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Abstract—Brain image registration fuses and aligns sets of
structural or functional images within individual and population
studies. The similarity metric is an image registration component
used for detecting the same target region in different images.
Multi-modal image registration constitutes one of the greatest
challenges in medical imaging as it adds even more variability
to the tissue and organ appearance, shape, and positioning. This
paper contains two contributions to solve this complex problem:
(1) we propose a solution to compute the similarity metric based
on a deep ensemble method. It combines multiple traditional and
deep similarity metrics into a single improved similarity map;
(2) we propose novel evaluation metrics to validate the results.
Experiment results in the context of T1- and T2-weighted MR
images of the human brain show a major improvement to the
state-of-the-art, especially in reducing the false-positive region
occurrences.

I. INTRODUCTION

Brain image registration optimizes a geometric transforma-
tion of different images into a common space, establishing a
known correspondence between them. For this purpose, the
registration operates on a transformed image using a static
image as its target. Image registration is fundamental for
several analytic studies based on structural and functional
images, including researches for understanding population
tendencies of phenotypes, measuring longitudinal changes
of organs and tissues, guiding surgery procedures through
images, and correlating an individual’s anatomy to a standard
atlas space [1]–[3].

Image registration methods are composed of three main
components: (1) a transformation model which defines the
complexity of possible geometrical changes to the image
contents; (2) a similarity metric used to measure how well
two images or two image regions (usually defined by patches)
are related to each other; and (3) an optimization strategy
which consists of the algorithm for searching the best matching
between images/patches [4]–[6].

This paper focuses on the second image registration frame-
work component, i.e., the similarity metric. Given a small
region of interest or search patch from the transformed image,
and convoluting it over the target image, the similarity metric
computes the probability of the overlapping regions to contain
corresponding contents, generating a similarity map with the
same dimensions as the target image as the output. An accurate
similarity metric should provide a map with high probability
values for the corresponding location between the transformed
and target images and low probability values elsewhere.

We may compute the similarity metrics based on manually
set markers provided by specialists at well-known locations,
or by automatically detecting corresponding regions by their
distinctive features. The first procedure is tedious and time-
consuming, not practical or feasible for longitudinal studies.
The second is more broadly applicable even though the
majority of the existing metrics such as the sum of squared
differences or sum of absolute differences are not suitable for
multi-modal image registration [1], [3], [7]

More recently, deep learning-based metrics became popular
in literature [8]–[11]. Still, these approaches are not reliable
since they have very low specificity in the target task, as we
show in Section IV.

Multi-modal image registration – i.e. involving images of
different modalities or acquisition protocols – is challenging
due to the distinct appearance of tissues and organs, sometimes
not even present in one of the images. For instance, human
brain image registration displays a challenging factor because
of the enormous shape variability in the cortical gyri and
sulci regions. There is also a lack of standard procedure to
evaluate registration results as previous works differ in their
used validation measures and methodology [3], [9], [12], [13].

In this paper, we propose a solution to compute the simi-
larity metric based on a deep ensemble method trained with
both classic and deep similarity metrics. It identifies the
precise matching between multi-modal human brain magnetic
resonance imaging (MRI) patches of the same subject. We also
introduce two novel evaluation metrics to compare the results
of the proposed and other state-of-the-art similarity metrics. In
Section II, we present the related works of the literature. Sec-
tion III describes our proposed solution. Section IV contains
our evaluation metric and experiments, and in Section VI we
state the conclusions and future works.

II. RELATED WORKS

The similarity metric in the context of medical imaging
registration is a function that identifies corresponding pixels
between the transformed and target images. In the case of
multimodal registration, the metric takes into account the
relative location of the pixels and the region contents in their
adjacency [2], [14].

In the literature, there are two classic similarity metrics
that are widely used for multi-modal registration: the Mutual
Information (MI) [15], [16] (Equation 1) and the Correlation



Ratio (CR) [17] (Equation 2). Other classic similarity metrics
are found in [18]. The higher the values of MI and CR, the
more correlated are the corresponding pixels x and y of two
images X and Y , respectively.

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p(x)p(y)

)
(1)

η(Y |X) =
V ar[E(Y |X)]

V ar(Y )
(2)

One more classic evaluation metric was proposed in [12].
The authors present an algorithm derived from max-margin
output learning to assimilate a linear function similarity metric
and perform a multi-modal rigid registration. It selects high
information and contrast patches for the registration process.
They evaluated the quality of the registration based on the Tar-
get Registration Error (TRE) which is the Euclidean Distance
(ED) between the transformed and the target images.

Since the advent of deep learning, several solutions have
been proposed to improve the accuracy of the classical simi-
larity metrics. In [19], the authors propose the Spatial Trans-
former Network (STN) which allows the spatial manipulation
of input images. It was used in the context of image alignment
but was also considered by other medical image registration
papers [7], [20], [21].

In [8], the authors propose a deep neural network that
takes the transformed and target image patches as input and
outputs a probability value for the patches being representative
of the same region of interest. They used this probability
as a similarity metric. They tested the proposed algorithm
on a group of computed tomography (CT) and magnetic
resonance (MR) images and computed the proximity of the
corresponding patch concerning other regions of the images
with a similarity ranking of the patches.

In [9], the authors use a Convolutional Neural Network
(CNN) to compute a similarity metric and distinguish between
aligned and misaligned multi-modal images, similarly to [12].
They evaluated results using Jaccard and Dice metrics of
overlapping transformed and target image patches, with a
slight improvement over MI.

In [10], the authors propose using a convolutional stacked
auto-encoder to reduce the dimensionality of the image and
select its most relevant intrinsic deep feature representations in
image patches. Comparison with classical registration methods
used Dice metric.

In [22], the authors use a larger image dataset with data aug-
mentation in a semi-supervised fashion to train a CNN. They
measure the accuracy by computing the Euclidean distance
between image poses.

The work in [23] proposes utilizing a similar method as
in [9] to register T1-MR and ultrasound images. They also
use the Euclidean distance to validate the results.

We could notice that one of the main goals of employing
deep learning in the context of image registration is to estimate
a measurement of similarity between different images, and in
most cases, using patches. The deep neural network similarity

metrics have shown a great potential for registering images
from the same modality, but results are far from satisfactory
for multi-modal images [7].

Even though some previous works explore the usage of
different similarity metrics for medical image registration, they
do not compare the proposed metrics with other learning-
based methods, but almost exclusively with classical metrics
such as mutual information. This creates a lack of correct
understanding of how good the results are concerning the state-
of-the-art methods. Another issue related to their validation
is a very high number of false-positive occurrences, which
severely impacts the quality of the registration process.

Therefore, in this work, we cover all these issues, proposing
a deep ensemble method, which reduces the false-positive re-
gion occurrences as compared to different traditional and deep
similarity metrics. We present two novel evaluation metrics
that allow objective quantification of false positive and false
negative errors [24]. Finally, in our experiments, we compare
several state-of-the-art deep learning-based algorithms with
our proposed solution.

III. DEEP ENSEMBLE METHOD

Figure 1 and 2 show our solution based on a deep ensemble
method in a sample application of multi-modal T1 and T2
brain MR image registration. We divide the multi-modal MR
brain dataset (T1 and T2) into three sets (training, validation,
and test) so that they do not share images from the same
individuals. We crop each image into smaller square regions
and create five sets of image patches: two sets for training deep
learning-based metrics (TraM , V alM ); two sets for training
the proposed deep ensemble method (TraE , V alE); and a test
set Tes for the final evaluation.

For training the pipeline, the corresponding patch location
in the target image also must be provided as an input. The first
step consists of preprocessing the images by having isometric
pixels, skull stripping the brain, and normalizing the image
intensities. This way, the training and testing of the method
become more reliable [25], [26].
TraM set is used as input patches of the N differ-

ent deep learning-based similarity metrics (Mi, where i =
{1, 2, 3, . . . , N}), resulting in N×|TraM | different similarity
maps. We compute a cross-entropy (CELoss) function as loss
function between the patch binary masks p(x) (ground truth)
and the activation values of the last layer q(x) of the metrics
as following on Equation 3.

CELoss(p, q) = −
∑

x∈TraM

p(x) log q(x), (3)

We apply the V alM set to optimize the parameters of
the N metrics throughout the learning process and to select
the most suitable N∗ ⊂ N similarity maps for the next
step. We manually selected and tested a few combinations
of the similarity maps for this paper due to the intensive
computational power required by the experiments.

On deep ensemble training process, each of the patches from
|TraE | passes through N∗ learned metrics resulting in N∗



Fig. 1. Individual similarity metric training step, based on multimodal image patches, generating similarity maps for the ensemble.

Fig. 2. Deep ensemble training, based on classical and learning-based similarity maps. The final result is an improved similarity map for the region of interest.



similarity maps of dimension 240×240 (one map per metric),
which they compose a joint similarity map of dimension 240×
240×N∗. We use this new set called TraE as an input for a
neural network like autoencoder architecture (proposed deep
ensemble method).

In the final step, the ensemble method creates |TraE |
combined maps of dimension 240 × 240 × 1. Even in this
process, we run the reconstruction task using the mean score
error (MSE) function between the ensemble outputs (Y ′) and
the expected response masks (Y ) (Equation 4). Figure 3 shows
an example of a response mask in our experiments.

MSE(Y, Y ′) =
1

n

n∑
i=1

|Y − Y ′|2, (4)

Finally, we evaluate the deep ensemble method performance
over the target task on the test set (Tes).

Fig. 3. An example of response mask defined by a Gaussian kernel function
used as ground-truth to train the proposed deep ensemble method.

IV. EXPERIMENTAL METHODOLOGY

A. Building the Dataset

We have used a set of 100 individuals from IXI database1.
We performed five pre-processing procedures for each image:
(1) The normalization of intensities and spatial; (2) The
alignment between T1 and T2 through the FSL framework
and its Brain Extraction Tool (BET) [27], [28]; (3) The
removal of non-brain regions (skull stripping) to avoid that
patches without any information confuse the similarity metrics
throughout the training process; (4) The generation and erosion
of the brain region of the image (10 pixels) to avoid selecting
background regions; and (5) The limitation of 5 points and 10
slices per individual.

For training the deep learning-based metrics, we created
500, 000 corresponding pairs of patches (T1 and T2) and
separated them into 70% training (350, 000), 30% validation
(150, 000), according to the individuals of each set. We define
these pairs of patches containing corresponding areas of the
individual as the positive cases in TraM and V alM . We

1http://brain-development.org/ixi-dataset/

shuffled the positive cases to generate the negative cases
of non-corresponding pairs of T1 and T2 patches, creating
500, 000 new patches for training, and doubling the number
of patches in a total of 1 million patches (|TraM | = 700, 000
and |V alM | = 300, 000). Again, we carefully avoided mixing
individuals of different sets.

During the training of the deep ensemble method, we
selected other 52, 000 pairs of patches (T1 and T2) inside
the brains in axial slices and also divided them in training
(|TraE | = 70%) and Validation (|V alE | = 30%) sets. All
patches from the same subject belong to the same set.

Finally, we created the test set (Tes) with 336 patches
from 10 new individuals not present in the set of 100 indi-
viduals previously used on sets. We performed experiments
with patches of different dimensions b × b pixels, where
b = {13, 17, 21}, and we cropped them from the same
centralized region.

We run all deep learning-based metrics and the proposed
ensemble method on an Intel(R) Xeon(R) dual E5-2630 CPU
with 64GB of RAM and a Titan V graphics card.

B. Training Setup of the Deep Learning Metrics

We tested several variations of deep learning architectures
during the training process of the deep learning similarity
metrics, and we describe here the ones that achieved the best
results. Among the ones we tested in our pipeline are: the Deep
Neural Networks (DNN ) proposed in [8], the CNN inspired
on the work proposed in [10], the CapsNet based on [29],
and an architecture using Spatial Transformer Network layers
proposed in [19]. All these architectures have been trained with
square patches of b× b, where, b = {13, 17, 21} pixels. With
exception to STN-based architecture, which we trained with
patches of 17× 17 pixels in three distinct structures (encoder,
decoder, and encoder-decoder).

We trained the DNN for 10, 000 epochs using binary cross-
entropy as the loss function, Adadelta optimizer, and batch
size equal to 256.

We modified the structure of the CNN proposed in [10]
by adding Max-pooling and Batch Normalization layer, which
improved its results. Furthermore, we also added the last layers
presented in [8] to obtain a continuous similarity metric. We
trained it through 1, 000 epochs, using binary cross-entropy as
the loss function, Adadelta optimizer, and batch size equal to
256.

We modified CapsNet to obtain a relevant and continuous
similarity map as it was not used for that purpose previously.
Therefore, we added a separate layer for each imaging modal-
ity at the beginning and another layer before merging them
for learning the most relevant features. After the output of
the capsules, we also included a layer to output the similarity
metric as in [8]. We trained it through 500 epochs, using binary
cross-entropy as the loss function, Adadelta optimizer, and
batch size equal to 256.

We have applied STN within an autoencoder (AE) com-
posed of 12 convolutional layers. It has 5 STN layers and
ends with 4 layers for the similarity metric computation. We



have implemented the network in three different ways: (1) the
STN layers within the encoder layers (AE-E); (2) the STN
layers within the decoder layers (AE-D); and (3) two sets of
STN layers within both the encoder and the decoder (AE-
ED). Our motivation comes from successful applications of
the STN to improve the registration process by convolutional
networks [19].

We chose CapsNet and STN structures due to their ability
in detecting similarity between geometric transformed images.
Even images from the same individual in multimodal imagens
may be shifted or rotated. Also, as the goal was to implement
deep ensembles, we focosed on small structures with comple-
mentary behavior that could be treined in a reasonable time,
with the potential to improve the final results.

C. Training Setup of the Deep Ensemble Method

To train the deep ensemble, we used the Mean Squared
Error (MSE) metric over a generated response mask based on
the target patch position. As we wanted the output similarity
map to be accurate, not rejecting results that are very close to
the perfect match, the response mask has the highest accuracy
score of 1.0 in the perfect match position, i.e., the center of
the patch and decreases in a Gaussian kernel function (see
Figure 3) with the size of the patch. The entire skull-stripped
brain also has a small accuracy value of 0.15 so that the
ensemble could learn that all expected matches should occur
inside the brain. We also added a Gaussian noise over the
image to avoid getting stuck during the ensemble training
procedure.

D. Evaluation Metric

We employed two of the evaluation metrics recommended
by the methods described in Section II: a distance-based and a
region-based evaluation metric. The Euclidean distance metric
in Equation 5 computes the distance between the center of
the ground-truth patch (G) and the point with the highest
probability in the similarity map (P ), where Gx, Gy , Px, and
Py are the x and y coordinates of the center of G and P .

ED =
√

(G2
x − P 2

x ) + (G2
y − P 2

y ) (5)

We also used the Jaccard Coefficient (JC) in Equation 6
as a region-based evaluation metrics. It is computed based on
the number of true-positive (TP ), false-positive (FP ), false-
negative (FN ) overlapping areas of the ground-truth patch (G)
and the regions (Ri) with probability greater than a threshold
value T in the similarity map. Note that a method scores very
poorly even if it outputs a single high probability region R
with a significant overlapping area with G. As the patch size
is always the same, FN and TP are complementary values
concerning it in this application.

JC =
TP

TP + FP + FN
(6)

One problem of ED is that it disregards the number, size,
and distribution of high probability regions in the similarity

map. JC, on the other hand, does not allow distinguish-
ing the difference between over-segmentation and under-
segmentation. JC, TP , FP , and FN values are expressed
in terms of pixels while for image registration, it is more
important to evaluate results in terms of the number of correct
and incorrect labeled regions.

For a similarity metric to be successfully used in a reg-
istration procedure (1) Ri and G should overlap with high
probability, close to 1.0, (2) Ri should not be too large in
comparison with G even if it completely overlaps with G,
(3) there should not be other non-overlapping regions of Ri

with high probability, and (4) the metric should be easily
interpretable. In this sense, as another contribution of this
paper, we propose two novels evaluation metrics: the true-
positive overlap rate (TPOR) and the false-positive overlap
rate (FPOR), described in Algorithm 1.

The TPOR is either 0 or 1, being 1 a score for when the
correct patch is detected. FPOR is a non-negative value. The
lower the value, the better is the score. We compute them
as follows: given the similarity map with the probabilities
assigned to each pixel, we apply a hysteresis threshold (in
our case with a low threshold of 0.8 and a high threshold of
0.9), so that we binarize the similarity map with the highest
probability pixels set to 1 and the other pixels to 0. Then, for
each connected component C in the binary map:

Algorithm 1: Algorithm to compute TPOR and FPOR
metrics.
TPOR← 0;
FPOR← 0;
for each |Ri| do

if |Ri ∪G| ≥ 0.1G and |Ri| < 2|G| then
TPOR = 1;

else
FPOR = FPOR+ d|Ri|/|G|e;

The advantage of the proposed method is that using TPOR,
we can identify if the proposed method detects the correct
patch region and by looking at FPOR we can see if the method
is outputting false-positive regions with high probability. We
chose the hysteresis parameters and the values of 0.1 and 2
manually, but small variations of these values do not affect the
comparative results of similarity metric outputs significantly.
Figure 4 shows an illustration of FPOR and TPOR application
in a synthetic image.

V. RESULTS AND DISCUSSION

In our experiments, we have performed experiments with
the proposed method in a variety of combinations of classic
and deep similarity metrics. We present here a quantitative and
a qualitative evaluation of the results.

A. Quantitative Analysis

Table I shows the average values of the experiments for five
different similarity metrics (CapsNet, CNN, DNN, MI, and



Fig. 4. Illustration of TPOR and FPOR evaluation metrics, where the blue
square has area A and represents the target patch |G|. The orange patches are
the high probability connected component regions |Ri| in the output similarity
map of a given method. (a) The transformation and target image patches match
in size and location (FPOR = 0 and TPOR = 1). (b) The transformation and
target image patches match in size but not in location (FPOR = 1 and TPOR
= 0). (c) Transformation and target image patches match in location, but not
is size. Target patch is more than double the size of target patch (FPOR = 4
and TPOR = 0). (d) Transformation and target image patches match in size
and location, but there are several other FP results (FPOR = 6 and TPOR =
1).

AE) and two best combinations of the proposed deep ensemble
methods (ESB5 and ESB3) using IXI dataset. ESB3 means the
deep ensemble method using three similarity maps as input
(CNN-21, AE-ED, and MI-21), while ESB5 uses five different
similarity maps (CNN-17, CNN-21, AE-ED, MI-17, and MI-
21).

Bold values are the best scores concerning each evaluation
metric. It is clear that ESB3 achieved the best results in terms
of FP and FPOR values by far. An FPOR of 0.1 means
that ESB3 on average detects only one false-positive region
according to the criteria described in Section IV-D for every
10 patches. At the same time, it has the second-best result
for TPOR, detecting the correct patch region in 92% of the
cases. Note that ESB3 also has the highest JC and ED values,
indicating that its correct patches are the best positioned on
average.

On the other hand, even though AE-ED detects the majority
of G with high probability, its TPOR score is much lower,
implying that AE-ED regions are numerous and/or large.
It also detects on average other 13 false-positive regions,
according to AE-ED. Surprisingly, MI-21 has better accuracy
in terms of FPOR than all other metrics, including all deep
learning-based ones. CNN-21 is also one of the best solutions,
having the highest TPOR, but detecting seven times more
false-positive regions as compared to ESB3. CapsNet was the
metric with higher FP and FPOR values.

TABLE I
EVALUATION RESULTS OVER IXI DATASET FOR ALL SIMILARITY METRICS
AND OUR PROPOSED DEEP ENSEMBLE. THE USE OF TPOR AND FPOR

EVALUATION METRICS IS A CONTRIBUTION TO THIS WORK. GREATER TP,
JC, TPOR AND LOWER FP, ED, FPOR ARE BETTER.

Method TP FP JC ED TPOR FPOR

Classic Metric Baseline

MI-13 31,8 171,5 0,06 41,7 0,65 2,17

MI-17 33,8 91,5 0.08 27.2 0.78 1,11

MI-21 36.4 68.7 0.09 20.4 0.84 0.65

Deep Learning-based Metrics

CapsNet-13 134.1 2955.5 0.05 50.3 0.86 31.27

CapsNet-17 131.3 2299.6 0.07 49.0 0.89 23.95

CapsNet-21 128.8 1745.8 0.08 47.1 0.89 15.96

CNN-13 130.1 536.0 0.18 35.4 0.86 4.03

CNN-17 123.9 251.2 0.22 23.8 0.93 1.79

CNN-21 103.7 96.8 0.23 14.3 0.97 0.71

DNN-13 147.9 2442.1 0.08 45.2 0.41 6.80

DNN-17 66,1 143,3 0,14 30,3 0,79 0,90

DNN-21 44,2 623,4 0,05 57,1 0,34 1,15

AE-ED 165.2 2353.1 0.09 49.9 0.63 13.39

AE-D 50.3 233.5 0.09 43.6 0.64 2.01

AE-E 52.9 274.6 0.09 45.1 0.63 2.22

Our Deep Ensemble Method

ESB3 107.3 36.0 0.28 11.8 0.92 0.10

ESB5 94.5 85.9 0.23 23.1 0.78 0.57

Another interesting finding is related to the size of the patch,
which considerably influenced the results. In our experiments,
21x21 pixel patches achieved the best results (except for DNN
which performed better with a 17x17 patch). Increasing the
patch size parameter probably helped CNN, CapsNet, and MI
similarity metrics to improve locating the region of interest
with more relevant information. Note that our conclusions
differ from the ones stated in [8] for a DNN and is aligned with
the works in [10], [11] which present more robust structures
using 28x28 or 32x32 pixel patches. This is probably because
the authors in [8] used the ranking-based metric, giving little
concern to the false-positive results.

ESB3 was better than ESB5 according to Table I. ESB3
and ESB5 employ CNN, AE and MI maps as their inputs.
ESB5 adds extra variations of CNN and MI with different
parameters. We believe that the 2 extra similarity maps do
not bring any relevant information in terms of uncertainty and



matching errors to ESB5 and makes its learning process harder
and slower. It is possible, though, that in a scenario with more
training images and more training epochs, the extra maps could
impact the results positively. Another possibility is that more
complex structures made the learning process worse [30].

B. Qualitative Analysis

Figure 5 shows some qualitative results among the best
similarity metric (MI-21, CNN-21, and AE-ED) performed in
this work as well as the final similarity map combined by deep
ensemble method (ESB3).

We observe the evident superiority of the proposed deep
ensemble (ESB3) compared to three similarity maps (MI-
21, CNN-21, and AE-ED), especially in terms of FP score.
The red regions are the ones with higher probability and the
blue ones with the lowest to be the target region. Notice that
the proposed method eliminates most of the high probability
regions existing in the other similarity maps, resulting in a
cleaner similarity map, fundamental for an image registration
algorithm.

This metodology was not applied to other databases and
the testing data was not used during any step of the training
and validation processes. Using other human brain datasets for
training could also help improving the results.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a deep ensemble method to com-
bine different similarity metrics in multi-modal brain image
registration tasks between T1- and T2-image protocols. Our
pipeline was validated on IXI dataset and surpassed all classic
and deep learning-based approaches, especially concerning the
low false-positive (FP ) occurrences. We also proposed the
use of novel evaluation metrics (TPOR and FPOR) that are
based on labeling regions of high probability into true-positive
(TP ) or false-positive (FP ) areas, providing a much more
clear understanding of the method performances.

We believe that the proposed deep ensemble method has a
huge potential of being employed for the registration of multi-
modal images by selecting the suitable similarity metrics,
achieving more accurate similarity maps, and decrease the
time-consuming during the target task.

As future works, we include: a deeper analysis of the
patch selection for registration purposes; test other deep neural
networks such as GANs, U-Nets, VGGs, and Inceptions archi-
tectures, among others; test the proposed pipeline over other
image modalities such as computed tomographies and ultra-
sound; and improve the evaluation metrics by analyzing the
best parameter selection; implement an automatic procedure
to select the most relevant similarity maps as the ensemble
input; add the deep ensemble similarity map computation into
a full image registration pipeline; train the deep networks with
a larger dataset; and include other brain structures to better
specify the similarity regions.
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