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Abstract—In the context of agribusiness, the task of tree
detection and counting is fundamental for updating the forest
inventory and the management plan of a farm. Because it
constitutes an exhausting manual process, automated approaches
dealing with remotely sensed data have proven to work effectively
for this task, while reducing human effort and delivering results
in a much smaller time frame. In parallel, the increasing
popularity of drones has allowed the use of unmanned aerial
vehicles (UAVs) as a low-cost alternative for acquiring aerial
images, later processed by computer vision-based methods. In this
work, we deal with the problem of citrus trees detection at images
of high-density orchards, captured by UAVs. Because of the
format in which the citrus trees are arranged at our input images,
previous detection approaches working with sparsely distributed
trees are not suitable for our data; therefore, we propose a novel
approach based on Convolutional Neural Networks (CNNs). Our
method is divided in three steps: (1) using a CNN on a sliding
window scheme for inferring the line centers of the tree rows; (2)
segmenting the probability areas of the line centers followed by
the partition of the tree rows in candidate regions; and (3) using a
CNN for classifying the candidates into tree regions. Experiments
on seven different test sites achieved overall accuracy values of
94%.

I. INTRODUCTION

Counting trees on a commercial orchard is essential for
calculating productivity, taxes, and managing pests when they
result in the total loss of the tree. Currently, a traditional
sampling method for estimating stocks of fruit trees employed
at some Brazilian farms is done manually, where an operator
physically registers each tree by a GPS device. This results
in a very expensive and slow method, that does not allow a
dynamic data update.

Aiming to overcome this problem, unmanned aerial vehicles
(UAVs) are increasingly being used for crop management,
often paired with specialized sensors and/or computer vision-
based methods for automatic image analysis. UAVs are able
to reduce drastically the tree counting process, in compari-
son to the manual procedure. Considering the same orchard,
depending on the crop size, the aforementioned traditional
method could take a month, while imaging by UAVs combined
with manual counting would take a week, and the UAV
imagery using a computational method of tree detection could
be done in one day. This example makes it clear that the
potential of UAVs is indisputable, which holds not only for
large enterprises but also for the medium and small producers.

However, as reported in [1], analyses with drone data are much
more frequent for certain crops, such as corn and wheat, as
opposed for citrus, for example.

Nevertheless, according to data from the United States
Department of Agriculture (USDA), the global orange pro-
duction for 2017/18 is forecast to 49.3 million metric tons,
with Brazil being the largest producer of orange juice and
accounting for three-quarters of global exports [2]. Therefore,
the goal of this work is to explore citrus tree detection from
aerial pictures captured by UAVs, using images acquired on a
commercial orchard in Brazil. Our goal is to evaluate image-
only information so our approach may be scaled for different
UAVs and camera models and be suitable for small producers
as well.

Fig. 1. Example of UAV images from Brazilian citrus orchards used in this
research.

The difficulty of the automatic counting of our dataset
comes mainly from the high density of the trees, resulting in a
barely visible limit between the crowns, as shown in Figure 1.

This paper is structured as follows. In Section II, we report
previous works on detecting and counting trees automatically.
In Section III, we describe the steps of our tree detection
method, that is based on Convolutional Neural Networks
(CNNs). Section IV describes experiments on different test
sites followed by a discussion in Section V, and the paper is
concluded on Section VI.

II. RELATED WORK

Previous works have addressed the tasks of extracting
and counting trees from remotely sensed data. These ap-



proaches differ widely due to several aspects, such as: (i) the
imaging acquisition device - UAVs [3], satellite images [4],
Laser/LIDAR surveys [5], Aerial image [6], or a combination
of these; (ii) the methods employed - Hough Transform [7],
Mathematical Morphology [8], CNNs [9], [10], among others;
and (iii) the plantation characteristics itself.

Concerning the latter, some approaches are only effective
on spatially well-arranged trees and are not able to produce
satisfactory results for dense plantations with overlapping of
tree crowns [9]. On this topic, Larsen et al. [11] evaluated
different algorithms for tree detection (namely maxima de-
tection, valley following, region-growing, template matching,
scale-space theory, and stochastic frameworks techniques) and
performed experiments on six diverse forest images captured at
different geographical locations. The authors concluded that no
single algorithm can successfully analyze a scenario of various
forest conditions (dense, complex, mixed, etc).

In fact, previous works on detecting citrus trees employed
methods such as circular Hough transform [7], radial sym-
metry transform [4], [12], [13], and template matching [14],
which produced good results for sparsely located data, but are
not suitable for the images addressed in our research, showing
orchards of dense distributed trees. When dealing with over-
lapped canopy forests, authors employ a variety of techniques;
to name a few, thermal and narrowband multispectral imaging
sensors [15], 3D photogrammetry and hyperspectral imag-
ing [16], 3D reconstruction [17], and structure from motion
(SfM) [18].

Nevertheless, although using specialized sensors may cap-
ture additional data, it brings limitations as well, regarding the
costs of acquisition and processing: traditional photogramme-
try analyses require high-cost cameras and platforms as well
as rigorous processing chains for accurate results [17]. Besides
cost, size and weight of existing multi-modal imaging systems
may also inhibit large-scale deployment on-board UAVs [19]
and make the solution unfeasible for small producers.

Alternatively, CNNs have been employed successfully for
processing images on a wide range of remote sensing applica-
tions [20], and to a lesser extent, for detecting and delimiting
trees. Focusing on image data from UAVs, Fan et al. [10]
addressed tobacco detection at plantations disposed similarly
to our citrus images. The authors first detect candidate tobacco
plant regions using morphological operations and watershed
segmentation, then, they use a CNN-based classifier for dif-
ferentiating the candidates into tobacco or nontobacco plant
regions, followed by a post-processing stage. In our work, the
strength of the CNNs is explored not only for classification but
also for candidate detection. Additionally, our post-processing
relies on spatial characteristics of the considered plantation.

III. METHOD

The proposed detection algorithm, depicted in Figure 2,
comprises three main steps combining CNN classification,
morphological image processing, and ancillary data with the
nominal spacing of the trees during plantation:

CNN
Morphological	

operation	to	refine	
planted	rows

CNNDefining	candidate	
points

Fig. 2. Flowchart of the proposed method.

Detection of planted rows using a CNN: First, a CNN in-
fers if the center of the planted tree row is centered in a
certain (small) analyzed image patch. For this, the CNN
is trained with examples of image patches centered in
the rows versus the background areas (see examples in
Figure 3). By applying this strategy to the whole input
image, using sliding windows, we produce a probability
image with high values in the regions near the center of
the plantation rows (see an example in Figure 4). A mild
Gaussian low-pass filter is used to reduce spatial noise of
the resulting image.

Extraction of center lines: The central line of objects (seg-
ments) with high probability scores are retrieved using
morphological thinning [21]. An area constraint is applied
for lines shorter than 10 pixels to reduce spatial noise.
Point locations spaced at the nominal distance between
adjacent trees in the detected lines are retained for further
processing (see the inner blue dots in the example shown
in Figure 4).

Candidate point classification using a CNN: Image
patches centered in each candidate point location are
classified using the same CNN of the first step, except
for the softmax layer; in this case, four categories have
to be distinguished: full-grown tree, tree gaps, tree
seedlings, and background areas.

The CNN architecture used for steps 1 and 3 is presented
in the Table I. 1 The model consists of a sequence of
layers such as convolution, max pooling, rectified linear units
(ReLU), and fully connected neurons, before reaching the
final softmax classification. These are frequent choices among
CNN practitioners [22]. The difference between steps 1 and
3 is the softmax layer: step 1 trains the CNN with two
categories (planted row, background); step 3 trains the CNN
with four categories (full-grown tree, tree gaps, tree seedlings,
and background areas). The parameters of each layer need to
be optimized using labeled samples. In our implementation,
max pooling was applied on 2× 2 pixels with a stride 2 and
zero padding. Convolutions used a stride of 1.

1In the experiments reported in Section IV, we use squared image patches
of side w = 64 pixels for inferring the center of the plantation rows, and a
smaller w = 32 pixels for classifying the candidates citrus tree locations.



(a) Background samples: 12× 12 m (b) Center line samples: 12× 12 m

(c) Full-grown trees: 3× 3 m (d) Trees gaps: 3× 3 m

(e) Trees seedlings: 3× 3 m (f) Background: 3× 3 m

Fig. 3. Example of image patches used to train the two CNN models for: (a)–(b) center row detection, (c)–(f) final classification.

TABLE I
ARCHITECTURE OF THE CNN USED ON STEPS 1 AND 3.

Layer Processing

1 Input image: w × w × 3
2 16 5× 5 Convolutions
3 ReLU
4 2× 2 Max Pooling
5 32 3× 3 Convolutions
6 ReLU
7 2× 2 Max Pooling
8 32 3× 3 Convolutions
9 ReLU
10 2× 2 Max Pooling
11 64 Fully Connected
12 ReLU
13 32 Fully Connected
14 ReLU
15 Fully Connected
16 Softmax
17 Classification output

IV. EXPERIMENTS

A. Dataset

The considered RGB images for detecting full-grown cit-
rus trees were acquired over a commercial orchard located
in the southwest of Brazil. The area was mapped using
aerial photographs captured by a GYRO-500X4 quadcopter
(GyroFlyTM, São Jose dos Campos, Brazil) equipped with
a Sony RX100 III camera (SonyTM, Tokyo, Japan). The
collected data was processed to generate orthomosaics with
a pixel spacing of about 9.5 cm using Pix4D software (Pix4D
S.A.TM, Lausanne, Switzerland). The imaged area included
14 orchards with producing orange trees aged eight years of
three varieties (“Natal”, “Pera”, and “Valencia Americana”),
planted at a nominal spacing of 2.5×6.8 m. The orchards were
randomly split in two disjoint sets, seven used for training
and validation, and the remaining seven used for testing the
proposed method. Considering the test data, orchards have an
average of 5.783±1.475 trees.

Adjacent trees overlap in the planted rows, which makes
individual tree counting difficult. Variable illumination and
shadow orientations, tree gaps, and the presence of tree
seedlings increase the challenging factor of the task. Consider-
ing that the productivity analysis only take into account full-
grown trees, we focus on classification experiments only of
this class.

B. Experimental set-up

We randomly sampled 4,000 image patches of size 128×128
pixels (12× 12 m on the ground) centered in manually drawn
lines passing by the center of the plantation rows in each of
the seven orchards allocated for training. Another 4,000 tiles
were randomly sampled in background areas, here defined
as locations further than 1 m away from the centers of the
rows in the orchard. The resulting set of 56,000 image patches
were aggregated and stored to train the first CNN model, i.e.,
the center row detector. We noted that down-sampling these
images patches by a factor of two to train the CNN allowed
keeping a good compromise between spatial context represen-
tation on the ground and model accuracy. While the working
resolution in this step would not be enough to see scene details
such as fruits in the trees, we found that image patches of
size 64 × 64 sampled with a resolution of about 20 cm/pixel
are still reasonable to capture neighborhood context needed
to infer the location of the center of the plantation rows, as
suggested by the visual inspection of Fig. 3. Furthermore, the
coarser resolution allows flying at higher altitudes, increasing
the areas mapped by UAVs.

Similarly, we randomly sampled image patches of size
32 × 32 pixels (3 × 3 m on the ground) centered in the
manually drawn centers of full-grown trees, tree gaps, trees
seedlings, and background. 1,000 samples for each class and
orchard in the training set were used to train the second CNN,
designed to classify the candidate point detection obtained
processing the first CNN. The number of tree gaps and trees
seedlings was substantially smaller than those of full-grown



TABLE II
FULL-GROWN TREE DETECTION RESULTS FOR SEVEN TEST ORCHARDS USING THE PROPOSED METHOD.

Evaluation score Site 22 Site 32 Site 45 Site 54 Site 61 Site 76 Site 82 All

Number of correctly detected full-grown trees (a) 7055 3787 3473 6513 3927 5017 6355 36127
Number of all detected full-grown trees (b) 7087 3914 3594 6569 3956 5053 6431 36604

Number of full-grown trees in the ground truth (c) 7692 4345 4386 7140 4334 5607 6978 40482

Precision: a/b (%) 99.5 96.8 96.6 99.1 99.3 99.3 98.8 98.7
Recall: a/c (%) 91.7 87.2 79.2 91.2 90.6 89.5 91.1 89.2

Overall accuracy (%) 95.6 92.0 87.9 95.2 94.9 94.4 94.9 94.0

trees in the orchards. We sampled with replacement in case
of fewer samples available, and randomly rotated the patches.
Therefore, we tested the idea of using a larger spatial context
to help identifying the center of the planted rows (i.e., the
first CNN “sees” both the row center and part of the adjacent
rows), and then we use a second CNN, trained to analyze the
small local context around each inference point, to make the
final full-grown tree detection.

The parameters of the CNN model were estimated using
the stochastic gradient descent method with momentum [22],
minimizing the cross-entropy loss function, on batches of 128
image patches at each iteration, with respect to the input
parameters.

Shape files delineating the contour of the individual or-
chards were used to crop the orthomosaic and process each
orchard.

C. Results

For the purpose of the experiments, only full-grown trees
will be considered in the accuracy assessment. Table II sum-
marizes the scores obtained in the seven orchards reserved
for testing purposes. These orchards are spatially disjoint to
the training ones. To compute the accuracy scores, automated
detection classified as full-grown tree was considered correct
if its center where within 1.5 m of the center of a full-grown
tree in the reference ground truth. The average precision above
98% suggest that all point locations automatically classified
as tree are very likely to be correct. We also found that the
proposed method systematically detects fewer full-grown trees
than the reference available to us (average recall of 89.2%).
This is likely to be due to higher uncertainty in the detection
of tree gaps and eventual tree seedlings, and also the undesired
discontinuities in the detection of the plantation rows.

Examples of detection are shown in Figure 4. The orange
trees seen in the extract of orchard 82 are well developed and
rather homogeneous, with few gaps. Conversely, the subset of
orchard 45 is rather heterogeneous. Note that by analyzing a
smaller spatial context, the second CNN helped to reject a
false candidate line detected by the first CNN, that focused on
a larger spatial context encompassing adjacent rows (see the
red circles along the vertical line in the bottom right image
in Figure 4, that were classified as background by the second
CNN).

Given the related literature on tree detection, we believe
that these results are satisfactory when considering image-
only data with similar characteristics. Although Koc-san et
al. [7] are able to achieve a positional accuracy ranging from
93%–100% on the detection of citrus trees, the three test sites
considered by the authors comprised sparsely distributed trees,
which probably help in the detection process. Despite dealing
with a different plant type, Fan et al. [10] took high-density
image inputs which were visually more similar to the data used
in our research and achieved 93% accuracy on the detection
of tobacco plants using CNN.

V. DISCUSSION

Most “empty spaces in Figs. 4–5 were assigned to the
alternative classes, i.e., the tree gaps, tree seedlings, or back-
ground and were successfully not classified as full-grown trees.
Although we focus on the full-grown trees in this research,
visual analysis suggests that increasing the number of training
samples, especially for the tree gaps and tree seedling classes,
could improve detection.

Except for the final layers, the structure of the CNN used
in steps 1 and 3 (Table I) is kept identical, i.e., we focus on
a rather standard CNN architecture and show that it performs
reasonably well for the problem considered. We do not claim
that the proposed CNN is the optimal choice for this task.
Therefore, users wiling to devote additional time to optimize
the CNN architecture, eventually using different networks for
both classification steps, could further improve accuracy. The
presented solution can be a baseline for further research on
automatic citrus tree detection from UAVs images. Because
of the identical CNNs architecture, once one CNN is trained,
fine-tuning [22] could be used to help training the other CNN.
This may also be useful when the number of labeled samples
increases and retraining the classifiers is considered.

While we focused the analysis on full-grown trees, it
remains clear from visual inspection of detections shown in
Figs. 4–5 that additional improvements would be needed in
case there is interest to detect also younger trees. In the specific
orchard data available to us, younger trees appeared with
lower frequency and we had difficulty to get reliable training
samples. In this context, it is plausible that increasing the
training samples availability could lead to improved detection.

Instead of grouping the final classification results into two
classes, such as full-grown trees versus not full-grown trees,



Fig. 4. Example of analysis at input orchards 82 (top row) and 45 (bottom row), each shown in the corresponding upper left inserts. The left column displays
the input RGB images, while the middle column shows the segments classified with high probability of containing row centers. Finally, the right column
depicts the tree centers in blue dots and yellow circles with diameter 2.5 m being centered at the point locations classified as full-grown trees. Also, it displays
orange circles centered at the tree gaps, blue circles centered at tree seedlings, and red circles centered at candidate points classified as background by the
CNN.

we disclose four output labels to provide additional label
information that may help analysts to filter detection during
visual inspection of the results. The four classes could also be
used to decide on further processing.

Further research could analyze the network architecture in
more detail and compare the proposed two-stage procedure
with the planting row detection and tree detection with a single
step CNN solution. This would allow understanding if the
learning process is faster or easier with two stages than a
single CNN model. Furthermore, it would help understand-
ing whether using handcrafted intermediate processing steps,
inspired by human interpretation to guide the detection flow
is beneficial, and the impact in terms of demand of labeled
training samples to build the detection models.

VI. CONCLUSION

This paper presented a novel method for detecting citrus
trees at high-density orchards, taking into consideration the
spatial arrangement of the plantation and the nominal tree
planting space. Although techniques exploring 3D information
such as oblique imaging and digital surface models could
be valuable for our crown overlapping scenario, we chose to
disregard specialized sensors and use image-only information.
The goal of imposing such limitation is to access whether we
are able to achieve a satisfactory solution that is also low-cost
and scalable, allowing deployment on several UAV models.

Our approach is based on CNNs and provided good results on
seven test sites with distinct alignments.

In future work, we intend to fine-tune the considered param-
eters, compare our CNN-based solution with other methods –
that may or may not employ neural networks –, and perform
experiments on different datasets. As mentioned in Section II,
previous work demonstrated that a single algorithm is not
able to work successfully for plantations with very distinct
characteristics. Nevertheless, despite focusing on citrus trees,
the method has potential to work for different plantations that
are arranged similarly.
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