn from both labeled and unlabeled
samples, achieving a Jaccard score of 88% even in the fully
unsupervised case. From Scratch results only reach Jaccard
scores above 90% when 100% of the labels from T are used.

TABLE I
D2D [14] RESULTS WITH S = JSRT [25] AND T = MONTGOMERY [26]

FOR MULTIPLE PERCENTAGES OF LABELED SAMPLES ON THE TARGET
DATASET. STANDARD U-NETS FOR SEMANTIC SEGMENTATION TRAINED

ON THE TARGET DOMAIN WITH AND WITHOUT PRETRAINING ON THE
SOURCE ARE USED AS BASELINES IN THIS EARLY EXPERIMENT. BOLD

VALUES INDICATE THE BEST RESULTS FOR EACH LINE.

T Label % D2D Fine-Tuning From Scratch
E0% 88.20 ± 9.80 4.30 ± 4.13 –
E5% 90.79 ± 7.05 83.46 ± 8.60 55.10 ± 14.42
E10% 89.18 ± 9.18 83.66 ± 9.69 87.80 ± 6.78
E20% 91.26 ± 7.20 88.71 ± 8.73 89.50 ± 7.65
E50% 92.15 ± 5.90 93.78 ± 5.42 89.82 ± 4.34
E100% 93.18 ± 5.47 94.81 ± 5.15 94.16 ± 4.57

The preliminary results presented in Table I, although
promising, proved to be highly unstable, as can be observed
via the very large confidence intervals of D2D approaches
in Figure 5. This limitation of pairwise DA fomented the
development of CoDAGANs and their validation experiments
presented in Section III-B.

B. Domain Adaptation Across Multiple Domains

As shown in Figure 5, UDA (E0%) using CoDAGANs
reaches quantitative above 80% (Figure 5a) or even 90% (Fig-
ure 5b), depending on the target dataset. These values are close
to the performance of a supervised lung field segmentation
model trained directly on the target dataset close to FSDA, as
can be appreciated in Chapter 5.2 of the dissertation [13]. In
other words, CoDAGANs are able to correctly compensate for
cross-dataset domain shifts without requiring any target dataset
labels, effectively democratizing segmentation annotations for
novel unlabeled datasets.

Additionally to the good performance on cross-dataset DA,
CoDAGANs also allow for Domain Generalization due to their
inherently multi-source and multi-target nature. This, again,
contrasts with previous approaches that rely on pairwise D2D
adaptation. A qualitative assessment of Domain Generaliza-
tion from CoDAGANs and baselines can be appreciated in
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Fig. 5. Jaccard scores for two target datasets in CXR lung segmentation
obtained from CoDAGANs and D2D approaches. (a) T = Montgomery. (b)
T = OpenIST. Best viewed in color and with zoom.

Figure 6. This discussion is expanded on the original proposal
of CoDAGANs, published on IEEE Access [15].

Once Conditional DA was successfully validated, as shown
in Figures 5 and 6, it was possible to try more out-of-the-box
experimental setups that took advantage of CoDAGANs. In
this context, we evaluated the method in a setup with synthetic
data and labels for rib segmentation (Section III-C).

C. Synthetic DRR Experiments

Figure 7 shows the performance of conditional DA on
Domain Generalization of rib segmentation from automati-
cally computed labels from DRRs. It is evidenced mainly
in Figure 7a that CoDAGANs achieve considerably higher
AUCs than Pretrained U-Nets in large domain shift scenarios
for rib segmentation. Results shown in Figure 7c stress the
generalization capabilities of CoDAGANs to segment ribs in
multiple target CXR domains, as the source DRRs are quite
smoother than the real CXRs. This is due to the AIP procedure
that flattens the 3D space into a 2D projection, resulting in
a large domain shift between DRR and CXR samples. A
full discussion regarding DA from synthetic data is found in
Chapter 5.3 of the dissertation [13] or on the PRL manuscript
[16].

IV. CONCLUSION AND CURRENT DEVELOPMENTS

This manuscript summarized the strategies for democratiz-
ing segmentation labels in radiology via UDA, mainly focusing
on conditional DA, which can be applied to Domain Gener-
alization proposed in Hugo Oliveira’s PhD. dissertation [13].
Thorough analyses of CoDAGANs and pairwise DA baselines
are shown in the main text of the dissertation [13], evidencing
the advantages and possible limitations of conditional DA.

Published manuscripts [14]–[16] and the dissertation text
address aspects of the proposed approaches that are not
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Fig. 6. Segmentation predictions of CoDAGANs and baseline methods in
one source (JSRT) and seven target CXR datasets without using any labels
from the target domains (UDA).

fully described in this manuscript. Additionally, we highlight
multiple other related papers [27]–[31] that were published
either in conferences or journals in the fields of Deep Learn-
ing, Domain Adaptation and/or Medical Imaging during this
research project.

We highlight three derived works branching from the orig-
inal CoDAGANs [15] already under development:

1) the CAD-COVID-19 project2, approved by FAPEMIG,
with multiple professors, post-doctoral researchers, grad-
uate and undergraduate students aiming to adapt CoDA-
GANs to aid in the diagnosis of COVID-19 and other
pulmonary illnesses;

2) undergoing results soon to be submitted to a journal that
apply 2D CoDAGANs to zero-shot domain adaptation.
This new research direction is an explicit effort to de-
mocratize medical annotations even when they are done
in private datasets. This project will result in an MSc.
dissertation of a graduate student from Universidade
Federal de Minas Gerais co-advisored by Hugo Oliveira;
and

2http://www.cadcovid19.dcc.ufmg.br/
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Fig. 7. ROC curves for the JSRT (a) and OpenIST (b) target datasets on rib
segmentation from noisy labels using CoDAGANs and Pretrained U-Nets. We
also present qualitative results for the target OpenIST dataset (c).

3) the adaptation of CoDAGANs to generalize segmen-
tation predictions in volumetric data, with promising
results in lung and liver segmentation in CT volumes,
reaching preliminary Jaccard scores of 0.90 or higher.
This branch of development of 3D CoDAGANs is being
conducted by an undergraduate student at Universidade
Federal de Minas Gerais, resulting in her bachelors
dissertation, also co-advisored by Hugo Oliveira.

We highlight that all these current research projects branch-
ing from the original CoDAGANs aim to democratize the
access of labels in medical imaging. We argue that both the
doctoral work described in this text and the aforementioned
research branches considerably advanced the literature of
Domain Generalization in medical image segmentation.

ACKNOWLEDGMENTS

The authors would like to thank CAPES for the schol-
arship granted all throughout the PhD., as well as CNPq
(424700/2018-2) and FAPEMIG (APQ-00449-17) for partially
funding this research. Additionally, we acknowledge the GPU
grants from NVIDIA that provided a part of the computational
resources used in our experiments.



REFERENCES

[1] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez,
“A Survey on Deep Learning in Medical Image Analysis,” Medical
Image Analysis, vol. 42, pp. 60–88, 2017.

[2] T. Zhou, S. Ruan, and S. Canu, “A Review: Deep Learning for Medical
Image Segmentation Using Multi-Modality Fusion,” Array, vol. 3, p.
100004, 2019.

[3] G. Haskins, U. Kruger, and P. Yan, “Deep Learning in Medical Image
Registration: A Survey,” Machine Vision and Applications, vol. 31, no. 1,
p. 8, 2020.

[4] J. Zhang, W. Li, and P. Ogunbona, “Transfer Learning For Cross-Dataset
Recognition: A Survey,” 2017.

[5] Z. Cao, L. Ma, M. Long, and J. Wang, “Partial Adversarial Domain
Adaptation,” in ECCV, 2018, pp. 135–150.

[6] W. Zhang, W. Ouyang, W. Li, and D. Xu, “Collaborative and Adversarial
Network for Unsupervised Domain Adaptation,” in CVPR, 2018, pp.
3801–3809.

[7] M. Yamada, L. Sigal, and Y. Chang, “Domain Adaptation for Structured
Regression,” International Journal of Computer Vision, vol. 109, no. 1-2,
pp. 126–145, 2014.

[8] Y. Wu and Q. Ji, “Constrained Deep Transfer Feature Learning and its
Applications,” in CVPR, 2016, pp. 5101–5109.

[9] P. Koniusz, Y. Tas, and F. Porikli, “Domain Adaptation by Mixture
of Alignments of Second-or Higher-Order Scatter Tensors,” in CVPR,
vol. 2, 2017.

[10] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Transla-
tion with Conditional Adversarial Networks,” in CVPR. IEEE, 2017,
pp. 5967–5976.

[11] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks,” in ICCV,
2017.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,”
in NIPS, 2014, pp. 2672–2680.

[13] H. Oliveira, “Semantic segmentation with multi-source domain adapta-
tion for radiological images,” Ph.D. dissertation, Universidade Federal
de Minas Gerais, 2020.

[14] H. N. Oliveira and J. A. dos Santos, “Deep Transfer Learning for
Segmentation of Anatomical Structures in Chest Radiographs,” in SIB-
GRAPI. IEEE, 2018.

[15] H. N. Oliveira, E. Ferreira, and J. A. Dos Santos, “Truly Generalizable
Radiograph Segmentation With Conditional Domain Adaptation,” IEEE
Access, vol. 8, pp. 84 037–84 062, 2020.

[16] H. Oliveira, V. Mota, A. M. Machado, and J. A. dos Santos, “From 3d to
2d: Transferring knowledge for rib segmentation in chest x-rays,” PRL,
vol. 140, pp. 10–17, 2020.

[17] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised Image-to-Image
Translation Networks,” in NIPS, 2017, pp. 700–708.

[18] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal Unsuper-
vised Image-to-Image Translation,” in ECCV, 2018, pp. 172–189.

[19] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros,
and T. Darrell, “CyCADA: Cycle-Consistent Adversarial Domain Adap-
tation,” in ICML, 2018, pp. 1994–2003.

[20] Z. Murez, S. Kolouri, D. Kriegman, R. Ramamoorthi, and K. Kim,
“Image to Image Translation for Domain Adaptation,” in CVPR, 2018,
pp. 4500–4509.

[21] Z. Wu, X. Han, Y.-L. Lin, M. Gokhan Uzunbas, T. Goldstein,
S. Nam Lim, and L. S. Davis, “DCAN: Dual Channel-wise Alignment
Networks for Unsupervised Scene Adaptation,” in ECCV, 2018, pp. 518–
534.

[22] Y. Zou, Z. Yu, B. Vijaya Kumar, and J. Wang, “Unsupervised Do-
main Adaptation for Semantic Segmentation via Class-Balanced Self-
Training,” in ECCV, 2018, pp. 289–305.

[23] S. Candemir, S. Jaeger, S. Antani, U. Bagci, L. R. Folio, Z. Xu,
and G. Thoma, “Atlas-based Rib-Bone Detection in Chest X-Rays,”
Computerized Medical Imaging and Graphics, vol. 51, pp. 32–39, 2016.

[24] Y. Zhang, S. Miao, T. Mansi, and R. Liao, “Task Driven Generative
Modeling for Unsupervised Domain Adaptation: Application to X-Ray
Image Segmentation,” in MICCAI. Springer, 2018, pp. 599–607.

[25] J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi,
K.-i. Komatsu, M. Matsui, H. Fujita, Y. Kodera, and K. Doi, “Devel-
opment of a Digital Image Database for Chest Radiographs with and

without a Lung Nodule: Receiver Operating Characteristic Analysis of
Radiologists’ Detection of Pulmonary Nodules,” American Journal of
Roentgenology, vol. 174, no. 1, pp. 71–74, 2000.

[26] S. Jaeger, S. Candemir, S. Antani, Y.-X. J. Wáng, P.-X. Lu, and
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