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Abstract—In recent years, Handwritten Text Recognition
(HTR) has captured a lot of attention among the researchers
of the computer vision community. Current state-of-the-art
approaches for offline HTR are based on Convolutional Recur-
rent Neural Networks (CRNNs) excel at scene text recognition.
Unfortunately, deep models such as CRNNs, Recurrent Neural
Networks (RNNs) are likely to suffer from vanishing/exploding
gradient problems when processing long text images, which are
commonly found in scanned documents. Besides, they usually
have millions of parameters which require huge amount of data,
and computational resource. Recently, a new class of neural net-
work architecture, called Gated Convolutional Neural Networks
(Gated-CNN), has demonstrated potentials to complement CRNN
methods in modeling. Therefore, in this paper, we present a
new architecture for HTR, based on Gated-CNN, with fewer
parameters and fewer layers, which is able to outperform the
current state-of-the-art architectures for HTR. The experiment
validates that the proposed model has statistically significant
recognition results, surpassing previous HTR systems by an
average of 33% over five important handwritten benchmark
datasets. Moreover, the proposed model is able to achieve
satisfactory recognition rates even in case of few training data.
Finally, its compact architecture requires less computational
resources, which can be applied for real-world applications that
have hardware limitations, such as robots and smartphones.

I. INTRODUCTION

Handwritten Text Recognition (HTR) has attracted intense
attention in recent years due to its vast applications in both
industrial and as an academic research topic. HTR systems
have the purpose of transcribing cursive text to the digital
medium (ASCII, Unicode) whether through dynamic (online)
or static (offline) information [1]. Thus, images are the source
of information to offline text recognition, which can be ap-
plied for transcriptions of historical manuscripts [2], medical
prescriptions [3], forms [4], and so on. This emphasizes the
need for research into the area of building large scale HTR
systems for many languages and scripts.

Historically, offline HTR systems have been formulated
as a sequence matching problem: a sequence of features
extracted from input data (images) is matched to an output
sequence composed of characters. During the last decade,
considerable efforts to employ computer vision techniques to
HTR systems have been made. Predominantly, Hidden Markov
Models (HMM) [5]–[7] is one of the most popular approaches
for solving the problem in HTR systems. However, HMM
failed to make use of the context information, specially in
a long text sequence, due to the Markovian assumption that
each observation depends only on the current state.

In the last few years, Deep Learning methods, more pre-
cisely Convolutional Recurrent Neural Networks (CRNN),
have demonstrated drastic improvement over traditional meth-
ods for the task of HTR. Since first introduced, CRNN for
HTR has been constantly breaking state-of-the-art results and
being deployed in industrial application [8]. Inside CRNN,
the role of the sequence decoder is often implemented as
Long Short-Term Memory (LSTM) [9]. In order to improve
the accuracy for HTR, many others methods have been pro-
posed, such as the Multidimensional LSTM (MDLSTM) [10]
which extends the capability of the RNNs architectures to
multidimensional data. However, the computational cost and
complexity of the MDLSTM [11], [12] have led to new studies
that bring simpler optical models [13], by using Bidirectional
Long Short-Term Memory (BLSTM) [14]. This approach
already offers results close to the known MDLSTM, such as
the CNN-BLSTM and Gated-CNN-BLSTM models [15].

Despite the promising empirical results, the optical models
have difficulties in remembering long contexts due to vanish-
ing/exploding gradient problems. Additionally, these existing
optical models usually have millions of trainable parameters
to achieve better results, which makes them challenge to be
implemented in many real-world applications [16]. On the
other hand, models that have few parameters, such as Gated-
CNN approaches, exchange high performance for simplicity
of the model [17].XXX-X-XXXX-XXXX-X/20/$31.00 c©2020 IEEE



In this way, we propose a new Gated Convolutional Re-
current Neural Network (Gated-CRNN) architecture for of-
fline HTR systems, which brings the latest machine learning
techniques and approaches used in the field of Natural Lan-
guage Processing, such as the Gated mechanism, presented by
Dauphin [18], and the application of Bidirectional Gated Re-
current Units (BGRU) [19]. Thus, the proposed Gated-CNN-
BGRU optical model involves a few parameters (thousands)
and achieves a low error rate in the process of text recognition
(line-level and segmentation-free). The contributions are based
on the following aspects:

• Able to handle long sentences with different styles,
variations and noise, even in case of limited training data.

• Improve recognition results from the CNN-BLSTM ap-
proach through the new Gated-CNN-BGRU architecture.

• Reduce the number of trainable parameters (thousands)
through the Gated-CNN-BGRU architecture, making the
model smaller and with lower computational cost instead
of the traditional CNN-BLSTM (millions).

A variety of experiments on several well-known datasets,
such as Bentham [20], IAM [21], RIMES [22], Saint Gall
[23] and Washington [24], showed that the proposed model
is capable of surpassing the performance of the previous
models presented by [16] and [17]. Finally, an open source
implementation for the reproducibility is also provided1.

The remaining of this paper is organized as follows. In
section II, reference optical models of the literature are de-
scribed. Then, in section III, the proposed model is presented.
In section IV, the methodology and experimental setup are
explained. In section V, the experimental results obtained from
the models in each dataset are discussed. Finally, section VI
draws the conclusions that summarize the paper.

II. RELATED WORKS

In the HTR systems explored in this paper, the operations
of a text recognition model follow three steps: (i) images
are the inputs of the CNN layers to extract features; (ii) the
RNN layers propagate the information from CNN and map
the features in both directions of the sequence (bidirectional);
and finally (iii) the Connectionist Temporal Classification
(CTC) [25], which calculates loss value for model training
and decodes into the final text for model inference. Thus,
state-of-the-art optical models are presented in the following
subsections.

A. Convolutional Recurrent Neural Networks

The architecture presented by Puigcerver [16] uses a tradi-
tional CRNN approach, where it has a high level of recognition
rate and many parameters (around 9.6 million). The Figure 1
shows the workflow through the 5 convolutional and 5 BLSTM
layers of the architecture.

The convolutional block is composed by layers with 3x3
kernels and the numbers of filters per layer following the order
of 16n (16, 32, 48, 64, 80). MaxPooling with 2x2 kernel is

1https://github.com/arthurflor23/handwritten-text-recognition
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Fig. 1. Workflow of the Puigcerver architecture.

applied in the first three layers and dropout (probability 0.2)
in the last three to avoid overfitting [26]. In addition, Glorot
uniform [27] is applied as initializer and Leaky Rectifier Lin-
ear Units (LeakyReLU) as activator [28]. Batch Normalization
[29] is also used in all convolutional layers to normalize the
inputs of non-linear activation functions.

The recurrent block contains the implementation of BLSTM
with dropout (probability 0.5) in the LSTM cells [30]. The
number of hidden units in all LSTMs is set to 256. Finally,
the model has a dense layer with a size equal to the charset
size + 1 (CTC blank symbol). The dropout is also applied
before the dense layer (probability 0.5).

B. Gated Convolutional Recurrent Neural Networks

The Gated-CNN approach for HTR systems, presented by
Bluche and Messina [17], proposes to extract more relevant
resources compared to traditional convolution. This makes the
model learn better, even with few parameters to train. This
gated mechanism, uses all input features (x) to perform a sig-
moid activation (s) and the result is a pointwise multiplication
between input (original features) and output features:

y = s(x)� x (1)

Thus, the Gated-CNN-BLSTM architecture [17], unlike
Puigcerver approach, has very few parameters (around 730
thousand), making it a compact and fast model. The Figure



2 presents the Gated-CNN-BLSTM workflow through the 8
convolutional layers (3 gated included) and 2 BLSTM.

Convolutional Block

Gated Conv 3x3 (16 filters)

Gated Conv 3x3 (32 filters)

Conv 2x4 (2x4) (64 filters) + tanh

Conv 3x3 (128 filters) + tanh

MaxPooling 1x4

BLSTM (128x2)

Dense (128) + tanh

BLSTM (128x2)

Dense + Softmax

Gated Conv 3x3 (64 filters)

Conv 3x3 (32 filters) + tanh

Recurrent Block

Conv 3x3 (8 filters) + tanh

Conv 2x4 (2x4) (16 filters) + tanh

Fig. 2. Workflow of the Bluche architecture.

The convolutional block consists of mini-blocks with tra-
ditional and gated convolutions, except for the first and last
layers, so: (i) is a 3x3 convolution (8 features); (ii) is a 2x4
convolution and a 3x3 gated convolution (16 features); (iii) a
3x3 convolution and a 3x3 gated convolution (32 features); (iv)
a 2x4 convolution and a 3x3 gated convolution (64 features);
and (v) a 3x3 convolution (128 features). In addition, Glorot
uniform [27] is applied as initializer and Hyperbolic Tangent
function (tanh) as activator.

The recurrent block contains 2 BLSTM alternated by dense
layer (tanh activation). The number of hidden units in LSTMs
is set to 128. Finally, the model has a dense layer with a size
equal to the charset size + 1 (CTC blank symbol).

III. PROPOSED MODEL

The proposed model is inspired by [16] and [17] architec-
tures, aiming at: (i) to achieve better results than the Puigcerver
model; and (ii) to keep a low number of parameters, such as
the Bluche model.

In this way, we use the Gated-CNN approach presented by
Dauphin et al. [18] for the extraction of most relevant features
in images. This gated mechanism has the same objective as
Bluche’s approach, however there is a slight difference. It
uses only half of the input features (h1) to perform sigmoid
activation (s), while the other half does not (h2), and finally,
the result is a pointwise multiplication between the two halves:

y = s(h1)� h2 (2)

This approach allows a better use of the Gated mechanism,
in which it maintains few parameters (around 820 thousand)
and a better performance of the proposed model. In addition,
we also use BGRU instead of the traditional BLSTM. In the
Figure 3 is presented the workflow through the 11 convolu-
tional layers (5 gated included) and 2 BGRU.

Recurrent Block

Convolutional Block

Conv 2x4 (2x4) (40 filters) + PReLU + BR

Conv 3x3 (48 filters) + PReLU + BR

Gated Conv 3x3 (48 filters) + Dropout

Conv 2x4 (2x4) (56 filters) + PReLU + BR

Conv 3x3 (64 filters) + PReLU + BR

MaxPooling 1x2

Dropout + BGRU (128x2)

Dense (256)

Dropout + BGRU (128x2)

Dense + Softmax

Gated Conv 3x3 (56 filters) + Dropout

Conv 3x3 (32 filters) + PReLU + BR

Gated Conv 3x3 (32 filters)

Gated Conv 3x3 (16 filters)

Gated Conv 3x3 (40 filters) + Dropout

Conv 3x3 (2x2) (16 filters) + PReLU + BR

Fig. 3. Workflow of the proposed architecture.

The convolutional block consists of mini-blocks with tradi-
tional and gated convolutions, so: (i) has a 3x3 convolution and
a 3x3 gated convolution (16 features); (ii) a 3x3 convolution
and a 3x3 gated convolution (32 features); (iii) a 2x4 convo-
lution and a 3x3 gated convolution (40 features); (iv) a 3x3
convolution and a 3x3 gated convolution (48 features); (v) a
2x4 convolution and a 3x3 gated convolution (56 features); and
(vi) a 3x3 convolution (64 features). The He uniform is used
as initializer with Parametric Rectified Linear Unit (PReLU)
as activator [31]. The Batch normalization [32] is applied in
all convolutional layers, followed by dropout (probability 0.2)
in the last three Gated mechanisms.

The recurrent block contains 2 BGRU with dropout (prob-
ability 0.5) in the GRU cells alternated by a dense layer. The
number of hidden units in GRUs is set to 128. Finally, the



model has a dense layer of size equal to the charset size + 1
(CTC blank symbol).

IV. MATERIALS AND METHODS

In order to compare the proposed model with the state-of-
the-art, an experimental evaluation was done using Bentham
[20], IAM [21], RIMES [22], Saint Gall [23] and Washington
[24] datasets, all with segmentation-free approach.

A. Datasets

The Bentham database [20] is a collection of manuscripts
written by English philosopher Jeremy Bentham (1748-1832).
This historical dataset, shown in Figure 4, has around 11,500
text lines and is the most complex among the five datasets
adopted. It also has a considerable amount of punctuation
marks in the texts.

Fig. 4. Sample image from the Bentham dataset.

The Institut für Informatik und Angewandte Mathematik
(IAM) database [21] contains forms with English manuscripts,
which can be considered as a simple base since it has a good
quality for text recognition (Figure 5). However, it brings the
challenge of having several writers, that is, the cursive style is
unrestricted and does not have a pattern. The amount of data
has about 9,000 text lines.

Fig. 5. Sample image from the IAM dataset.

The Reconnaissance et Indexation de données Manuscrits
et de fac similÉS (Rimes) database [22] is a collection of
over 12,000 text lines written in French language (Figure 6)
by several writers. The text recognition is considered easy
because there is a good writing of the texts, however, the
French language brings accented letters challenge.

Fig. 6. Sample image from the RIMES dataset.

The Saint Gall database [23] brings manuscripts in Latin
from the 9th century of only one writer (Figure 7). The images
obtained are already binarized and normalized. The challenge
for this collection is to deal with overfitting, since it has around
1,400 text lines in total and the writing style is very regular.

Fig. 7. Sample image from the Saint Gall dataset.

Lastly, Washington [24] was built from George Washington
papers at the Library of Congress in English language from
the 18th century. This set of historical manuscripts brings two
writers and fewer data than Saint Gall (total of 656), in which
emphasize the overfitting challenge. In addition, the images
are binarized and normalized (shown in Figure 8).

Fig. 8. Sample image from the Washington dataset.

For the data partitioning (training, validation and testing
sets), the traditional standard methodology presented in each
dataset work was used, except for RIMES which only has
the training and testing partitions defined by default. In the
RIMES case, we set the validation partition to a subset of
10% of training partition. Table I details the distribution of
text lines partitions for each dataset.

TABLE I
DISTRIBUTION OF TEXT LINES PARTITIONS

Dataset Training Validation Test Total

Bentham 9,195 1,415 860 11,470

IAM 6,161 900 1,861 8,922

RIMES 10,193 1,133 778 12,104

Saint Gall 468 235 707 1,410

Washington 325 168 163 656

B. Experimental Setup

The optical models proposed by Puigcerver [16] and Bluche
[17], used here as reference models, were evaluated following
different experimental methodology according to their original
works. For instance, in case of the Bluche’s work, the authors
included in the training set an amount of 132,000 text images
of private documents. In case of Puigcerver’s work, they used
as input the images of entire paragraphs. In addition, for each
scenario, the model was fine-tuned with its own set of specific
hyperparameters (mini-batch size, learning rate, epochs to
early stopping and so on).

Therefore, in order to make a fair comparison between the
models and statistically validate the results from the same
perspective, we followed the same methodology used by [15],
in which the same workflow and hyperparameters were applied
to all approaches and datasets.

In this way, we trained the optical models to minimize the
validation loss value of the CTC function and get the best
results. Then, we use the RMSprop optimizer [33] with the
learning rate of 0.001 and mini-batches of 16 image samples
per step. Reduce learning rate on plateau (factor 0.2) and
Early Stopping mechanisms are also applied after 15 and 20
epochs, respectively, without improving the value of the loss
of validation. It is worth mentioning that Vanilla Beam Search



algorithm [34] was used as CTC decode function in inference
mode (beam width = 10). Furthermore, a common charset
was used for encoding and decoding, consisting of printable
and accented characters from the ASCII table (150 in total).

To improve and normalize images for all models, we ap-
plied the following preprocessing steps: first, the Illumination
Compensation [35] to remove shadows and balance bright-
ness/contrast; second, deslanting [36] to soften the cursive
style; third, a resizing of 1024x128x1 (Height x Width x
Channel) with padding was also done in all input images; and
finally, a data augmentation increased the amount of training
partition through random morphological and displacement
transformations, such as rotation (up to 3 degrees), resizing
(up to 5%), displacement of height and width (up to 5%),
erosion (up to 5x5 kernel) and dilation (up to 3x3 kernel).

To refine the results of the optical models, we applied
the Language Model through statistical characters N-grams
(SRILM Toolkit2). This model can be efficiently trained using
only plain text from the transcripts as a corpus (without the
images) of each dataset under analysis [37].

Finally, all training was conducted on the Google Colab
platform3, which offers Linux operating system with 12GB
memory and GPU NVIDIA Tesla P100 16GB.

C. Experimental Evaluation

The most usual evaluation metrics for HTR systems were
adopted: (i) Character Error Rate (CER) and (ii) Word Error
Rate (WER). These metrics are calculated through the Lev-
enshtein Distance [38] between ground truth and predictions,
for both characters and words level. As expected, the WER
values tend to be greater than CER, since WER corresponds
to the distribution of characters error in words [37].

For statistical testing, we conducted twenty training execu-
tions for each optical model in each dataset [39] and used
Wilcoxon test [40] with 5% significance, such as adopted in
[16]. As null hypothesis we considered H0 : µ1 ≥ µ2, and
as alternative hypothesis H1 : µ1 < µ2. We analyzed the
hypotheses for both the CER and WER scenarios, where µ1

is the average of the errors of the proposed model and µ2 is
the average of the errors of the other model in comparison.
This means that the p-value must be lower than α = 0.05 to
assume that the proposed model offer significantly lower error
rate.

V. RESULTS AND DISCUSSION

First, in the statistical analysis, we used the best results
obtained from each dataset, considering the full text (punctu-
ation marks included). Then, we computed CER p-value and
WER p-value lower than 0.01 in all datasets. This is below
the standard α = 0.05 (p-value < 5e-2), meaning that we can
assume that the proposed model, based on Gated-CNN-BGRU,
has a significantly lower CER and WER in the test partitions
of each tested dataset. The p-values in case of each dataset

2http://www.speech.sri.com/projects/srilm
3https://colab.research.google.com

are presented in brackets in the corresponding table in the
following discussion.

In the Bentham dataset, the best results were obtained using
the char 9-gram language model. Punctuation marks corre-
spond to up to 25% of the error rate per word. On the other
hand, considering the full text and test set, the proposed model
reached CER of 3.98% with WER of 9.80%, Puigcerver 4.65%
with 12.05% and Bluche 6.71% with 16.82%. Therefore, the
proposed model achieved a statistically significant decrease in
WER corresponding to 2.97 percentage points on Puigcerver,
while 7.02 on Bluche. Table II details the results between the
optical models, also considering the text without punctuation
marks (only words).

TABLE II
CER AND WER RESULTS IN THE BENTHAM TEST SET

Optical Model
+ char 9-gram

Full Text Only Words
CER WER CER WER

Puigcerver
4.65% 12.05% 3.95% 9.07%

(±0.07) (±0.17) (±0.06) (±0.17)

[3.82e-02] [5.64e-03] [1.38e-02] [7.21e-04]

Bluche
6.71% 16.82% 5.77% 13.76%

(±0.09) (±0.20) (±0.08) (±0.21)

[9.04e-13] [2.86e-15] [1.08-e14] [3.33e-17]

Flor
3.98% 9.80% 3.33% 6.65%
(±0.06) (±0.14) (±0.06) (±0.13)

In the IAM dataset, the best results were obtained using
the char 8-gram language model and the punctuation marks
correspond only 2% of the error rate per word. In this way,
also considering the full text of the test set, we obtained CER
of 3.72% with WER of 11.18%, while Puigcerver 4.94% with
13.73%, and Bluche 6.60% with 17.89%. This means that the
proposed model also outperforms the reference models in IAM
dataset. According to Table III, it is observed a decrease in
WER corresponding to 2.55 percentage points on Puigcerver
and 6.71 on Bluche.

TABLE III
CER AND WER RESULTS IN THE IAM TEST SET

Optical Model
+ char 8-gram

Full Text Only Words
CER WER CER WER

Puigcerver
4.94% 13.73% 4.31% 12.10%

(±0.05) (±0.12) (±0.04) (±0.13)

[1.17e-11] [1.37e-07] [8.33e-11] [1.65e-02]

Bluche
6.60% 17.89% 6.13% 17.64%

(±0.06) (±0.15) (±0.06) (±0.16)

[6.88e-48] [2.86e-38] [1.66e-48] [3.31e-33]

Flor
3.72% 11.18% 3.37% 10.92%
(±0.04) (±0.11) (±0.04) (±0.12)

In the RIMES dataset, we used 12-gram language model
for the best results and punctuation marks consist 14% of the
error rate per word. Considering the full text of the test set,



the proposed model reached the CER of 3.27% with WER
of 11.14%, Puigcerver 3.79% with 11.48% and Bluche 5.16%
with 14.73%. Again, based on the p-values reported on Table
IV, the proposed model statistically outperformed the baseline
models, although it is verified a closer CER and WER of the
Puigcerver.

TABLE IV
CER AND WER RESULTS IN THE RIMES TEST SET

Optical Model
+ char 12-gram

Full Text Only Words
CER WER CER WER

Puigcerver
3.79% 11.48% 3.23% 9.89%

(±0.06) (±0.18) (±0.05) (±0.18)

[1.03e-06] [2.44e-02] [1.02e-09] [1.14e-05]

Bluche
5.16% 14.73% 4.78% 14.63%

(±0.07) (±0.18) (±0.07) (±0.21)

[3.05e-41] [5.43e-30] [3.05e-61] [9.61e-57]

Flor
3.27% 11.14% 2.63% 8.71%
(±0.05) (±0.19) (±0.04) (±0.18)

The Saint Gall dataset is the only one among the others
that does not have punctuation marks in the text, however, it
has the longest words. In this scenario, we used the char 11-
gram language model for the best results, in which the pro-
posed model obtained CER of 5.26% with WER of 21.14%,
while Puigcerver 5.95% with 23.37%, and Bluche 6.01% with
23.73%. Once, the proposed model statistically outperformed
the reference models, according to the reported p-values in
Table V.

TABLE V
CER AND WER RESULTS IN THE SAINT GALL TEST SET

Optical Model
+ char 11-gram

Full Text
CER WER

Puigcerver
5.95% 23.37%

(±0.03) (±0.03)

[2.01e-06] [2.23e-04]

Bluche
6.01% 23.73%

(±0.04) (±0.15)

[4.96e-06] [4.87e-05]

Flor
5.26% 21.14%
(±0.03) (±0.13)

Finally, the Washington dataset has the least amount of data
among the others. As expected, this scenario highlights the
challenge of dealing with overfitting, in which it activates
early stopping quickly. For this set, we used the char 10-
gram language model and the punctuation marks consist only
of 3% of the error rate per word. In this last dataset, we
verified the largest difference in recognition rates between
the proposed model and the baseline systems (Table VI). Our
system outperformed significantly the reference ones, through
CER of 3.01% and WER of 7.87%, while Puigcerver reached
19.29% with 32.92%, and Bluche 10.90% with 21.95%. Thus,

the improvements of CER and WER were 16.28 and 25.05
percentage points, respectively, over Puigcerver model, and
7.89 and 14.08 over Bluche.

TABLE VI
CER AND WER RESULTS IN THE WASHINGTON TEST SET

Optical Model
+ char 10-gram

Full Text Only Words
CER WER CER WER

Puigcerver
19.29% 32.92% 18.70% 34.26%

(±0.13) (±0.20) (±0.13) (±0.22)

[1.85e-23] [7.43e-22] [1.46e-23] [7.97e-22]

Bluche
10.90% 21.95% 10.38% 21.27%

(±0.11) (±0.18) (±0.11) (±0.19)

[1.56e-13] [1.71e-12] [1.41e-14] [5.29e-13]

Flor
3.01% 7.87% 2.58% 7.59%
(±0.04) (±0.16) (±0.04) (±0.11)

As shown in Table VI, the differences in rates between
our proposal and the state-of-the-art models selected as the
baseline in this work were too much higher in this last
dataset (the Washington dataset) than in the four previous
experiments. Therefore, we performed one more test on the
Washington dataset, but using the same parameters described
in the Puigcerver [16] and Bluche [17] original works. In the
Puigcerver’s work was defined a learning rate of 0.0003, while
the early stopping tolerance was 80 epochs, without applying
the Reduce LR on Plateou. The Bluche’s work defined a
learning rate of 0.0004, a mini-batch of 8 image samples, the
tolerance for early stopping as 80 epochs, and also without
Reduce LR on Plateou. Nevertheless, the results achieved by
Puigcerver and Bluche’ systems with these settings were even
worse (Table VII) in comparison with the ones (Table VI)
achieved when these systems were trained with parameters
suggested in this paper.

TABLE VII
CER AND WER RESULTS IN THE WASHINGTON TEST SET

Optical Model
+ char 10-gram

Full Text Only Words
CER WER CER WER

Puigcerver
30.14% 55.62% 29.68% 58.51%

(±0.13) (±0.17) (±0.13) (±0.20)

[6.31e-26] [2.80e-25] [5.07e-26] [9.47e-26]

Bluche
34.31% 62.90% 33.90% 67.41%

(±0.12) (±0.16) (±0.12) (±0.18)

[3.38e-26] [3.34e-26] [4.94e-26] [7.00e-26]

To summarize all results of the experiment, we also analy-
zed the average error rates obtained in all datasets. Thus, the
proposed model reached an average CER of 3.85% with an
average WER of 12.23%. Puigcerver 7.72% with 18.71% and
Bluche 7.08% with 19.02%. The increased error of Puigcerver
model is due to the Washington dataset, which raises its
average error rate. Figure 9 shows the average of error rate
metrics of each optical model.
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Fig. 9. Error rate summary (lower is better).

In addition, the complexity of the architecture, which im-
pacts the size of the model and the decoding time, is another
important requirement for deep neural networks. In this way,
the proposed model stands out in number of trainable para-
meters and decoding time when compared to the Puigcerver
model, but not to Bluche. However, we managed to combine
the low complexity with the better recognition rate. Table VIII
shows the number of parameters and the average decoding
time using a standard notebook with dual core CPU (Intel
i7-7500U).

TABLE VIII
NUMBER OF PARAMETERS AND AVERAGE DECODING TIME OF THE

OPTICAL MODELS

Optical Model # of params Decoding Time

Puigcerver 9.4 M 81 ms/line

Bluche 0.7 M 32 ms/line

HTR-Flor 0.8 M 55 ms/line

Therefore, the improvements observed in the recognition
rates of the proposed model, compared to the Puigcerver and
Bluche approaches, can be explained mainly by the combina-
tion of: (i) Gated mechanism in the convolutional block; (ii)
BGRU in the recurrent block; and (iii) recent deep learning
techniques. In this way, we can more efficiently extract and
propagate the features of the images, so that the low number
of parameters and the high performance are maintained. This
application is highlighted in the Washington dataset, which
the proposed model achieved a significantly better result, even
with the minimum volume of data.

VI. CONCLUSION

In this paper, we have presented a new Gated-CNN-BGRU
architecture for offline Handwritten Text Recognition systems
combined with two steps of language models.

The benchmark experiment used the same methodology for
optical models under five known public datasets in the HTR
field (Bentham, IAM, RIMES, Saint Gall and Washington), in
which made possible the analysis from several perspectives.

The proposed model surpassed the Puigcerver and Bluche
approaches, achieving an average improvement of 33% in
recognition rates. Moreover, we observed the proposed model
achieved very good rates even in case of small datasets,
reaching up to 80% of improvement in comparison with
previous works.

It is important to mention that we used hyperparameters
with the focus on obtaining the best result at the lowest
cost through a high learning rate and low tolerance for early
stopping with reduction on plateau. Then, we could simplify
the architecture with few trainable parameters (thousands),
which is about 91% less than Puigcerver model.

In the future, we want to explore alternative convolutional
networks to replace traditional ones, in order to further com-
pact the model and achieve better results. We intend to carry
out other evaluations in other study scenarios, such as offline
handwriting recognition at the paragraph and page levels.
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[19] K. Cho, B. van Merriënboer, D. Bahdanau, H. Bougares, Fethi Schwenk,
and Y. Bengio, “Learning phrase representations using rnn en-
coder–decoder for statistical machine translation,” in 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, 10 2014, pp.
1724–1734.

[20] B. Gatos, G. Louloudis, T. Causer, K. Grint, V. Romero, J. A. Sánchez,
A. H. Toselli, and E. Vidal, “Ground-truth production in the transcrip-
torium project,” in 11th IAPR International workshop on document
analysis systems (DAS), 2014, pp. 237–241.

[21] U.-V. Marti and H. Bunke, “The iam-database: An english sentence
database for offline handwriting recognition,” International Journal on
Document Analysis and Recognition, vol. 5, pp. 39–46, 11 2002.

[22] E. Grosicki, M. Carre, J.-M. Brodin, and E. Geoffrois, “Rimes evaluation
campaign for handwritten mail processing,” in ICFHR 2008 : 11th
International Conference on Frontiers in Handwriting Recognition.
Montreal, Canada: Concordia University, 8 2008, pp. 1–6.

[23] A. Fischer, E. Indermühle, H. Bunke, G. Viehhauser, and M. Stolz,
“Ground truth creation for handwriting recognition in historical doc-
uments,” ACM International Conference Proceeding Series, pp. 3–10,
2010.

[24] A. Fischer, V. Frinken, A. Fornés, and H. Bunke, “Transcription align-
ment of latin manuscripts using hidden markov models,” in Proceedings
of the 2011 Workshop on Historical Document Imaging and Processing,
ser. HIP’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 29–36.

[25] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connec-
tionist temporal classification: Labelling unsegmented sequence data
with recurrent neural networks,” in ICML - Proceedings of the 23rd
International Conference on Machine Learning, 01 2006, pp. 369–376.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
06 2014.

[27] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS’10). New
Jersey, USA: Society for Artificial Intelligence and Statistics, 2010.

[28] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in in ICML Workshop on
Deep Learning for Audio, Speech and Language Processing, 2013.

[29] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, pp.
448–456.

[30] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout im-
proves recurrent neural networks for handwriting recognition,” in 2014
14th International Conference on Frontiers in Handwriting Recognition,
9 2014, pp. 285–290.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
2015 IEEE International Conference on Computer Vision (ICCV), 12
2015, pp. 1026–1034.

[32] S. Ioffe, “Batch renormalization: Towards reducing minibatch depen-
dence in batch-normalized models,” in Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, ser.
NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, pp.
1942–1950.

[33] T. Tieleman and G. Hinton, “Lecture 6.5–rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, 2012.

[34] K. Hwang and W. Sung, “Character-level incremental speech recognition
with recurrent neural networks,” 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 3 2016.

[35] K.-N. Chen, C.-H. Chen, and C.-C. Chang, “Efficient illumination
compensation techniques for text images,” Digital Signal Processing,
vol. 22, no. 5, pp. 726–733, 2012.

[36] A. Vinciarelli and J. Luettin, “A new normalization technique for cursive
handwritten words,” Pattern Recognition Letters, vol. 22(9), pp. 1043–
1050, 07 2001.

[37] J. A. Sánchez, V. Romero, A. H. Toselli, M. Villegas, and E. Vidal, “A set
of benchmarks for handwritten text recognition on historical documents,”
Pattern Recognition, vol. 94, pp. 122–134, 2019.

[38] V. Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

[39] W. J. Conover, Practical Nonparametric Statistics. New York: John
Wiley & Sons, 1971.

[40] F. Wilcoxon, Individual Comparisons by Ranking Methods. New York:
Springer New York, 1992, pp. 196–202.


