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Abstract—This survey presents methods that use neural net-
works for implicit representations of 3D geometry — neural
implicit functions. We explore the different aspects of neural
implicit functions for shape modeling and synthesis. We aim
to provide a theoretical analysis of 3D shape reconstruction
using deep neural networks and introduce a discussion between
researchers interested in this research field.

I. INTRODUCTION

Representing shapes as level sets of neural networks has
recently been useful for different shape analysis and recon-
struction tasks. Computer graphics and 3D computer vision
presented multiple approaches to representing 3D geometry
for rendering and reconstruction, providing trade-offs across
fidelity, efficiency, and compression capabilities. This survey
presents methods to model geometry and appearance with
Neural Networks that provide extrinsic descriptions, including:
i) Spatial Characteristic Functions; ii) Signed Distance Func-
tions (SDFs); and iii) Volumetric Fields. We explore seminal
works considering the state-of-the-art high-quality shape rep-
resentation, interpolation, and completion from partial noisy
3D input data and also image collections. Considering these
techniques, implicit data representation can be computed by
implicit regularization, periodic activation functions, and loss
functions among others explicitly defined over the neural level
sets. We also present methods to enhance the performance of
these deep neural networks, where it can be possible to be
used in real-time applications.

II. TOPIC SURVEY

We start giving an overview of the main concepts involved
in this topic followed by a classification of the state of the art
and recent research work in this area.

A. Main Concepts
The main concepts related to Neural Implicit Representa-

tions correspond to the shape and appearance models as well
as to the usage of neural networks in these descriptions.

1) Neural Parametric Surfaces: Explicit geometric repre-
sentations describe a surface intrisically, i.e., by a parametric
function g : U ⊂ R2 → R3. In that context, a surface
can be represented by an atlas, where each chart is a local
parameterization [1].

In order to model this kind of represntation by a Neural
Network, Groueix et al. [2] and Deprelle et al. [3] sug-
gested modeling charts as Multi-layer perceptrons (MLPs) and

Williams et al. [4] focused on individual surface reconstruc-
tions. Some works have considered global surface parametriza-
tions [5]–[7]. Global parametrizations produce consistent cov-
erings, although they introduce high distortions [1]. However,
parametric representations over implicit neural representations
have some disadvantages: it isn’t straightforward to produce
perfectly overlapping charts.

2) Neural Implicit Surfaces: Implicit geometric represen-
tations describe a surface extrinsically, i.e., by a function of
the ambient space f : R3 → R that classifies the points
of an embedded object. Differently from explicit geometric
representations, such as vertex and triangle lists, implicit
descriptions, such as signed distance functions (SDFs) may
be used to represent geometry, where the object is the zero-
level set of a function defined in the space. More formally,
in the particular case of SDFs, let f : R3 → R be a smooth
function, f is a signed distance function from f−1(0) if it
satisfies the Eikonal equation ‖∇f‖ = 1. The zero-level set
f−1(0) of f is a hypersurface in R3 defined by all points
X ⊂ R3 satisfying f(X) = 0. Such representation allows for
simple collision tests, continuous (vs. discrete) representation,
and differentiability.

B. Model Classification

Recent work in the area of Neural Implicit Representations
of 3D Scenes can be classified according to the type of implicit
description employed and also by the way it is implemented
using a Neural Network.

In that context, we divide the methods in four categories:
• 1st Generation Models
• 2nd Generation Models
• 3rd Generation Models
• 4th Generation Models

It is noteworthy to point out that the evolution of the area
followed the developments of these models in chronological
order.

1) 1st Generation Models: The First Generation Models
correspond to global functions of the ambient space and
employ as implicit model either the characteristic function or
the signed distance function. They use a fully connected Multi
Layer Perceptron (MLP) network architecture. The model is
learned by fitting the input data to the model. The Loss
function is based either on the L1 or L2 norm.



The seminal papers of this category appeared in 2019. They
are: Occupancy Networks˜ [8], LIF [9], Deep SDF [10], and
Deep Level Sets [11].

2) 2nd Generation Models: The Second Generation Models
correspond to a set of local functions that combined together
gives a representation of a function over the whole space.
These models are based either on a shape algebra, such
as in Constructive Solid Geometry (CSG), or Convolutional
Operators.

The seminal papers of this category appeared in 2019 /
2020. They are: LDIF (Genova et al, 2019), BSP-Net [12],
CvxNet [13] and Convolutional Occupancy Networks [14].

3) 3rd Generation Models: The Third Generation Models
correspond to true signed distance functions (SDF) that are
given by the Eikonal equation. The model exploits in the Loss
function the condition that the gradient of the function has
to be constant and with norm equal to one everywhere, i.e.,
||∇f || = 1.

The seminal papers of this category appeared in 2020. They
are: IGR [1] and SIREN [15].

4) 4th Generation Models: The Fourth Generation Models
correspond to continuous volumetric functions that encode
light fields. They represent geometry as a density over space
and also encode direction-dependent radiance information.

The seminal papers of this category appeared in 2020 /2021.
They are: NeRF [16], MNSR [17], among others.

III. FIRST GENERATION MODELS

A. Occupancy Networks

Many of prior learning based 3D reconstruction approaches
can only represent very coarse 3D geometry or are limited to
a restricted domain. Occupancy networks implicitly represent
the 3D surface as the continuous decision boundary of a deep
neural network classifier. In contrast to previous approaches,
that representation encodes a description of the 3D output at
infinite resolution without excessive memory footprint.

The main idea is to reason occupancy not only at fixed
discrete 3D locations (as in voxel representations) but at
every possible 3D point p ∈ R3. This is done by defining
an occupancy function o : R3 → {0, 1} that this network
is equivalent to a neural network for binary classification,
except that we are interested in the decision boundary which
implicitly represents the object’s surface. See Figure 1.

When using such a network for 3D reconstruction of an
object based on observations of that object (e.g., image, point
cloud, etc.), it must be conditioned on the input. Fortunately, a
simple functional equivalence can be used for this: a function
that takes an observation x ∈ X as input and has a function
from p ∈ R3 to R as output can be equivalently described
by a function that takes a pair (p, x) ∈ R3 × X as input
and outputs a real number. The latter representation can be
simply parameterized by a neural network fθ that takes a pair
(p, x) as input and outputs a real number which represents the
probability of occupancy: fθ : R3 × X → {0, 1} (2). This
network is called the Occupancy Network.

(a) (b)

Fig. 1. Occupancy Network as decision Boundary (a) and Classification of
Points in Space (bb).

B. Deep SDF

Differently from previous works, [10] proposed a continu-
ous approach for learning 3D shapes. Instead of modelling the
shapes explicitly, i.e. by triangle meshes, they proposed using
an implicit representation with Signed Distance Functions. The
target shape is the zero level-set of this function (∀x such that
F (x) = 0, where F (.) is the signed distance function). See
Figure 2.

Fig. 2. Deep SDF Implicit Function.

This modelling choice enabled them to make use of the Uni-
versal Approximation Theorem for multi-layer perceptrons.
Thus, they proposed a MLP model to approximate the SDF
representation of a target shape by using points sampled from
the domain as input, and their SDF values as targets. A clear
advantage of this approach is the hability to learn a continuous
representation of the function, being limited only by the model
capacity.

Another aspect of DeepSDF is the ability to learn not only a
single shape, but a family shapes. By adding a latent vector as
an encoder of the target shape, the model is able to map and
learn a latent representation of the shape itself. Thus, one may
change a latent code while maintaining the point sample as a
sort of ”index” to the desired shape. This also allows for shape
interpolation by performing a linear interpolation between
distinct latent vectors. See Figure 3. The authors propose an
encoder-less approach to learn this latent representation, being
the first work to do so in the graphics learning community, to
the best of our knowledge.



Fig. 3. Interpolation of Shape Families.

IV. SECOND GENERATION MODELS

A. BSP-Net / CvxNet

Let {mi, gi} be a given data-set. mi are elements in the
input set X (images, point clouds, or voxel grids). gi : R3 → R
are implicit functions representing objects Oi. Specifically,
the object surface ∂Oi is {p | gi(p) = 0}, its interior is
{p | gi(p) < 0} and {p | gi(p) > 0} is the exterior. Suppose that
f(·,mi) = gi(·) for some unknown function f : R3×X → R.
The deep implicit problem is the task of constructing a function
fθ that approximates f . Once we find a “good” function fθ,
we estimate the object associated with an unknown input
m ∈ X using fθ(·,m). This section presents two networks that
solve this problem using constructive solid geometry (CSG):
CvxNet [13] and BSP-Net [12].

In CSG, boolean operators (union, intersection, ...) are used
to combine simpler objects to create complex ones. CSG
objects can be represented by trees. The leaves correspond to
primitives (half-space, cubes, balls, ...) and the nodes represent
operations. CvxNet and BSP-Net are networks that encode
simple CSG trees. The leaves (primitives) are half-spaces,
an intermediate layer considers the intersections of the half-
spaces to form convex shapes and, finally, the root of the tree is
obtained through the union operator that groups the convexes
into a single shape.

Given an input m ∈ X , BSP-Net learns a (CSG) implicit
function fθ(·,m) : R3 → R. This network consists of three
steps. First, an encoder receives the input m and returns a
feature code that is the input of an MLP layer. This layer
produces the parameters that define a fixed number of plane
equations ax + by + cz + d = 0. These implicit functions
are evaluated on n points (in homogeneous coordinates). The
second step considers a binary matrix that forces a collection
of half-planes to form a fixed number of convex polytopes.
Finally, the last layer groups these convex parts producing
the desired implicit function fθ. Given a new input m′ ∈ X ,
observe that the zero-level set of fθ(·,m′) is a surface with
sharp details since it is the boundary of the union of convex
polytopes. Note also that the considered binary matrix learns
edges between the half-planes and the convex polytopes,
therefore, BSP-Net “learns” the CSG tree. See Figure 4.

The CSG tree is fixed in the CvxNet. However, this net-
work represents a finite family of smooth convex shapes.

Fig. 4. Neural BSP Tree.

Specifically, given an input m ∈ X an encoder estimates
a feature vector λ representing a family of smooth convex
shapes. A decoder takes λ and returns a collection of parameter
tuples. Each tuple consists of a vector storing the half-space
coefficients used to create the corresponding smooth convex.
Combining the implicit functions related to these convex
shapes gives rise to the desired implicit function fθ.

Some examples can be seen in Figure 5.

Fig. 5. Correspondence between Decomposition of Structurally Similar
Models.

B. Convolution Occupancy Networks

Implicit approaches show exciting results; however, most of
the works are limited to analyze simple geometries of single
objects. The main related works do not scale to large scenes
with higher quality and details. The main factor that may
exploit the limitations of these methods is their simple fully-
connected network architecture which does not allow for inte-
grating local information in the observations or incorporating
inductive biases such as translation equivariance. Peng et al.
[18] propose the Convolutional Occupancy Networks, which
the author says is a more flexible representation for a detailed
reconstruction of objects and 3D scenes.

The main idea is simple but clever: they combine con-
volutional encoders with implicit occupancy decoders. The
method exploits convolutional operations to obtain translation
equivariance and the local similarity of 3D structures. They
query convolutional features at 3D locations using linear
interpolation. In contrast with traditional occupancy networks,



this method depends on both input x and the 3D locations. The
neural network first processes the input x to obtain a feature
encoding for every point or voxel. They use a 3D CNN for
voxelized inputs and a shallow PointNet with local pooling
for 3D point clouds to construct planar and volumetric feature
representations to encapsulate local neighborhoods.

The proposed representation can reconstruct geometry from
noisy point clouds and low-resolution voxels. The method
scale to large indoor scenes and generalizes from synthetic
to real data when compared with Occupancy Networks as we
can see in figure 6.

Fig. 6. Comparision between Convolutional Occupancy Networks and the
traditional one from Peng et al. that shows a reconstruction of a two-floor
building from a noisy point cloud on the Matterport3D dataset.

V. THIRD GENERATION MODELS

A. Siren

As we have seen in so far in this survey, implicitly defined,
continuous signal representations by neural networks have
emerged as a powerful paradigm, offering many possible ben-
efits over conventional representations. However, the network
architectures presented in the previous sections for such im-
plicit neural representations are incapable of modeling signals
with fine detail, and fail to represent a signal’s spatial and
temporal derivatives, despite the fact that these are essential
to many physical signals defined implicitly as the solution to
partial differential equations.

Sitzmann et al. [15] proposes to leverage periodic activation
functions for implicit neural representations and demonstrate
that these networks are ideally suited for representing complex
natural signals and their derivatives. SIRENs can be used for
high quality reconstruction of objects and 3D scenes as we
can see in Figures 7, 8 and 9.

SIREN [15] — sinusoidal representation networks — can
be used in order to approximate a sampled implicit function
f : R3 → R. SIREN has important properties that are suitable
for reconstructing signal, where it has a simple architecture
and uses the sine as a periodic activation:

fθ(p) =Wn ◦ fn−1 ◦ fn−2 ◦ · · · ◦ f0(p) + bn, (1)

fi(pi) = sin(Wi · pi + bi), (2)

(ReLU)

(SIREN)

Fig. 7. A SIREN network used for shape representation. The signed
distance function is fitted from a point cloud. Compared to a ReLU implicit
representation it higher quality for complex 3D scenes.

Fig. 8. The SIREN network recovers an SDF from a pointcloud and surface
normals by solving the Eikonal equation, a first-order boundary value problem.
SIREN can recover a 3D shape given only its pointcloud and surface normals.

where the function fi : RNi → RNi+1 is the ith layer of the
network. This map is obtained by applying the sine to each
coordinate of the affine map given by the linear transformation
Wi : RNi → RNi+1 translated by bi ∈ RNi+1 . The linear
operators Wi can be represented as matrices and bi as vectors,
therefore, the union of their coefficients correspond to the
coefficients θ of the SIREN function fθ. In other words, fθ is
parameterized by θ.

1) SIREN is smooth: The SIREN function fθ is smooth
since its partial derivatives (of all orders) exist and are contin-
uous. Indeed, each function fi has all the partial derivatives
because, by definition, it is an affine map with the sine
applied to each coordinate. Then, the chain rule implies the



Fig. 9. SIREN significantly improves fine details of objects.

smoothness of fθ.
We can derive the gradient of fθ using the chain rule:

∇fθ(p) = J
(
Wn ◦ fn−1 ◦ · · · ◦ f0(p)

)
+ J(bn)

= JWn(pn) ◦ Jfn−1(pn−1) ◦ · · · ◦ Jf1(p1) ◦ Jf0(p),

where J is the Jacobian operator and pi = fi−1 ◦ · · · ◦ f0(p).
Using the facts that J(bn) = 0 because bn is constant, and that
J(Wn)(q) =Wn because Wn is linear, we obtain:

∇fθ(p) =Wn ◦ Jfn−1(pn−1) ◦ · · · ◦ Jf1(p1) ◦ Jf0(p),

where Jfi(pi) =Wi � cos
[
ai
∣∣ · · · ∣∣ai]. The operator � is the

Hadamard product, and the matrix
[
ai
∣∣ · · · ∣∣ai] has Ni copies

of the vector ai =Wi(pi) + bi ∈ RNi+1 .
2) SIREN SDF functional: Let {pi, Ni} be a sample of

points {pi} and their normals {Ni} on a compact surface S
embedded in the cube Q = [−1, 1]3, Sitzmann et al. [15]
proposed to fit the zero-level set of a SIREN function fθ to
{pi, Ni} forcing fθ to be a signed distance function (SDF).
More precisely, they required fθ(pi) = 0, ∇fθ(pi) = Ni,
and |∇fθ(p)| = 1. The first two equations force the SIREN
function fθ to be zero at the sampled points {pi} and the
gradient of fθ to be aligned to the sampled normals {Ni}.
The equation |∇fθ(p)| = 1 is the Eikonal constraint, this is
the differential equation for which the solution is a signed
distance function. In particular, when we require fθ(pi) = 0,
it turns out that such restrictions are a sample of the initial
condition that we would like to be fθ(p) = 0 for every p ∈ S.

The loss function used in the training [15] of the SIREN
function fθ is very similar to Equation 3:∫
Q

|1−‖∇fθ(p)‖| dp+
∫
S

|fθ|+(1−∇fθ ·N)dS+

∫
Q/S

eα|fθ(p)|dp (3)

The term eα|fθ(p)| in Equation 3, with α < −1, penalizes the
points outside the surface S. The function fθ is supervised
using the sample of points {pi, Ni}. To train the coefficients
θ, the authors used a minibatch containing an equal number of
points on and off the surface S. The on-surface points were
uniformly sampled on the point cloud {pi, Ni}, and the off-
surface points were uniformly sampled on the cube Q.

B. IGR - Implicit Geometric Regularization

Implicit representations can be computed using implicit
shape representations or loss functions explicitly defined over
the neural level sets [19], [20]. The authors of IGR offer
a new paradigm for computing high fidelity implicit neural
representations directly from raw data in this technique. They
observe that a relatively simple loss function, similar to the
loss function in SIREN, encourages the neural network to
vanish on the input point cloud and to have a unit norm
gradient. The authors propose a technique called implicit
geometric regularization (IGR) [1]. This method drives the
optimization methods to reach a plausible interpretation for the
learning and favors smooth and natural zero-level set surfaces.
An example of how this method perform shape analysis can
be seen in Figure 10.

Fig. 10. The level sets of an MLP trained with the IGR method on an input
point cloud; positive level sets are in red; negative are in blue; the zero level
set, representing the approximated surface, is in white.

VI. FOURTH GENERATION MODELS

A. NeRF

Neural Radiance Fields (NeRF) [16] generates a novel view
from a set of surrounding images and camera poses (Fig.??) by
representing a scene as a volumetric object and parameterizing
it using a neural network. For each 3D point in space and ob-
servation direction, the neural network outputs an RGB color
and a volume density value. Notice that volume rendering is
naturally differentiable and, by using this approach, they were
able to optimize the density values as a function of the location
and predict the RGB color as a function of both location and
viewing direction.

Ray marching through a volume can be a highly costly pro-
cedure. To address this issue, the authors propose to optimize
two networks simultaneously, so that the output densities of
a coarse version could be used to produce more informed
sampling of points along the rays for a more refined version.
This way, it’s possible to do a hierarchical sampling of the
scene. This technique demonstrated the capability of repre-
senting reflections and specularities when the observation view
direction changes, as well as estimating depth information for
consistent occlusion tests. See Figure 11.

B. Multiview neural surface reconstruction by disentangling
geometry and appearance

In this work, the authors [17] introduce a neural network
architecture that simultaneously learns the unknown geometry,



Fig. 11. NeRF rendered views from different images from different angles.

camera parameters, and a neural renderer [21] that approxi-
mates the light reflected from a surface towards the camera.
The geometry is represented as a zero level-set of a neural
network, similarly to the IGR approach. They also derived the
rendering from the rendering equation, capable of (implicitly)
modeling a broad set of lighting conditions and materials
[16]. They trained the network on real-world 2D images of
objects with different material properties, lighting conditions,
and noisy camera initialization. Figure 12 presents an example
of this technique.

Input Images

Fig. 12. An end-to-end learning of geometry, appearance and cameras from
images.

VII. NETWORK OPTIMIZATION

Although the expressive results of neural networks in repre-
senting 3D surfaces and implicit functions, we fall in perfor-
mance problems when we consider real-time applications for
these methods. In other words, it is unpractical to use these

methods in real-time applications due to their computational
complexity. In most cases, they fail when considering run-
time performance or do not achieve the precision needed. We
propose a strategy to improve performance of the SIREN based
model considering a trade-off between runtime performance
and accuracy. For each layer of SIREN, we use matrix
factorizations to not only reduce dimensionality, but also to
improve performance. We assume that each layer is over
parameterized and its weights can be represented by a matrix
or tensor with a lower rank. Actually, the idea of improving
the performance of neural networks with matrix factorization
is not new. The Faster-RCNN proposes the use of Singular
Value Decomposition (SVD) for the fully connected layers.

A fully connected layer essentially does matrix multiplica-
tion of its input x by a matrix A, and then adds a bias b:

Ax+ b (4)

We can decompose the matrix A, truncating it, keeping only
the first r singular values as in Equation 5:

(Un×rSr×rV
T
m×r)x+ b = Un×r(Sr×rV

T
m×rx) + b (5)

Instead of having one fully connected layer, now we have 2
but with smaller weight matrices, where the first one is defined
by Sr×rV Tm×r and the second by the matrix Un×r. The overall
number of parameters drops from n×m to r(n+m).

We know that estimating an optimal rank to approximate
the original matrix can be sometimes difficult. We can try
different values and check the accuracy, playing with heuristics
that consider the trade-off between performance and accuracy.
However, the rank selection should be automated. Considering
this we can use a technique to estimate an optimal rank approx-
imation for our layers considering the Variational Bayesian
Matrix Factorization [22]. The VBMF is a probabilistic al-
gorithm that approximates a matrix Vn×m as the sum of a
lower ranking matrices Bn×hATh×m and gaussian noise. After
A and B are found, h is an upper bound on the rank. The
VB approximation has been successfully applied to matrix
factorization, offering automatic dimensionality selection for
principal component analysis [23]. Generally, finding the VB
solution is a non-convex problem, and most methods rely on
a local search algorithm derived through a standard procedure



for the VB approximation. Nakajima et.al [22]. presents a
global analytical solution for the VBMF, where the global
solution is a reweighted SVD of the observed matrix, and each
weight can be obtained by solving a quartic equation with its
coefficients being functions of the observed singular value.

We test this approach to automatically set an optimal rank
to each layer of a Siren Neural Network. With this, we reduce
the number of operations for this model by 10 times from
the original. With this approach, it was possible to use the
model in real-time applications, hlsl shader programs and RTX
architecture. Figures 13 and 14 show different results of neural
networks with 2 levels of decomposition.

Fig. 13. Result based on a decomposed SIREN with 1/8 of the original
parameters size.

Fig. 14. Result based on a decomposed SIREN with 1/4 of the original
parameters size.

VIII. CONCLUSION

We have presented in this survey the state-of-the-art meth-
ods for learning high-fidelity neural implicit representations of
3D shapes. These methods can use different loss functions and
activation functions. We described their different architectures
and their limitations for real-time applications. At the end,
we have proposed strategies to improve the performance and
reduce computational complexity.

Due to Neural Implicit Representation’s novelty, simplicity
and impressive results, the possibilities for future works are
fairly vast. There are numerous avenues for exploring its
properties, such as sampling approaches to speed-up training
convergence, using the approximate SDF values during train-
ing to mitigate artifacts in the function domain.

More information about this research area can be found in
the companion Web Portal of this survey: ”Deep Implicits”
(https://lvelho.impa.br/deep-implicits/).
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