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Abstract—The large variety of medical image modalities (e.g.
Computed Tomography, Magnetic Resonance Imaging, and
Positron Emission Tomography) acquired from the same body
region of a patient together with recent advances in computer
architectures with faster and larger CPUs and GPUs allows
a new, exciting, and unexplored world for image registration
area. A precise and accurate registration of images makes
possible understanding the etiology of diseases, improving
surgery planning and execution, detecting otherwise unnoticed
health problem signals, and mapping functionalities of the
brain. The goal of this paper is to present a review of the
state-of-the-art in medical image registration starting from the
preprocessing steps, covering the most popular methodologies
of the literature and finish with the more recent advances and
perspectives from the application of Deep Learning architectures.

Keywords: Image Registration, Medical Imaging, Deep Learn-
ing.

I. INTRODUCTION

Medical image registration is an optimization process of
applying a variety of geometric transformations over one or
more moving images in order to match their spatial pose with
the one of a target image, establishing a correspondence among
them [1] (see Figure 1). For that purpose, moving and target
images must contain some common anatomical structures
which are expected to lay at similar location and orientation
after the registration process [2]. The series of geometrical
transformations may be rigid, preserving the Euclidean dis-
tance between structures in moving image or deformable [3]
which allows deformations of the moving image domain up
to a well-defined extent.

Registration is a crucial procedure for several analyti-
cal studies including researches which aim at understanding
population tendencies of phenotypes, measuring longitudinal
changes (e.g. monitoring the size of tumor tissues), executing
guided surgeries, relating individual anatomy with a standard
space system (i.e. atlas), among other applications [4] [5]. Due
to the wide range of applications around more than 320 papers
with some 7,500 citations are published each year regarding
medical image registration [6].

There are many challenges faced while registering images
and also a lot of different ways to perform it. Medical
images are prune to signal corruption by inhomogeneity field
effects and high-frequency noise [7]. Also, during image
acquisition blur artifacts may be inserted into the image due
to body motion and ring artifacts are generated because of
imperfect or defect detector elements [8]. Other difficulties

arise from specific applications. Some anatomies such as
the brain cortex sulci and gyri are composed of structures
with very similar shape, leading to misregistration. Finally,
multi-modality image registration coming from distinct types
of equipment (e.g. Magnetic Resonance Imaging (MRI) and
Computed tomography (CT) scanners or combined scanning
like Positron Emission Tomography (PET)/MRI), important
for several medical health treatments [5], do not have effective
methods for comparing tissues with a great variability of
intensities [9]–[11].

The goal of this paper is to present a review of the state-
of-the-art in medical image registration. It was designed to be
a practical guideline for using or implementing high quality
rigid or deformable registration of single- or multi-modality
images, instructing readers to select the most appropriated
software or methods in the literature, depending on the target
application. The content was also carefully reviewed to include
the most important classical and modern Deep Learning based
methodologies.

The remainder of this paper is organized as follows: In
Section II we present medical imaging fundamentals, medical
data formats, preprocessing steps, and evaluation metrics.
Section III follows with classical image registration methods
and Section IV contains Deep Learning-based approaches.
Section V shows some preprocessing pipelines and registration
software. Finally, in Section VI we state the conclusions and
future perspectives of the area.

II. FUNDAMENTALS, PREPROCESSING, AND EVALUATION

Medical image registration applies to a huge variety of ap-
plications which is not possible to enumerate in this paper. We
may cite for instance myocardial single-modality single photon
emission computed tomography (SPECT) image registration in
rest and stress conditions for diagnosis purposes [12]. Other
application consists of verifying anatomical dysfunction or
tumor identification based on multi-modal positron emission
tomography (PET) vs MRI registration [13]. During radiother-
apy, rigid registration between computed tomography (CT)
and cone beam computed tomography (CBCT) is required
to irradiate the tumor volume with precision [14]. Finally,
in a population study of degenerate diseases of the brain
or addiction behavior multiple functional MRI (fMRI) are
registered with very flexible deformable methods, mapping all
of them over a probabilistic atlas [15]. Therefore, depending
on the specific application, there are distinct requirements with



respect to image acquisition protocols, pre-processing steps,
and registration methods with their parameter.

A. Image Formats

Medical images, in special CT and MRI, are acquired,
transmitted and stored according to Digital Imaging and Com-
munications in Medicine (DICOM) standard [16]. DICOM is
not just a file format but a series of specifications to enable
communication of therapeutic and diagnostic information.
Each file may contain distinct information according to the
body region, image modality, and desired application. Because
of that, it is no sense in writing a simple program for general
DICOM file visualization. For each kind of image, for each
distinct scanner, DICOM files may contain distinct headers
and data organization.

Some image file formats have been proposed to eliminate
header and data inhomogeneity concerns. In the beginning,
each software developer designed their own format and several
of them are still in use. More recently, Neuroimaging Informat-
ics Technology Initiative (NIfTI) 1 and 2 were proposed by a
group composed of some of the prominent neuroimaging soft-
ware developers [17], in special for registration purposes. Even
though the format is specific for neuroimaging, it has been
used as well for other applications. Several medical image
registration software support NIfTI file format such as FMRIB
Software Library (FSL) [18], Advanced Normalization Tools
(ANTs) [19], FreeSurfer [20], [21], and 3D Slicer [22].

B. Preprocessing

There is no pattern or sequence of operations which should
be applied to the input images before image registration.
Some of the most commonly used operations are intensity
standardization and noise or artifact filtering [24].

1) Intensity Standardization: Image intensity standardiza-
tion is an important step for population studies [25]. It is
a procedure to match the intensity range and distribution of
all images using one of them as the reference. One may
standardize images based solely on their full intensity range,
or standardize by parts using the median intensity and possibly
the quartiles as landmarks. It is important to note that intensity
standardization is not always applicable prior to a registration
procedures. In CT and CBCT for radiotherapy, the intensities
indicate the Hassium number or the density of the tissues
and should not be modified for registration. Multi-modal
image standardization only makes sense in population studies,
standardizing images of the same modality among themselves.
For images with the same radiation source but distinct features
(e.g. 1.5, 3.0, and 7.0 Tesla T1-weighted MRI) and even
for images acquired by the same scanner with distinct input
parameters, standardization is not recommended, since it may
change their intensity distribution [26].

2) Noise and Artifact Filtering: Noise and artifacts present
in medical images may have several distinct causes. For in-
stance, metal implants generate artifacts in radiography based
images [27]. For MRI images, most of the public available
software (e.g.FSL, FreeSurfer, 3D Slicer) offer tools to remove

a high-frequency noise and to correct a bias field inhomo-
geneity effect. The bias field is proportional and the high-
frequency noise is inversely proportional to the magnetic field
strength which may affect their optimal execution order [28].
In the specific case of MRI brain images, skull-stripping –
segmentation of the brain tissues – is commonly used prior to
or after inhomogeneity correction [29].

C. Evaluation

Evaluation of medical image registration methods is not
trivial. Special care must be taken to design the preprocess-
ing pipeline during experiments. If possible, they should be
executed in exact same order and in the same way, unless
it would configure a disadvantage to a method. For instance,
skull-stripping significantly affects the results of image regis-
tration [19].

Of the same importance is to validate experiments with more
than just one dataset [6]. Bellow follows three frequently used
datasets.

• Internet Brain Segmentation Repository (IBSR): two
datasets with 18 and 20 MRI T1-weighted images;

• POPI: Six 4D CT data sets of the lungs.
• TCIA: Collections of medical images of patients with

cancer. There are images of several body parts and
modalities.

III. CLASSICAL MEDICAL IMAGE REGISTRATION
APPROACHES

Medical image registration may be divided in three basic
components: deformation model, solution criteria, and opti-
mization method [1], [30] (see Figure 2).

A. Deformation Model

The deformation model controls the compromise between
a more computationally efficient method and the ability to
perform more sophisticated deformations to the image. Some
examples are rigid: composed of translations, rotations, and
scaling operations; affine which encompasses the rigid and
includes shear; linear elasticity model; and fluid model which
contains the major number of deformation parameters.

Rigid registration is the fastest registration method. It is
appropriated for tasks in which there must be no deformations
such as radiotherapy and for quick and global procedures (e.g.
bone matching). Deformable registration methods, on the other
hand, are necessary for population studies and for soft tissue
registration applications with no deformation restrictions [5].

B. Solution Criteria

The solution criteria or objective function dictates how
similarity or dissimilarity the target and the registered images
are after the deformation. Among the most used criteria is
the mutual information since it allows comparison between
multi-modality images. For a single-modality registration the
Sum of Squared Differences (SSD) and the Sum of Absolute
Differences (SAD) are usual choices [31].

The objective function may be classified as a geometric,
iconic, or hybrid model. Geometric or feature-based methods



Figure 1: Illustration of registration process. Left: moving image; Middle: target image; Right: registration result. The arrow
indicates the registration process direction.

Figure 2: Image registration diagram inspired in Reel et al. [23].

measure the quality of the registration based on the pose
of an anatomical or well-behaved landmark set. Iconic or
voxel-wise methods qualify the registration utilizing pixel or
voxel intensities. Hybrid methods combine both geometric and
iconic elements [4], [5].

C. Optimization Method

The optimization method makes use of regularization terms,
solution criteria, and strategies (e.g multiresolution) in order to
find optimal parameters efficiently. The optimization method
may be continuous (e.g. Powell, Levenberg-Marquardt), dis-
crete (e.g. graph-based, message passing) or a mixture of both
(e.g. Greed approaches and Evolutionary algorithms). [5], [32].
The performance of each method depends on its computational
complexity and convergence rate.

D. Constraints

There are several important features desirable for an ac-
curate registration. These features are achieved by constraints

applied to the registration methods. The most desirable feature
is the backward transformation which is the inverse of the
forward transform. This property is implemented by the so
called diffeomorphic registration methods [30]. In that case,
both transformations are differentiable [33].

E. Description of Registration Methods

In this section, we describe some of the most important
and consolidated registration methods that are publicly avail-
able and are free to download and to use. Table I presents
information about the following methods: AIR [34], [35],
SYN [33], DARTEL [36] , DRAMMS [37], Diffeomorphic
DEMONS (DF) [38], [39], Mutual Information DEMONS
(MU) [40], DROP [5], FLIRT and FNIRT [18], [32], [41],
and S-HAMMER [42].

The Automatic Image Registration (AIR)1 brought several
novel contributions such as the usage of high order polynomi-

1AIR: http://air.bmap.ucla.edu/AIR5/index.html



Table I: Registration Methods

Algorithm Deformation Similarity Regularization Optimization Applications

AIR (1992) Third Order
Polynomial

RIU, SSD, SLS Increase of order Continuos (Newton-Raphson
with Muti-Resolution)

Brain MRI, PET

SYN (2008) Diffeomorphic CC, JHCT, MI, MSD,
NCC, PSE

Gaussian filter Discrete (Euler Lagrange with
Muti-Resolution)

MRI, brain
image, thorax

CT

DARTEL (2007) Diffeomorphic Multinomial model Linear-elasticity; Continuous
(Levenberg–Marquardt

strategy with
Muti-Resolution)

Brain

DRAMMS
(2009)

Cubic B-splines CC, SSD Bending energy Discrete (Gradient Descent
with Muti-Resolution)

Prostate, brain
MR, Cardiac

DEMONS DF
(2009)

Diffeomorphic SSD Gaussian filter Continuos (Gauss-Newton
with Muti-Resolution)

Brain MRI

DEMONS MU
(2009)

Non-parametric MI Gaussian filter Continuos (Broyden-Fletcher-
Goldfarb-Shanno*)

Brain MRI, CT

DROP (2011) Free form
deformation

SAD, SADG, SSD, NCC,
NMI, CR, CCGIP, HD,
JRD, MI, JE, GRAD

Pott’s
regularization

Discrete (FastPD) Thorax CT; brain
MRI

FLIRT (2001) Linear, Rigid Body NMI, MI, CR, NCC - Continuos (Powell based) Brain

FNIRT (2007) Cubic B-splines SSD Membrane
energy

Continuos
(Levenberg-Marquardt

minimisation)

Brain MRI

S-HAMMER
(2014)

Diffeomorphic GMI Bending energy Miscellaenous Brain MRI

RIU: Ratio Image Uniformity, SSD: Sum of Squared Differences, SLS: Scaled Least-Squared difference image, CC: Cross-Correlation,
JHCT: Jensen-Havrda-Charvat-Tsallis divergence, MI: Mutual Information, MSD: Mean Squared Difference, NCC: Normalized
Correlation, PSE: Point-Set Expectation, SAD: Sum of Absolute Differences, SADG: Sum of Absolute Differences plus Sum of
Gradient Inner Products, NMI: Normalized Mutual Information, CR: Correlation Ratio, CCGIP: Normalized Correlation Coefficient
plus Sum of Gradient Inner Products, HD: Hellinger Distance, JRD: Jensen-Renyi Divergence, JE: Joint Entropy, GRAD: Sum of
Gradient Inner Products and GMI: Geometric Moment Invariants.
*Not described in the paper, but present in the software.

als. It is based on pixel intensity and may be applied to 2D
and 3D images. The metrics used for implementation are ratio
image uniformity (RIU), a Sum of Square Difference (SSD),
and Scaled Least-Squared difference (SLS). Registration is
performed in multiple resolutions from lowest to highest
details using polynomials of increasing degree [34], [35].

Diffeomorphic Anatomical Registration using Exponenti-
ated Lie Algebra (DARTEL)2 [36] employs small deforma-
tions simulating flow velocity fields which are easily invertible
and Levenberg–Marquardt strategy is used for optimization.

Both Mutual Information Demons3 [40] and Diffeomorphic
Demons4 [38] were grounded on the classical Demons pa-
per [43] which models the registration problem as the demon
of Maxwell which separated molecules of gases into two
chambers. The diffeomorphic version constrained the high-

2SPM: https://www.fil.ion.ucl.ac.uk/spm/
3DEMONS MU: https://www.mathworks.com/matlabcentral/fileexchange/

21451-multimodality-non-rigid-demon-algorithm-image-registration
4DEMONS DF: https://med.inria.fr/

deformation of the original method [38] and the mutual
information version allowed multi-modality registration [40].

Symmetric image normalization method (SYN) found in
ANTs plataform5 employs Large Deformation Diffeomorphic
Metric Mapping (LDDMM) in two symmetric components. In-
stead of having a target image, the transformation computation
consists in applying the forward and backward transformation
to each image until their contents match [33]. An implemen-
tation was designed with low computational cost [19].

DRAMMS6 is a hybrid geometric and iconic objective func-
tion based on Gabor attributes. The implemented similarity
metric suffers a minor impact from regions in which there is
no correspondence [37].

DROP7 is a deformable registration method with great
contribution for discrete numerical optimization area. It also

5ANTs: http://stnava.github.io/ANTs/
6DRAMMS: https://www.med.upenn.edu/sbia/dramms.html
7DROP: http://www.mrf-registration.net/



uses a hybrid objective function [5].
HAMMER [44] utilizes a feature-based similarity function

over an attribute vector of landmarks. The attributes are based
on the intensity and the type of tissue. This methodology
contrasted with the Demons generating new feature-based
techniques. S-Hammer8 is a diffeomorphic method with a non-
uniform selection of hierarchical points [42].

Finally, FLIRT e FNIRT are registration tools of the FSL9.
FLIRT is a rigid and linear registration method which works
on 2D to 3D images. It supports several similarity metrics and
implements a very optimized gradient descent method [31],
[45]. FNIRT is a deformable register method which uses the
free-form deformation (FFD) metric.

IV. DEEP LEARNING APPROACHES

Many works in different research areas adopted machine
learning and recently, deep learning approaches for solving
their real problems such as image registration, region segmen-
tation, object detection, and image classification [46], [47].

Deep Learning (DL) is a sub-area of machine learning
which aims at finding a representation from a set of un-
structured data to solve an specific task. DL allows modeling
layered processing units built from simple concepts, each of
which dealing with a distinct level of abstraction of a given
problem [26], [48].

In the literature, deep learning approaches are used in
two different categories (See Table II): (1) Estimation of
similarity or dissimilarity metrics; and (2) Prediction of trans-
formation parameters through deep regression to direct the
registration process [46]. Additionally, each category makes
use of a learning technique (e.g., supervised, semi-supervised
and unsupervised), a network architecture (e.g., convolutional
networks, stacked autoencoders, restrict Boltzmann machines,
and hybrid techniques), and a network optimization function
(e.g., Batch Gradient Descent, Stochastic Gradient Descent,
and Stochastic Gradient Descent Minibatch).

A. Estimation of Similarity or Dissimilarity Metrics

Several medical image registration publications proposed
similarity metric learning approaches [26], [49]. The strategy
is to find a well-suited similarity function for a target data
distribution by means of a full scalar distance among sam-
ples, a ranking function, or a measurement of the proxim-
ity/separation of samples [50].

Cheng et al. [49] proposed a multi-modal stacked denoising
autoencoder network aiming at pre-training a standard neural
network for classification. This approach learns a similarity
function through two image patches (multi-modalities). How-
ever, it does not perform the medical image registration.

Simonovsky et al. [11] proposed a similar strategy to Cheng
et al. [49] but using a Convolutional Neural Network (CNN)
to compute similarity costs and to optimize the transformation
parameters of the registration task. CNN was trained with

8S-HAMMER: https://www.nitrc.org/projects/hammer_suite
9FSL: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

patches of multi-modal image sets such as T1-MRI and T2-
MRI.

In Grant Haskins et al. [51], a similar method to Si-
monovsky et al. was applied to distinct image modalities:
T1-MRI and transrectal Ultrasound. A novel similarity mea-
surement was specifically designed to deal with enormous
differences in image pose and intensity, achieving better results
than using mutual information.

Sedghi et al. [52] used IXI brain development dataset 10

composed of jointly acquired T1 and T2-weighted MRI with
the data augmentation, to show that it is possible to create
a similarity metric for the registration task through the use
of a semi-supervised learning with misaligned images. This
work uses CNN and exempts perfectly aligned training images
(semi-supervised) during the metric learning step.

Wu et al. [26] utilized an extended version from the
framework of [53] with a convolutional Stacked Auto-Encoder
(SAE) with 8 layers, 4 auto-encoders, and max-pooling at the
lowest layer by a factor of 3 to reduce image dimensions
and achieve more a relevant feature set. From the lowest to
the highest level, each SAE used 512, 512, 256, and 128
hidden nodes, respectively. This metric was also extended to a
Multichannel Demons with Deep Feature Representation and
to HAMMER with Deep Feature Representation.

B. Prediction of Transformation Parameters
Several works employed DL for predicting image registra-

tion transformation parameters.
In Miao et al. [54] several CNNs executed a rigid registra-

tion in synthetic images to assess the pose and location of an
implanted object. Each CNN was trained in a separated region
of the image in a hierarchical way, dividing the registration
into subproblems with simpler learning solutions.

In Yang et al. [55], a deep encoder-decoder has been
used to predict the deformation model through regression.
It focused on a Large Deformation Diffeomorphic Metric
Mapping (LDDMM) model. This approach is nonparametric
and allows the learning of a voxel-wise metric at the same
time as it predicts the transformation parameters from the
image patches reducing the computational complexity of the
registration process.

For deformable registration, Bob D. de Vos et al. [56]
utilized a register structure with a CNN regression to compare
input images and generate parameters for a local deformation.
Then, a neural network estimated a spatial transformation and
performed the resampling process. This approach differs from
Yang et al. [55] by executing a single step registration with
an only one neural network.

In recent work, Mahapatra et al. [3] proposed a fully end-
to-end Deep Learning medical registration based on elastic
deformation with generative adversarial networks (GAN) to
perform efficiently similarity metric, registration process, and
deformation field. According to the author, GANs have the
ability to retrieve a greater amount of different types of
deformations for multi-modal images.

10IXI: Information eXtraction from Images. http://brain-development.org/



Table II: Deep Learning Approaches in Registration Methods

Algorithm Neural Network Type of Learning Training Set Optimization Application Dimension

E
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ty

or
D

is
si

m
ila
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ty

M
et

ri
c

Cheng et
al. [49]

AE and DNN Supervised 4000 patches pairs Gradient-Based CT, MRI 2D

Simonovsky et
al. [11]

CNN Supervised Data augmentation
and IXI

SGD MRI 3D

Sedgi et al. [52] CNN Semi-Supervised 1 million patches Adam Brain MRI 3D

Grand Haskins
et al. [51]

CNN Supervised 670 images pairs Adam MR-TRUS 3D

Wu et al. [26] CAE Unsupervised 7000 patches from
40 images

Gradient-Based MRI 3D

Pr
ed

ic
tio

n
of

Tr
an
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m
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n

Pa
ra

m
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er
s

Miao et al. [54] CNN Regressors Supervised 25000 pairs of
synthetic images

SGD CT 2D/3D

Yang et al. [55] CNN Regressors Unsupervised 140000 patches from
373 images

SGD Brain MRI 3D

Bob D. de Vos
et al. [56]

CNN using STN Unsupervised 69540 pairs of
images

Adam Cardiac MRI 2D

Mahapatra et
al. [3]

GAN Supervised 39000 pairs of
images

Adam and Batch
Normalization

Cardiac MRI,
Retinal Image

(FA)

2D

Eppenhof et
al. [57]

VGG based Supervised Synthetic, based on 7
pairs of images

SGD Thoracic CT 3D

Sheikhjafari et
al. [58]

Fully Connected
Generative NN

Unsupervised 30000 images from
100 cine MR

sequences

Backpropagation
using SGD

Cardiac MR 2D

TPS: Thin-Plate Spline; SGD: Stochastic Gradient Descent; Adam: mini-batch stochastic gradient descent; DNN: Deep Neural Network;
CNN: Convolutional Neural Network; CAE: Convolutional Stacked Autoencoders; STN: Spacial Transformer Network; Generative Adversarial
Networks (GAN); FA: Fluorescein Angiography; TRUS: Transrectal Ultrasound.

Eppenhof et al. [57] showed that it is possible to perform
3D registration with high speed using the CNN approach. In
this work, a smaller version of VGG architecture has been
adapted to learn transformation parameters between pairs of
three-dimensional images for deformable registration task.

Sheikhjafari et al. [58] proposed a deep network model
using FCNet (fully connected network) to generate spatial
deformation fields in the same resolution of the input fixed
and moving images. In this work, an Auto-Encoder (AE) is
applied to find the latent vector, i.e., to bring data from a high
dimensional input to low dimensional output.

V. SOFTWARE AND PIPELINES

The main platforms to perform medical image tasks such
as processing, enhancement, segmentation and registration are:
FSL [41], SPM2, FreeSurfer11 [59], AFNI12 [60], ANTs [19],
ITK13 [61] e 3D Slicer14 [22].

11FreeSurfer: https://surfer.nmr.mgh.harvard.edu
12AFNI: https://afni.nimh.nih.gov/
13ITK: https://itk.org/itkindex.html
143D Slicer: https://www.slicer.org/

The major of those software and medical image registration
are implementation in C, C++, Matlab, and Java [62]. There
is a Python platform, which joins FSL, SPM, and FreeSurfer
under a single pipeline called Nipype 15 [63]. Neural network
libraries are predominantly implemented and used in Python
language. Some of the main libraries for Deep Learning are
TensorFlow 16 [64], Theano 17 [65], Caffe 18 [66].

Due to a large number of libraries and possible appli-
cations, DL based medical imaging platforms were created
for applications such as NiftyNet 19 [67] and DLTK20 [68].
These platforms have some tools, but they do not have any
specific network or tutorials for medical image registration.
They integrate different languages and methods providing a
fairer environment for comparing and developing applications
in a standardized way.

15Nipype: https://nipype.readthedocs.io
16TensorFlow: https://www.tensorflow.org/
17Theano: http://deeplearning.net/software/theano/
18Caffe: http://caffe.berkeleyvision.org/
19NiftyNet: https://niftynet.readthedocs.io
20DLTK: https://dltk.github.io/



VI. CONCLUSION AND FUTURE PROSPECTS

The goal of this survey consists in presenting a practical
review of the state-of-the-art in medical image registration
showing preprocessing algorithms and a variety of registration
methods from rigid to Deep Learning-based approached.

Based on the survey we point out the following future
research trends:

• Solutions based on hybrid similarity metrics using ma-
chine learning techniques (see [69]);

• Creation and free availability of large datasets with cor-
rectly segmented and evaluated images in order to support
future solutions;

• Proposal of new protocols for image registration valida-
tion and quantitative evaluation. Another possibility is
to optimize deformation parameters instead of using a
similarity metric [58];

• Creation of new approaches based on Deep Learning
to improve the quality of the registration itself. So far,
current advances are more related to the increase of the
speed and robustness of the methods;

• Development of novel proposals based on meta-
registration procedure, in which different registration
techniques work in a collaborative and complementary
way to improve results;

• Generation of image-label or multi-scale-patch network
registration methods to estimate larger deformations;

• Implementation of CNN ensembles to learn regression
parameters for each released methodology.
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