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Abstract—Industries need to track the amount of materials
and goods transported through processing units in order to
optimize production. In large-scale industries, trucks and trains
are commonly used for transportation. The manual evaluation
of the volume of material being transported by these vehicles
can be imprecise, inefficient, and even unsafe for employees.
Therefore, this work presents an automated system for estimating
the volume of load in moving trucks using a pair of multi-layer
light detection and ranging (LiDAR) sensors. The sensors are
mounted in a structure so that trucks can pass through without
stopping. The proposed system can be used with any type of
compact load such as grains, and powders. A mesh of the load is
built and used for estimating the volume. A simple, efficient, and
effective heuristic is proposed for tracking the truck’s positions.
The system was deployed and evaluated in a mining company in
real conditions of operation. Experimental results indicate that
the system produces accurate estimates of the volume of ore
powder transported by trucks. The reconstruction of the loads
and the estimative of their volumes are performed once the data
is acquired and lasts less than 1.5 minutes on average.

I. INTRODUCTION

In order to maximize profit, industries have to optimize
their processes and achieve high throughput of products. By
measuring the amount of materials and goods transported
through processing units, managers can schedule the use of
machinery, and plan ahead to minimize delays and stall times.

In large-scale production environments such as agriculture
and livestock farms, mining industries, and wood extraction
companies, trucks or trains are commonly used for transporta-
tion. Measuring the load weight and/or its volume are ways
of quantifying the amount of material being carried by these
vehicles. Large and potentially expensive scales are required
for weighting the loads. If there are not sufficient scales
to supply the demand of incoming vehicles, queues can be
formed which is inefficient. Moreover, due to the scales sizes,
moving them around in the factory is impractical. Depending
on the factory’s organization, vehicles may need to take large
detours to reach the scales.

An alternative to weighting the loads is the measurement
of their volumes. In some situations, the volume of the
materials is the primary information needed by the managers,
for instance, to know the amount of space required for storing
them. Measuring the volume directly can be more precise than
estimating it through the weight and the density of the material
since the density may vary depending on several factors (e.g.,
temperature and humidity). However, measuring volume can

Fig. 1: Illustration of the sensors’ setup in the proposed system.
The top LiDAR sensor (highlighted in pink) scans the surface
of the load from the top and produces the point cloud Vvol. It
is used for reconstructing the load and estimating its volume.
The road LiDAR sensor scans the truck from the side of the
road and produces the point cloud Vpos. It is used for tracking
the truck position as it moves underneath the structure.

be challenging, in particular if the surface of the material
is irregular. Performing the measurements manually can be
inefficient, laborious, and even unsafe for the employees.
Automatic methods have the potential to be precise and
efficient, and they prevent human-errors, accidents, and drops
in productivity, for instance, due to tiredness and distraction.

Previous works tried and developed automatic methods
for measuring the volume of different types of materials. In
[1], five cameras and computer vision techniques are used
for segmenting logs being transported by a truck and for
estimating their volume. A percentual error of 5% in relation
to the real volume was achieved. In [2], a multi-layer light
detection and ranging sensor (LiDAR) is used for counting the
number of logs in the body of a truck. In [3], an unmanned
aerial vehicle equipped with a GPS/GLONASS system and
a camera was used for measuring the volume of log carried
by a truck. The measurements are performed when the truck
is not moving using multi-view photogrammetry and 3D
reconstruction techniques. They achieved an error of 0.5m3



or, equivalently, an percentual error of 1.7% in relation to
the real volume. In [4], a high-resolution stereo camera is
used for estimating the volume of soil in the bucket of an
excavator. Stereo matching algorithms are used for computing
depth maps. A model of the empty bucket is created before
operation. The model is manually split in two parts, the borders
and the inner body. The iterative closest point (ICP) algorithm
is used for finding the bucket pose during operation and the
inner body is used for estimating the volume of soil. They
achieved errors ranging from 50cm3 (15% of the real volume)
to 2cm3 (0.57% of the real volume).

In the works mentioned before, the authors assume the
vehicle is not moving during the measurement process. The
following works propose methods that allow measuring the
volume with the vehicle in motion. In [5], two single-layer
LiDARs are used for measuring the volume of dirt being trans-
ported by haul-trucks. The lasers are mounted in a structure
high above the roadway pointing downwards with orthogonal
orientations. The data collected when the haul-trucks pass
underneath the structure are used for estimating the volume of
the loads. The localization of the haul-trucks is obtained using
the ICP algorithm. The technique for estimating the volume of
the loads is not presented in the paper (it was under provisional
patent). The accuracy achieved by the technique is also not
presented. In [6], three LiDARs are used for measuring the
volume of logs in moving trucks with percentual errors ranging
from 0.1% to 4.2%. The closed software Woodtech Logmeter
4000 is used for measuring the volumes. Since the software
is not open, it is hard to predict in which conditions it will
operate successfully.

This work presents a system for measuring the volume
of compact materials (materials with small rate of empty
spaces in relation to the occupied volume) transported by a
moving truck using two multi-layer LiDARs positioned as
illustrated in Figure 1. LiDAR sensors are becoming very
popular and inexpensive due to the demand for autonomous
vehicles. The road LiDAR (emitting yellow rays in Figure 1)
is mounted aside the road with the central ray parallel to the
road. This sensor produces measurements that allow tracking
the truck position by means of a simple, effective, and efficient
technique that is presented in this work. The top LiDAR
(emitting pink rays in Figure 1) is mounted high above the
road with the central ray orthogonal to the road. This sensor
is used for observing the load surface on the truck bucket.
The positions estimated using the road LiDAR are used for
integrating the measurements of the top LiDAR in a complete
model of the truck. An a priori model of the empty truck
bucket is used along with the truck point cloud reconstructed
from the LiDARs’ measurements for creating a mesh of the
load. The volume of the load is approximated by the volume
of the mesh. The proposed system was deployed and evaluated
in a mining company in real conditions of operation. The
system was successfully used for measuring the volume of ore
powder transported by the trucks. The data is collected very
quickly with the truck in movement and the complete process
of estimating the volume given the sensors’ data takes less

Fig. 2: Overview of the system for estimating the load volume
in moving trucks. The system receives as input the data
collected by two LiDAR sensors, integrate them into a dense
point cloud representing the truck, isolates the points regarding
to the load and reconstructs a closed mesh, and, finally,
estimates the volume using the closed mesh.

than 1.5 minutes on average.

II. VOLUME ESTIMATION IN MOVING TRUCKS

This section describes the hardware setup and the proposed
software for measuring the load volume in moving trucks. The
system comprises two multi-layer light detection and ranging
(LiDAR) sensors, in particular two Velodyne VPL-16, for
measuring the volumes. Each Velodynes VPL-16 is composed
of 16 lasers assembled along the vertical axis (one above the
other). The set of 16 lasers is rotated around the vertical axis
by a motor so that the sensor is capable of observing 360
degrees around it. The LiDAR returns a point cloud in which
the points are represented in spherical coordinates.

The pair of LiDARs (one placed above and one on the road
behind the truck) are mounted in pre-existent structures of the
factory, as presented in Figure 1. The top LiDAR is mainly
used for reconstructing the load and performing the volume
measurement. Therefore, it is mounted in a platform 7m above
the road with the central ray orthogonal to the road and with
the axis of rotation nearly parallel to the trajectory of the
truck. This configuration ensures that each LiDAR rotation
will generate many readings (for each laser) from one side
to the other of the truck. The road LiDAR is mainly used
for estimating the truck position for each LiDAR reading.
Therefore, it is mounted aside the road and behind the truck.
To ensure the rays hit the back of the truck bucket, the LiDAR
is placed 2m above the ground with the central ray parallel to
the road and with the rotation axis nearly orthogonal to the
ground. The top LiDAR will generate the point cloud V i

vol at
every timestamp i and the road LiDAR will generate the point
cloud V j

pos at every timestamp j.
Once the sensors are in place, they need to be calibrated so

that their relative pose is known. The calibration parameters
are later used to map the point clouds across the coordinate
systems of the LiDARs. The calibration process only needs to
be performed once, since the sensors’ positions are fixed. One
additional input parameter required by the system is the model
of an empty truck bucket. This model comprises two parts, the
external part and the internal part. The external part is used
for identifying the pose of the bucket in the truck point cloud.
The internal part is used for generating the base of the load for
volume measurement. The truck bucket model can either be



Fig. 3: The left image shows a point clouds of the environment without a truck. The image in the center shows the point
cloud with a truck, whereas the image on the right shows the point cloud after removing points outside the region of interest
(represented by a box) and points from the background.

provided by the manufacturer or reconstructed by the system
using an empty truck (the latter was used in this work).

The system comprises three software modules (see Figure
2): truck reconstruction, load mesh reconstruction, and volume
estimation. During the measurements, the truck moves through
the region observed by the sensors performing a linear trajec-
tory. The sensors’ data are recorded and used as input for
the truck reconstruction module. The trucks do not have to
stop for the measurement process. The truck reconstruction
module is responsible for tracking the current position of the
truck and for integrating the LiDARs’ point clouds over time
in order to produce a dense point cloud of the truck. The load
mesh reconstruction module is responsible for identifying the
points from the dense point cloud that belongs to the load
and for generating a closed mesh representing the region of
interest. The external part of the empty bucket model is used
in the identification process and the internal part is used for
generating the closed mesh. Finally, the volume estimation
module approximates the volume of the load as the inner
volume of the mesh. These steps are detailed in the following
sections.

A. Truck Reconstruction

This module receives the raw data from the LiDAR sensors
and reconstructs the dense point cloud representing the truck.
The whole process comprises the following steps: temporal
data correction, background removal, LiDAR sensors calibra-
tion, truck path estimation, truck position estimation, and point
cloud coordinate system alignment.

1) Temporal Data Correction: The raw data of each LiDAR
is a point cloud comprising the measurements of each ray
for one revolution, i.e., from 0 to 360 degrees. The LiDAR
used in this work rotates at a frequency of 20Hz and samples
about 1808 points for each laser in one revolution. Each point
cloud is recorded with an associated timestamp (V i

pos and V j
vol

are respectively the point clouds of the timestamp i and j
generated by the top and the road LiDARs respectively) as
if all points were acquired at that instant. This assumption is
not harmful when the environment and the sensors are static.
However, because the truck is moving, the raw data have to
be corrected to account for the fact that the sensor performs
readings as it rotates and the rotations are not instantaneous.

This is specially important for the LiDAR used for load
reconstruction because the truck will be in one position when
laser hits one side of the truck and in another when it hits the
other side. In order to reduce such temporal sliding, each point
measurement is corrected to the same timestamp (reference
timestamp for the point cloud) by using the average speed
of the truck and the trajectory path (described in the next
subsections). In other words, the points are corrected by a
delta shift that is calculated using the current truck speed and
the delta time between the first point measured by the sensor
and the current point. The output of this step is the point cloud
of one LiDAR revolution V j

vol without the sliding error.
2) Background Removal: This step aims at cleaning the

scene from points that do not belong to the truck. The very
first step is defining a region of interest (a box marking the
region where the truck passes) and removing every point that
is outside the region. The second step is the actual background
removal. Since the scene is mostly static and the LiDARs do
not move, a technique similar to image background removal
can be applied. During the calibration step, a point cloud of the
empty environment is captured using both LiDARs and stored
as the background point cloud. During the measurements,
the truck is segmented from the environment objects by
removing every point from the current point cloud that is
sufficiently close to a point from the background point cloud.
The euclidean distance is used for measuring the proximity of
the points and a KD-Tree structure [7] is used for optimizing
the search. Basically, a KD-Tree is built with the points of the
background point cloud and the nearest neighbor of each point
of the current point cloud that is below a threshold is removed
from the current point cloud. The threshold was empirically
defined to 10cm, considering a safety distance that would not
remove points of interest belonging to the bucket. This process
is performed for both LiDAR point clouds V i

pos and V j
vol. The

output of this step are cleaner point clouds, V i−
pos and V j−

vol ,
for each LiDAR revolution (i.e., without points belonging to
the background such as the road). It is worth noting that some
nosy measurements caused by dust in the air are still present
in the clean point cloud. This process is repeated continuously
and it is used as decision for carrying on with the rest of the
measurements. When there are enough remaining points after
cleaning (at least 1000 points in V j

vol), the system assumes



Fig. 4: Illustration of the point cloud projection from the
coordinate system of one LiDAR to the other. The left image
shows both point cloud without calibration, whereas the right
image shows both point cloud after the calibration.

Fig. 5: Illustration of the trajectory estimation. The image
shows the lines regressed for both sides of the truck (cyan and
pink lines) using the set of points of the border of the bucket
(green and red points respectively), as well as the average line
defining the trajectory (black line).

there is a truck in the scene, therefore, the current data is stored
and the measurement process continues. Otherwise, the data
is discard. The threshold was defined empirically in order to
account for noise in the measurements (such as dust particles
that could be confused as part of the truck).

3) LiDAR Sensors Calibration: For building the final dense
point cloud of the truck, the data from both LiDARs, V i

pos

and V j
vol, need to be integrated. Therefore, this step aims

at finding the relative pose between the two LiDARs. The
calibration process to obtain the parameters to project points
from one LiDAR coordinate system to the other is performed
just once and semi-automatically. First, an initial guess for
the pose value is provided manually (such as clicking in
corresponding points in both point clouds). Finally, the initial
guess is fine-tunned using the Generalized Iterative Closest
Point algorithm (G-ICP) [8], which returns a transformation
to align the two point clouds V i

pos and V j
vol. The output of this

step is a transformation that is used to map the point cloud
V j
vol from the coordinate system of the top LiDAR to the road

LiDAR. For simplicity, from now on, the same notation (V j
vol)

is used to represent the point cloud from the top LiDAR in
the coordinate system of the road LiDAR. Figure 4 illustrates
a pair of point clouds before and after the calibration of the
sensors.

4) Truck Path Estimation: This step aims at estimating
the linear trajectory performed by the truck during the mea-
surement. The trajectory is assumed to be linear, i.e., the

driver should not turn the wheel while going through the
measurement. This was found to be a reasonable assumption
since the driver has to pass underneath the measurement
structure and it would be under measurement just for a short
period. The points of the side of the truck bucket were used
for regressing the line defining the truck trajectory. Basically,
the data from the top LiDAR V j−

vol was used to isolate the
points from both sides of the bucket. After cleaning, V j−

vol

only comprises points belonging to the truck. Since V j−
vol is

given in spherical coordinates, the first and the last points
of the data package are actually the points from both side
of the bucket (first and last points that hit the truck in one
LiDAR revolution). The points representing each side of the
bucket are isolated from the others in two groups that are used
for estimating the two lines, left Lltrj and right Lrtrj sides,
(through a Linear Regression algorithm and with RANSAC
to reduce the influence of noise) that define the lateral of the
truck bucket. In order to avoid influence from the frontal part
of the truck and the bucket (which is not linear or not parallel),
the point clouds from the end of the bucket are selected for
regressing the lines. The points used for the regression are
collected from the point clouds V j−

vol in which less than a half
of the lasers (8 out of 16 rays) hit the truck, i.e., when only the
end of the truck bucket is visible. Finally, the central trajectory
line Ltrj is estimated by averaging the points and the vectors
defining Lltrj and Lrtrj (assuming the line equation in R3

and described by a point and a vector). Figure 5 illustrates the
process of trajectory estimation. The output of this step is a
linear trajectory (described by the line Ltrj) used to restrict
the possible positions of the truck along a line.

5) Truck Position Estimation: This step aims at estimating
the position of the truck along the trajectory line Ltrj at each
timestamp. Since the trajectory line is perpendicular to the
back of the truck bucket and the data from the road LiDAR
V j−
pos hits both, the back and the lateral of the bucket, the simple

projection of V j−
pos in Ltrj should accumulate a high number

of points in the back of the bucket. Therefore, the point with
more neighbors would represent the back of the bucket and
could be used as position. The points obtained by projecting
V j−
pos into Ltrj are defined as V j−

trj . The truck position pjtrk
(back of the bucket) is the point from V j−

trj with the highest
number of neighbors within a region of 30cm radius. The point
is obtained by creating a KD-Tree with the projected points
V j−
trj and counting the number of neighbors within the defined

radius. Figure 6 left illustrates the position estimation process.
The projection of a point p into a line L = pl + vlt in R3,

where pl is a point, vl is a unit vector and t is a scalar, is
given by equation 1:

pprj = pl + vltp

tp = vl.(p− pl)
(1)

The equation 1 is used for projecting the points of V j−
pos

onto Ltrj .
6) Point Cloud Coordinate System Alignment: This step

aims at mapping the point clouds from every timestamp V i−
vol



Fig. 6: Illustration of the position estimation process. This
figure shows a 3D view (left) and top view (right) of the points
V i
pos (blue points) being projected in the trajectory line Ltrj

(red points). The black point represents the selected projected
point with higher number of neighbors.

and V j−
pos to a same coordinate system at timestamp 0. The

point clouds are mapped using a transformation T b
a that maps

a set of point from the coordinate system of the timestamp a to
the coordinate system of the timestamp b. The transformation
is created using the points pjtrk of different timestamps, as
defined in equation 2:

T b
a =

[
I (pbtrk − patrk)
0 1

]
(2)

With the transformations defined, the point clouds can be
mapped to the reference coordinate system at timestamp 0
using the equation 3:

V 0−
vol = T 0

i V
i−
vol ;V

0−
pos = T 0

j V
j−
pos (3)

Since data collection from both sensors are not synchro-
nized, data coming from different sensors might not share the
same timestamp. Therefore, the truck position pjtrk of the point
cloud of the road LiDAR V j−

pos , as calculated in section II-A5,
cannot be directly used for the point cloud of the top LiDAR
V i−
vol . In order to estimate the pitrk for the point cloud V i−

vol ,
an interpolation is performed between pjtrk and pj+1

trk , where
j and j + 1 are respectively the closest timestamp before and
after the timestamp i. The point interpolation is defined in
equation 4:

pitrk = pjtrk(1 − ∆tij/∆j+1
j ) + pj+1

trk (∆tj+1
i /∆j+1

j ) (4)

where, ∆tba is the time difference between the timestamps a
and b.

Once all point clouds are mapped to the same coordinate
system at timestamp 0, they are grouped in a single dense point
cloud Vtrk representing the reconstructed truck. The output of
this step is a dense point cloud Vtrk including the points from
every timestamp of the LiDAR measurements.

B. Load Reconstruction

This module receives a dense point cloud Vtrk from the
previous module, as well as a model of the empty bucket,
and creates a mesh representing the load inside the truck
bucket. The model has two parts that are aligned in the same

Fig. 7: The left image illustrates the dense point cloud Vtrk

representing the reconstructed truck. The point cloud uses
LiDAR measurements from all timestamps. The right image
illustrates the result of the alignment between the truck bucket
model (yellow points) and the dense point cloud (black points).

coordinate system, a point cloud representing the external part
and a mesh representing the internal part. The whole process
comprises the following steps: bucket alignment, non-load
points removal, bucket base creation and mesh reconstruction.

1) Bucket Alignment: This step aims aligning the empty
bucket model (given as input for the method) with the dense
point cloud of the truck in order to allow defining the set of
points that belong to the load. The alignment is performed
automatically using the Generalized ICP (G-ICP) algorithm.
The initial pose guess of the model for the G-ICP is calculated
using the edges from the side of the bucket. A coordinate
system is created using the middle point on the edge of the
back of the bucket as origin (to map to p0trk), a vector pointing
to the front of the bucket as x (to map to vl from Ltrj), a
point on the right side of the bucket edge to generate the other
axes (to map to the axes generated by a point along Lrtrj).
Subsequently, the model is aligned to the point cloud using the
defined coordinate systems so that the G-ICP can fine tune the
alignment. Figure 9 (second column) illustrates the result of
the alignment of the truck bucket model with the dense point
cloud. The output of this step is the empty bucket model (the
point cloud Vbkt and the mesh Mbkt) aligned with the truck
in the same coordinate system of the dense point cloud Vtrk.

2) Non-Load Points Removal: This step aims at removing
points that are not representing the load inside the bucket.
Since the models of the empty bucket (point cloud Vbkt and
mesh Mbkt) are already aligned with the dense point cloud,
they can be used to choose the points that belong to the load.
The first part of the removal is performed with the aid of
the simplified mesh Mbkt. The mesh Mbkt was created with
normals pointing outside the bucket and describing the interior
of the bucket. Hence, a point of the dense point cloud Vtrk

does not belong to the load (i.e., is not inside the bucket) if it
is in front of any face of the mesh Mbkt. Therefore, the point
is removed if the dot product between the normal of any face
and its vector from the load point is negative, as defined in
equation 5: {

remove, if (pfac − ploa) ·N < 0

stay, otherwise
(5)

where, ploa is the current point being considered for removal
and, pfac and N are respectively a point and the normal of



Fig. 8: Illustration of the result of the removal of external
points and creation of points of the base (left), and result of the
mesh reconstruction (right). The three blue dots are artificially
ceated to shoot rays (blue lines) towards the load points until
they hit the base (orange dots are the new base points).

a triangle face of Mbkt. For each point in Vtrk, all faces of
Mbkt are verified with equation 5.

The second part of the removal is performed with the aid
of the bucket model point cloud Vbkt. It aims at removing
noisy points that might have remained inside the bucket (such
as points in the lateral of the bucket coming from a wrongly
aligned point cloud). Therefore, a KD-Tree is created with the
Vbkt so that points from Vtrk can be verified and removed if
they are too close (less than 10cm) to any point of Vbkt. The
output of this step is the dense point cloud V −

trk containing
only the points inside the bucket. Figure 8 illustrates the result
of the removal of the points outside the bucket.

3) Bucket Base Creation: This step aims at creating the set
of points representing base of the load that touches the bucket.
The base was created by shooting rays from the top of the
bucket (one close to the end, one close to the middle and one
close to the beginning) and passing through the load points
(see Figure 8). Each of these three shooting points shoots rays
towards a set of points of the load V −

trk (each point of the
load belongs to the set of the closest shooting point). The
intersection between the rays and the faces of the mesh Mbkt

creates a new point pbas for the base. The coordinates of a
point pbas are obtained with the Möller-Trumbore intersection
algorithm [9]. This method receives as input the vertices of a
triangle face and a line in R3 and outputs the intersection point
if it exists. The output of this step is a point cloud representing
the points of the load Vloa including the point of the base that
touches the bucket.

4) Mesh Reconstruction: This step aims at creating a closed
mesh out of the point cloud of the load Vloa and is accom-
plished using the Poisson Surface Reconstruction algorithm
[10]. The algorithm uses a Poisson formulation that consid-
ers all points at once, without resorting to heuristic spatial
partitioning or blending. Such approach makes the algorithm
highly resilient to noise. However, the generated mesh might
still come with some imperfections like wholes, flipped edges,
etc. Therefore, the method Quadric Edge Collapse Decimation
(extracted from the open-source software MeshLab) is applied
to correct such issues. The method is based on the Surface
Simplification using Quadric Error Metrics proposed in [11].
Figure 8 right illustrate the mesh reconstruction results.

C. Volume Estimation
Finally, this module receives the reconstructed mesh Mloa

from the previous step and outputs the measured volume.
The volume is measured using an algorithm proposed by
Brian Mirtich [12] that computes a series of polyhedral mass
properties including volume.

III. EXPERIMENTAL METHODOLOGY

This section describes the experimental methodology em-
ployed for evaluating the proposed system.

A. Dataset
The proposed system was evaluated in a mining company in

real conditions of operation. The experiments were performed
using a single truck with three different loads of ore powder.
Two loads came from a stockyard (YARD L1, and YARD L2)
in which piles of ore powder are stored. The third one
(SILO L1) was originated from a silo. For each load, the truck
passed through the measurement structure twice resulting in
a total of six datasets. Each dataset contains the set of all
LiDARs’ point clouds captured while the truck passed through
the structure. The datasets with loads of ore powder from the
stockyard will be referred to as YARD L1M1, YARD L1M2,
YARD L2M1, YARD L2M2. The suffix LiMj is used to
represent the j-th measurement of the i-th load. Likewise,
the remaining dataset with loads of ore powder from the silo
will be referred as SILO L1M1 and SILO L1M2. It is worth
mentioning that the process of collecting the datasets was
challenging since the company had to concede a truck, a driver,
and an employee that were departed from the company’s
important activities during the data collection.

The ground truth weights of the loads were measured by
weighting the loaded trucks using a scale from the company
and subtracting the weight of the empty truck. The weights
of YARD L1, YARD L2, and SILO L1 are 15.920t, 16.260t,
and 15.500t, respectively. The volume of the loads are derived
from the weights. The company informed that the average
density of the ore powder is 2.3t/m3. The ore powder is subject
to different processes in the factory that can change its density.
In the stockyard, for instance, the piles of powder are watered
to reduce the emission of solid particles to the atmosphere.

B. Metrics
The absolute error (AE) is used for evaluating the accuracy

of the values obtained using the proposed system. This metric
is given by the absolute difference between the estimates
values and ground-truth values. To summarize sets of sample
absolute errors, the mean absolute error (MAE) is used.
The computational performance of the proposed system is
evaluated by measuring the average execution time of the
modules as well as the average total execution time (these
averages are taken over datasets).

C. Setup
The modules of the software were implemented in C/C++

using a in house version of carmen1. The implementations of

1https://github.com/LCAD-UFES/carmen lcad/



G-ICP and the Poisson surface reconstruction [10] are from
the Point Cloud Library (PCL). The system was executed
in a notebook with processor Intel Core i7-4600M 2.90GHz
and 8GB of RAM. The parameters used in the algorithms
are the following. The number of iterations and maximum
correspondence distance of the G-ICP are set to 2000 iterations
and 0.5m, respectively. Finally, the depth value of the Poisson
Mesh Reconstruction algorithm is set to 10. All of these
parameters are chosen empirically.

D. Experiments

A set of four experiments were performed using real data
from a factory followed by qualitative and quantitative analy-
sis. Each experiment is explained in details below.

1) Consistency Evaluation: The volumes estimated by the
system in different measurements of the same load are com-
pared. The same volumes should be returned by the system
given that the loads are the same. This experiment aims at
measuring the errors in the inner processes of the system.

2) Weight Accuracy: Using the average density of the ore
powder provided by the company and the volumes estimated
by the system, the weights of the loads are estimated. The
MAE and the mean percentual error between the estimated
and ground-truth (using the company’s scale) weights is used
for evaluating the system’s accuracy.

3) Accuracy Cross-Loads: It is worth noting that the av-
erage ore powder density may not be accurate due to the
ways the ore powder is processed in the company (see section
III-A). Therefore, the comparison across load measurements
for the same material may provided a more realistic ground
truth. In this experiment, one load is selected for comput-
ing the ore powder density, and another for evaluating the
system accuracy. Since only the datasets from the stockyard
have measurements for more than one load and they have
approximately the same density, the silo data is not used in
this experiment. The system is used to estimate the volume
in both measurements of a load. Using these volumes and the
load weight, two sample densities are computed. The final ore
powder density is obtained by averaging the sample densities.
The ground-truth volume of the other load is obtained by
dividing its weight by the computed density. The ground-truth
is then compared with the volumes estimated by the system in
the two remaining measurements. Accuracy is also measured
in inverting the loads for density estimation.

4) Accuracy Cross-Measurements: This experiment is sim-
ilar to the previous one, however one measurement from each
load is selected and used for computing the density and the
other measurement is used for evaluating the system. The es-
timate of the ore powder density is also obtained by averaging
sample densities computed using the loads’ weights and the
volumes estimated by system. Accuracy is also measured in
inverting the loads for density estimation.

5) Efficiency Evaluation: The goal of the proposed system
is to increase the efficiency of the company in the process of
estimating the amount of goods being transported by trucks.
The time necessary for computing a volume given sensors’

data is averaged across datasets. The average execution time
is compared with the time necessary for weighting the truck
under the assumption that both processes aim at measuring the
amount of materials being transported by the truck.

IV. RESULTS AND DISCUSSION

The results for the qualitative evaluation of the system are
shown in Figure 9. The quality of the meshes matches the
pictures and indicate that the system’s modules succeeded in
real world operation.

The volumes estimated for each of the datasets are presented
in table I, along with load weights computed using the average
ore powder density (2.3 Kg / m3) provided by the company,
the ground-truth weight, the absolute error, and the percentual
error. The consistency evaluation shows that the absolute
difference between the volumes estimated for the same loads
is 0.1m3. Choosing the second measurement as the reference,
the average percentual error is 1.48%. The system achieved
a mean absolute error of 0.69t and a mean percentual error
of 4.41%. The high mean percentual error is mainly due to
incorrect (given the imprecise density) weight estimates for
the datasets SILO L1M1 and SILO L1M2. Considering only
the datasets with loads from the stockyard, the mean absolute
error and the mean percentual error reduce to 0.29t and 1.84%,
respectively. It is worth restating that in the silo, water is added
to the ore powder which can change the powder density.

TABLE I: Evaluation of the load weights computed using the
volumes estimated by the system.

Dataset Vest(m3) West(t) Wgt(t) AE(t) % Error
YARD L1M1 6.76 15.56 15.92 0.36 2.27

YARD L1M2 6.68 15.36 15.92 0.56 3.52

YARD L2M1 7.14 16.41 16.26 0.15 0.94

YARD L2M2 7.03 16.16 16.26 0.10 0.61

SILO L1M1 7.44 17.12 15.50 1.62 10.43

SILO L1M2 7.33 16.85 15.50 1.35 8.70

Average 0.69 4.41

Using the cross-load approach, the volumes obtained for the
datasets YARD L1 and YARD L1 are 6.93m3 and 6.86m3,
respectively. The MAE of the volumes estimated by system
when compared to these values is 0.21m3 which gives a
mean percentual error of 3.1%. Similarly, using the cross-
measurements approach, the volumes obtained for the datasets
are 6.78m3 for YARD L1M1, 6.87m3 for YARD L1M2,
6.92m3 for YARD L2M1, and 7.02 for YARD L2M2. The
MAE of the system when compared to these values is 0.11m3

which gives a mean percentual error of 1.55%.
Estimating the volumes from the sensors’ data took on

average 88.9s. The truck reconstruction step and the load
reconstruction step took on average 0.56s, and 88.35s, respec-
tively. Since weighting each load in the data collection day
took at least an hour. Assuming that this long delay for using
the scales is common, we conclude that the proposed system
is more efficient than the current process used in the factory
for quantifying transported materials.



Fig. 9: Qualitative analysis of the reconstruction of the truck and of the truckload using the proposed system. The rows represent
measurements of different loads for the datasets YARD L1M1 (first row), YARD L2M1 (second row), and SILO L1M1 (third
row). The column presents from left to right: truckload pictures, reconstruction of the truck with alignment of the bucket model,
reconstruction of the load bottom using the inner part of the truck bucket model and the meshes built from the truckload.

V. CONCLUSION

This work proposed a new technique for estimating the
volume of loads from moving trucks using two LiDARs. The
LiDARs’ data are used for reconstructing the truck and its
load. With the LiDAR measurements of the truck, a mesh of
the load is created with the aid of an a priori model of the truck
bucket. The load volume is finally estimated from the mesh.
The system was deployed and evaluated in a mining company
in real conditions of operation. Experimental results showed
that the system can be successfully used for reconstructing a
truck and loads of ore powder. Using the average density of the
ore powder provided by the company, the weight of the loads
could be estimated with an mean absolute error of 0.69t which
is equivalent to 4.41% of the real weight on average. The ore
powder used in the experiments come from different storage
units (a stockyard and a silo). The processes used in these
units can affect the ore powder density. Considering only the
loads from the stockyard, the mean absolute error and mean
percentual errors reduce to 0.29t and 1.84%, respectively.
Future work includes more experiments in real scenarios and
with ground truths for the volume.
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