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Abstract—The use of paper-shredder machines (mechanical
shredding) to destroy documents can be illicitly motivated when
the purpose is hiding evidence of fraud and other sorts of crimes.
Therefore, reconstructing such documents is of great value for
forensic investigation, but it is admittedly a stressful and time-
consuming task for humans. To address this challenge, several
computational techniques have been proposed in literature, par-
ticularly for documents with text-based content. In this context,
a critical challenge for automated reconstruction is to measure
properly the fitting (compatibility) between paper shreds (strips),
which has been observed to be the main limitation of literature on
this topic. The main contribution of this paper is a deep learning-
based compatibility score to be applied in the reconstruction
of strip-shredded text documents. Since there is no abundance
of real-shredded data, we propose a training scheme based on
digital simulated-shredding of documents from a well-known
OCR database. The proposed score was coupled to a black-box
optimization tool, and the resulting system achieved an average
accuracy of 94.58% in the reconstruction of mechanically-
shredded documents.

I. INTRODUCTION

The paper shredder machine was invented in the early
1900’s [1] with the purpose of mechanically destroying waste
paper to make their content unintelligible. This kind of de-
vice is still commonly seen today in different organizational
environments, where huge amounts of documents must be
constantly disposed preventing to disclose the information they
contain. Besides, paper shredders have become popular for
personal use due to the decreasing in prices, which allows
people to manage personal files more safely.

However, document destruction is also historically associ-
ated to espionage cases, as in the 1979 Iran hostage crisis
[2], and in the documents left behind by the official state
security service of the former East Germany (Stasi) after the
fall of the Berlin Wall [3]. Additionally, shredding may be
illicitly motivated when the objective is to destroy evidence
of fraud and other sorts of crimes. In this context, revealing
the original content of shredded papers is of great relevance
for the forensic investigation, which can be achieved by first
joining coherently the paper strips as in a jigsaw puzzle. This
procedure is portrayed in the fictional Netflix production “The
Mechanism”1, where criminal evidence was exposed after a

1A fictional series inspired in the “Carwash”, the largest anti-corruption
operation ongoing in Brazil. Official trailer (accessed on 2017-06-15): https:
//www.youtube.com/watch?v=13OtvUxOcUU.

police chief has manually spliced dozens of paper strips.
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Fig. 1. Overview of a typical reconstruction framework.

Despite its relevance, the manual reconstruction task can
be tiresome and time-consuming even for a few paper frag-
ments. Besides, touching the documents should be restricted
as much as possible to avoid damage on paper and fingerprint
contamination. To deal with these issues, it is highly desirable
to automate the reconstruction process, which now would be
applied over digitized strips of shredded documents. Typically,
the digital reconstruction problem can be subdivided into two
main subproblems [4], as depicted in Figure 1: local strips
compatibility evaluation, and the determination of the best
strips arrangement. The first subproblem, which is the focus
of this paper, consists in using image content to infer whether
(or how much) any two strips fit each other. The second
subproblem can be viewed as a combinatorial optimization
search that aims to output the maximum compatibility (or
minimum cost) arrangement of strips based on the previously
computed local compatibilities. Such arrangement can be 1-D
for strip-shredded documents (Figure 2a), or 2-D for cross-cut
documents (Figure 2b).
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Fig. 2. Shredding type: (a) Strip-cut; (b) Cross-cut.

Several approaches have been proposed along the years
in order to perform (semi-)automatic reconstruction. The
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Fig. 3. Overview of the proposed system. There are two major pipelines: training of the deep learning model and reconstruction of documents. The first
pipeline (top flow) comprises the generation of training data from artificially-shredded documents followed by the training of the model, where the best
model is chosen using a validation set. The reconstruction pipeline (bottom flow) comprises the evaluation on mechanically-shredded documents (including
the creation of a new database), where the best model is used to compute the compatibility score between two strips. After the matrix computation, a solver
is employed finally outputting a permutation that best reconstructs the document.

pioneering work of Ukovich et al. [5] leverages MPEG-7
features to match strips in a content-based retrieval system.
Specific text-based features were late introduced in [6]. The
reconstruction step itself, i.e., the optimization process, is
not addressed in any of these works. Unlikewise, Skeoch
[7] conducted a more extensive investigation of the problem.
The author evaluated several dissimilarity measurements and
color models for compatibility evaluation, and also applied
Genetic Algorithm [8] to obtain a final reconstruction. The
study concluded that color comparison along strips boundaries
makes feasible the reconstruction of documents rich in color,
which is not the case with text documents that are nearly black-
and-white.

The works in [9]–[20] address the reconstruction of text
documents with compatibility evaluation designed specifically
to this domain. As the focus was in optimization techniques,
evaluation was performed only on simulated-shredded in-
stances without accounting for noise, which does not provide
insights about the performance on real scenarios. Lin and
Fan-Chiang [21] used a single real-shredded document (i.e.,
obtained mechanically with a paper shredder) for tests, and
were able to reconstruct nearly half of the document. Marques
and Freitas [22] produced a collection of 200 strip-shredded
test instances, which includes 60 text documents. Their method
explores color dissimilarities, and, likewise Skeoch’s investi-
gation, the poorest performance was reported for plain text
documents.

Xing and Zhang [23] proposed a machine-learning approach
for reconstruction of mechanically-shredded documents. They
used a local dataset of 50 documents, where 40 are used to
collect character features statistics (training stage), and 10
were used for testing. In spite of promising results, their
method is restricted to documents in the Chinese language
whose characters have a particular shape structure. Andaló
et al. [24] address the text document reconstruction as a
particular instance of the 2-D puzzle solving with regular
shapes. Although both problems are strongly correlated, the

Fig. 4. Document sample of our local dataset. Note that strips can be curved,
and how the borders are trimmed.

regularity assumption for shredded documents is not verified
in real situations, as illustrated in Figure 4.

In summary, literature has focused mostly on the opti-
mization part of the pipeline, and most of the experimental
results has been reported for artificial data. In this work,
we address the robust reconstruction of real strip-shredded
text documents in a deep learning-based approach. To this
purpose, fully-convolutional neural networks are leveraged
to estimate how fitting (compatible) two strips are. Training
data is fully automatically extracted and labeled from an
OCR documents benchmark, which requires no mechanical
shredding of documents to generate the extensive training data.
Our full reconstruction system, i.e., the compatibility score
coupled to an optimization tool, achieved, on average, 94.58%
of accuracy in experiments with real-shredded data. Following
the same optimization procedure, the second-best performing
compatibility score yielded 73.77% of average accuracy. Two
shredded-documents datasets were used in the experiments,
being one of them produced in the context of our research
and made freely available to the scientific community.

II. PROPOSED SYSTEM

The proposed system is divided into two major pipelines,
as illustrated in Figure 3: training of the deep learning model
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Fig. 5. Artificial Shredding. The document is artificially shredded based on
the strip-cut (a) and random noise is added (b) to the edges to simulate the
noise usually found in digitized mechanically-shredded documents.

and reconstruction of documents. The first pipeline (top flow)
comprises the generation of training data from artificially-
shredded documents followed by the training of the network,
where the best model is chosen using a validation set. The
reconstruction pipeline (bottom flow) assumes that the docu-
ment to be reconstructed (test document) has been previously
shredded, scanned, and segmented before the beginning of its
operation. The best model obtained in the training pipeline
is used to compute the compatibility score between every
two strips. The resulting score values, arranged as a square
matrix, are the inputs for the optimization procedure that
estimates a solution (permutation of strips) corresponding to
the reconstructed document. The details of the training and
reconstruction pipelines are presented below alongside a more
in-depth description of the system.

A. Learning from Artificially-Shredded Documents

A key step in the reconstruction process is the computation
of a compatibility score for every pair of strips, where such
value quantifies the likelihood of that pair to be a valid one. In
the proposed system, a convolutional neural network is trained
on artificially-produced data to estimate the compatibility of
pairs of real-shredded strips. The training procedure of the
neural model comprises three main steps. First, each document
of the database undergoes a simple simulated shredding pro-
cess (overview in Figure 5). After that, a samples generation
process takes place. Finally, a convolutional neural network is
trained using these samples. Each step is detailed below.

a) Artificial Shredding: This process consists in slicing
an input digital image in 30 rectangular regions with same
width and height (the same as the input image), being this
quantity an approximation of the number of strips produced
by usual shredders for A4 paper sheets. These simulated strips,
however, present clean edges, which is very unlikely to happen
in real-world shredding. To cope with that, in the second part,
a noise γ ∼ U(0, 255) is added to the edges of the strips (2
pixels in each direction) and the resulting images are clipped
to avoid overflow. An overview of the process is depicted in
Figure 5, where the effect of the noise addition can be seen
as well. This shredding procedure is applied over a set of
780 (of a total of 800) images comprising reports, business
letters, and legal documents in binary format from the well-
known ISRI-Tk OCR database [25]. The 20 documents left
out were used to produce a test dataset, as further explained
in Section III. The use of simulated-produced data in training

is first justified by the lack of freely available databases
containing real-world textual shredded documents. Second, the
generation of such kind of database is tedious (error-prone)
and highly demanding (requires printing, using a machine to
shred the documents, manually organizing and digitalizing the
strips, and post-processing them).

b) Samples Generation: The input of this step is a
document-wise set of strips and the outputs are samples to be
used for the model training. This step is applied to every pair
of strips in the database in order to generate true (positive)
and fake (negative) samples, i.e., samples generated from
a valid adjacent pair of strips and others generated from
a non-adjacent pair of strips. As the strips were generated
by the system in the previous step, the samples will be
automatically annotated based on which strips were side-by-
side in the original document. Positive and negative samples
were generated using the same procedure: given a pair of
strips, a sample is represented by a rectangular region of
31 × 31 pixels, i.e., 31 rows of the 15 rightmost pixels of
the left strip and 31 rows of the 16 leftmost pixels of the
right strip. The strips were sampled every 2 pixels along the
vertical axis. A limit of 1,000 positive samples was set per
document, and negative samples are limited to the number of
positive samples collected on the same document to produce
balanced sets. In practice, this means that both positive and
negative sets will be balanced per document, as well as for the
entire collection. Before extraction, positive and negative strips
pairs are firstly shuffled to ensure sampling in different regions
of the document since the number of samples per document
is limited. The sample dimensions (31 × 31) were chosen
because of three reasons: (i) sample diversity, (ii) locality, and
(iii) performance. Using small samples (i.e., using 31 × 31
instead of 31 by the height of the strip) allows for more diverse
patterns, which means greater coverage of the sample space.
In addition, small samples capture local features instead of
global structure, which results in a more generic classifier (less
dependent on the document structure). At last, small samples
imply a lower training time. This generation procedure is
repeated for every artificially-shredded document obtained in
the previous step, one document at a time, generating equally-
sized sets of positive and negative samples.

c) Model Training: At this point, two balanced sets (pos-
itive and negative) of 31 × 31 samples are available for train-
ing the deep learning model. Two fully-convolutional archi-
tectures were considered in our system: SqueezeNet [26] and
MobileNetV2 [27]. These architectures were chosen mainly
because of three factors: (i) they are well-known architectures;
(ii) there are efficient architectures, i.e., can achieve good
performance with a small model size; and (iii) they are fully
convolutional, a feature that is particularly interesting for the
proposed system during the inference time, as discussed in
the next subsection. In this work, both architectures were
initialized with weights pre-trained on the ImageNet [28]
using models publicly available. There are different pre-trained
models available for the networks used, and the pre-trained
models with input sizes 227 × 227 and 224 × 224 were



chosen for the SqueezeNet and MobileNetV2 respectively.
Since the models are fully convolutional, the input size could
be later reduced to fit the current training samples size without
modifications in the architecture. To enable the initialization of
the first layer with such weights, the black-and-white (single-
channel) samples were replicated on the three channels of the
input layer. Another modification was performed in the end
of the networks. The order of the global average pooling and
the last convolutional layer in the end of the MobileNetV2
was changed to match the order of the SqueezeNet v1.1. In
addition, the last convolutional layer of both architectures was
changed to have two filters (positive and negative) instead of
the original 1,000 filters (ImageNet number of classes), and
its weights were initialized using a Gaussian distribution with
µ = 0 and σ = 0.01.

The trained model classifies whether a sample comes from
a valid adjacent pair of strips (i.e., positive) or from a non-
adjacent one (i.e., negative). With the architecture properly
modified for the problem and the weights initialized, the
training can begin. The database was split into training and
validation sets at document level, i.e., all samples extracted
from the same document are used exclusively either in training
or to validate the model. A total of 702 documents (90%) are
used in training, while 78 (10%) were set apart for valida-
tion. The model was trained using the Adam optimizer [30]
(β1 = 0.9 and β2 = 0.999) to minimize the categorical cross-
entropy. Moreover, the model was trained during five epochs
using the training set, and the best model was chosen based
on the performance (accuracy) of the model on the validation
set at the end of every epoch. Finally, the trained (best) model
is ready to be deployed.

B. Reconstruction of Real Documents

The proposed system assumes the strips of the document
to be reconstructed were previously digitalized and individu-
alized in image files at disk. After loading, strips are binarized
by applying the Otsu thresholding technique [31] since images
used to generate samples are black-and-white. Next, blank
strips (i.e., those without black pixels) are discarded since
they do not contain useful information for the reconstruction
process, as discussed in [10]. Then, the system leverages the
trained neural model to compute the pairwise compatibility
score for the remaining (non-blank) strips. Based on these
compatibilities, an optimization solver outputs a permutation
that represents an estimated reconstruction for the input strips.
These steps are detailed below.

a) Pairwise Compatibility Scoring: Given a set of non-
blank strips S = {s1, s2, · · · , sN} belonging to a single
document, an ordered pair pij = (si, sj) denotes the con-
catenation of a strip si to the left of sj . The goal of this
stage is to estimate a compatibility value for every ordered
pair pij , i, j = 1, . . . , N, i 6= j, which can be arranged in a
square matrix CN×N where each entry (i, j) corresponds to
the compatibility value computed to the ordered pair pij . In
order words, Cij quantifies how likely sj is the right neighbor
of si in the original document. To estimate Cij , interest
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Fig. 6. Association images extraction: (a) rectified interest regions; (b)
network visual field definition by cropping and sliding operations.

regions around the edges of si and sj are first extracted, as
illustrated in Figure 6a. The 15 rightmost pixels of si are
joined (at left) with the 16 leftmost pixels of sj , giving rise
to a H × 31 association image, where H is the minimum
height of both strips. To account for vertical misalignment, a
total of 21 images are obtained from the association image
by sliding its right part (blue area) over the left part. It was
considered vertical offsets of −10,−9, . . . , 9, 10 pixels, and a
visual field of 3000 × 31 pixels centered in relation to the
left part of the association image (Figure 6b). The deployed
neural network is then fed with 21-size batch containing
this slides images, resulting in 21 pairs of positive/negative
softmax probabilities. Cij is finally set to the maximum of
those positive probabilities, which also defines automatically
the pij vertical displacement. Note that network inference in
this stage differs from training since now the input visual field
is 3000 pixels height. This is only possible because the adopted
architectures are fully convolutional, i.e., they have no fully
connected layers, which are usually at the end of classification
networks.

b) Permutation Estimation: The final reconstruction can
be represented by a sequence sπ1sπ2 . . . sπN

of elements in
the strips set S, where π = π1π2 . . . πN is a permutation
of {1, 2, . . . , N}. In this stage, a permutation π is estimated
from the previously computed compatibilities. To solve this,
we adopted a graph-based optimization model based on Asym-
metric Traveling Salesman Problem (ATSP) closely related
to the works in [9], [10]. Since ATSP is a minimization
problem, a distance (cost) matrix DN×N is first derived from
the compatibility matrix C by setting Dij = max(C)−Cij for
i, j = 1, 2, . . . , N, i 6= j, and +∞ for the diagonal elements of
D. The distance matrix can be viewed as a complete directed
weighted graph G = (V = {v1, . . . , vN}, A,w), where a
vertex vi ∈ V maps to a strip si ∈ S , A ∈ V 2 is the
set of arcs, and w : A → R is the weight function defined
so that w((vi, vj)) = Dij . A solution for the reconstruction
problem is straightly derived from the shortest Hamiltonian
path of G. As the ATSP formulation intends to find a shortest
cycle, we derive a new complete graph G′ from G by adding
a “dummy” vertex v′ connected to all other vertices with zero
weight arcs. Thus, if a cycle vπ1

vπ2
. . . vπk−1

vπk
vπk+1

. . . vπN
,

with v′ = vπk
, is a solution of the ATSP problem for G′, it can

be concluded that sπk+1
. . . sπN

sπ1 . . . sπk−1
is the solution of

the reconstruction problem. Finally, ATSP is solved directly
by running the black-box LocalSolver optimization tool [32].



III. EXPERIMENTAL METHODOLOGY

The experiments were conducted in two mechanically-
shredded datasets2: a collection provided by the authors in [22]
(D1) and a local dataset (D2) produced from ISRI-Tk OCR
database [25]. The goal of the experiments is to evaluate the
performance of both the compatibility scores and also the full
reconstruction pipeline. This section describes the datasets, the
conducted experiments, and the software/hardware platform
used in the evaluation process.

A. Datasets

The first dataset (D1) was produced and provided by
Marques and Freitas [22]. The entire collection comprises
200 mechanically-shredded documents, however we used only
those the authors labeled as text documents, which includes 60
samples. To generate the dataset, Marques and Freitas used a
Cadence FRG712 strip-cut paper-shredder, being the produced
strips scanned at 300 dpi. The strips were made available
already segmented, each one corresponding to a single JPEG
file.

The second dataset (D2) was produced to meet the lack
of public benchmarks for the specific type of documents ad-
dressed in this work. It was assembled from 20 text documents
comprising business letters and legal documents from ISRI-Tk
OCR database [25]. These documents were originally scanned
at 300 dpi using 24 bits format (despite the graylevel appear-
ance). Then, we print them out using a multi-functional HP
Deskjet 1510 printer. The printed documents were undergone
to a Leadership 7348 strip-cut shredder, and the resulting strips
were spliced onto a thick yellow paper sheet, as depicted in
Figure 4. The yellow color was chosen to help the strips
semi-automatic segmentation step to be performed after the
scanning process (details of the segmentation procedure are
out of the scope of this work). The paper sheets containing
the strips were scanned at 300 dpi (24-bits depth) using the
scanner embedded in the multi-functional printer kit. Even
both datasets were produced from real paper shredders, it was
verified D1 presents more regular strips. The D2 documents
frequently depict curved shape, and the original content around
the borders are more corrupted.

B. Experiments

The intended goals of the evaluation process are to assess (i)
the quality of the compatibility score and (ii) the performance
of reconstructions delivered by the proposed system.

a) Performance of the Compatibility Scoring: Compati-
bility scoring leverages the deep learning models trained on
a simulated shredding scenario for posterior evaluation on
mechanically-shredded documents. To assess the coherence of
the assigned compatibility values, the pairwise compatibility
matrix was analyzed independently of the subsequent solving
step. Given the compatibility matrix C, and assuming that, for
simplicity of mathematical description, the correct sequence of

2The public available datasets in [33], [34] were not used since they do
not fit to the class of documents addressed in this paper (i.e., machine printed
text without meaningful color information).

strips is given by s1s2 . . . sN , the quality of a compatibility
score (QC) can be computed by

QC =
1

N − 1

N−1∑
i=1

F (i, i+ 1), (1)

where F (i, j), formalized in Equation 2, is a boolean-valued
function representing whether the compatibility score assigned
to the pair (si, sj) is the highest in the i-th row and j-th
column. The quality measure QC lies in the interval [0, 1],
and the higher its value, the better the compatibility scoring
is.

F (i, j) =

(
Cij = max

j′∈N\{i}
Cij′

)
︸ ︷︷ ︸

column-wise verification

∧
(
Cij = max

i′∈N\{j}
Ci′j

)
︸ ︷︷ ︸

row-wise verification

,

(2)
N = {1, 2, . . . , N}.
b) Performance of the Reconstruction Pipeline: As a

rule, the compatibility scoring for real-shredded documents
is not perfect (i.e., QC < 1). Therefore, we also evaluate the
performance of the reconstruction pipeline as a whole, where
both the compatibility scoring and solver work together to find
the best permutation. To this purpose, the neighbor comparison
measure defined in [24] is used to quantify the accuracy of a
permutation of strips. Assume, for simplicity, that s1s2 . . . sN
is the ground-truth solution, i.e., the perfect reconstruction
for a given document instance. The accuracy of an arbitrary
solution induced by the permutation π = π1π2 . . . πN is given
by

Accπ =
1

N − 1

N−1∑
i

(πi + 1 = πi+1). (3)

It can be proved that Accπ ≥ QC − 1
N−1 for reconstructions

obtained with the simple Kruskal-based heuristic [35], an
algorithm that builds solutions by greedily connecting pairs
of strips at each step.

c) Comparative Analysis: For the purpose of compari-
son, both evaluations (compatibility score and reconstruction
pipeline) were also conducted for other reconstruction methods
in literature: Marques et al. [22], Morandell et al. [9], Andaló
et al. [24], Balme et al. [36], and Sleit et al. [14]. Since this
work focuses on the design of a compatibility scoring proce-
dure, the comparison at final reconstruction level is conducted
using our ATSP-based solver. Besides, the accuracy of the
Kruskal-based reconstruction [35] is also reported as a baseline
performance. Two comparison approaches were considered to
compare the reconstruction methods accuracy: realistic (fair)
and unrealistic (unfair). In the realistic approach, the compared
methods were configured just as recommended by their au-
thors. However, since such methods are very sensitive to paper
damage caused by mechanical shredding, we conducted an
additional accuracy evaluation discarding d boundary pixels in
each strip image row, following the idea in [22]. The idea is to



compute a pool of 11 solutions for each document instance by
setting d = 0, 1, . . . , 10, and then to report only the maximum
accuracy one. This additional comparison is said to be unfair
since the best solution is chosen based on the ground-truth
solution, and a reconstruction system, by definition, is blind
to this information. With exception of Andaló et al. [24], which
provided their implementation, all the compared methods were
reimplemented to enable the comparative analysis.

C. Experimental Platform

The experiments were carried out on two different machines.
First, the training (including dataset generation) was performed
in an Microsoft Azure NC12 instance with 12 vCPU, 112GB
RAM, and 2 GPUs (12GB each). Testing and analysis were
performed in a 3.10 GHz PC with 4GB of RAM and a GTX
960 (4GB). The proposed system was developed in Python,
using the TensorFlow framework for training and inference
of the deep learning model, and the OpenCV library for
image processing. The code, pre-trained models, and database
are publicly available at https://github.com/thiagopx/deeprec-
sib18.

IV. RESULTS AND DISCUSSION

This section discusses the obtained results for the exper-
iments described in the previous section. First, we evaluate
solely the quality of compatibility scoring procedures for all
the six aforementioned (including ours) methods. Posteriorly,
the full reconstruction induced by these scoring approaches
are evaluated based on the accuracy measure defined in
Equation 3.

A. Performance of the Compatibility Scoring

The performance of the compatibility scoring techniques
is reported in Table I. The table columns show average
and standard deviation values for QC measure (Equation 1)
considering the entire documents collection (D1 ∪ D2), and
for D1 and D2 in separate. Our compatibility score based on
the SqueezeNet (Proposed-SN) achieved the highest average
accuracy with the lowest relative standard deviation for both
datasets, followed by the MobileNet-based score (Proposed-
MN). Note that this quality measure serves as lower bound
for the reconstruction problem. This means that even the
naive Kruskal-based solver associated to our compatibility
score is able to reach average accuracies around 92.13% and
87.29% for D1 and D2, respectively. However, despite the
indicative of worse performance for the compared methods,
no ultimate conclusion can be made without analyzing the
full reconstruction results.

B. Performance of the Reconstruction Pipeline

The performance of our full reconstruction system is de-
picted in Figure 7. In summary, the best performance was
achieved by the proposed system with SqueezeNet and Local-
Solver (LS) for both D1 and D2 datasets. Note, for this con-
figuration, that the Kruskal-based heuristic (KBH) performs
similarly to LS for D1 (less than 1% of difference on average),
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Fig. 7. Performance of the proposed system (median boxplots) for the datasets
D1 and D2 measured in terms of accuracy (Equation 3). KBH and LS denote,
respectively, the Kruskal-based reconstruction algorithm and the LocalSolver
optimization tool. The red dashed lines represent the average accuracies.

which can be explained by the high QC lower bound (92.13%).
For LS, five of the total of 80 documents were perfectly
reconstructed. This low number (when compared to the overall
accuracy of our system) is correlated to the fact that 72 of
the 80 obtained reconstructions have the last strip merged to
the left of the first strip (first and last are in relation to the
ground-truth). Moreover, this kind of mistake is the only one
in 69 of these 72 cases, which means that fixing this mistake
would lead to 74 perfect reconstructions. This phenomenon is
common in literature, and can be justified in our neural model
context by the positive bias for white-to-white associations,
which frequently happens when pairing the right border of the
last strip with the left border of the first. A possible way to
deal with this is to include neutral (white) training samples for
both positive and negative to reduce the bias factor. Figure 8
shows two reconstructions delivered by our system configured
with LocalSolver.

For the sake of comparison, Table II presents the com-
parative performance with methods set to their default con-
figuration (fair comparison). Both Kruskal-based heuristic
(KBH) and LocalSolver (LS) average accuracies, alongside the
respective standard deviation were reported. The highlighted
rows exhibit our system performance. It can be noticed that our
approach induced better solutions with lower relative standard
deviation than the compared methods for both datasets. In
addition, our system performs very similarly (and with high
accuracy) for KBH and LS, which is a strong quality evidence
of the compatibility scoring procedure. The same, in general, is
not verified for the compared methods, which means that they
require more effort at the optimization side of the pipeline. It

TABLE I
PERFORMANCE OF THE COMPATIBILITY SCORING METHODS: QC±σ (%).

Method D1 ∪ D2 D1 D2

Proposed-SN 90.92 ± 15.55 92.13 ± 15.75 87.29 ± 14.72
Proposed-MN 79.58 ± 18.89 80.53 ± 19.84 76.72 ± 15.81
Andaló 41.36 ± 26.43 42.50 ± 28.39 37.94 ± 19.62
Morandell 35.84 ± 25.31 42.91 ± 24.67 14.63 ± 11.88
Balme 18.84 ± 29.06 24.34 ± 31.66 2.33 ± 3.92
Sleit 14.54 ± 9.06 15.81 ± 9.70 10.75 ± 5.37
Marques 12.71 ± 19.14 12.16 ± 19.02 14.38 ± 19.90

https://github.com/thiagopx/deeprec-sib18
https://github.com/thiagopx/deeprec-sib18


TABLE II
FULL RECONSTRUCTION PERFORMANCE (ORIGINAL COMPATIBILITY METHODS + OUR ATSP-BASED SOLVER): Accπ ± σ (%).

Method
D1 ∪ D2 D1 D2

KBH LS KBH LS KBH LS

Proposed-SN 93.74 ± 5.63 94.58 ± 5.40 93.72 ± 4.73 94.23 ± 5.40 93.77 ± 7.88 95.62 ± 5.39
Proposed-MN 92.01 ± 7.07 93.61 ± 5.58 91.56 ± 6.81 93.04 ± 5.72 93.37 ± 7.81 95.32 ± 4.85
Marques 56.46 ± 23.72 73.77 ± 19.76 55.46 ± 23.26 72.06 ± 20.27 59.45 ± 25.43 78.91 ± 17.63
Morandell 55.32 ± 22.79 65.94 ± 22.22 58.60 ± 23.31 68.93 ± 21.63 45.49 ± 18.36 56.96 ± 22.05
Andaló 71.17 ± 20.31 58.29 ± 24.14 72.75 ± 19.22 58.25 ± 24.91 66.44 ± 23.17 58.41 ± 22.26
Balme 48.23 ± 22.95 59.93 ± 22.47 53.39 ± 23.48 64.38 ± 22.12 32.75 ± 11.92 46.57 ± 18.13
Sleit 26.57 ± 11.68 23.04 ± 9.17 28.02 ± 12.58 24.46 ± 9.48 22.23 ± 7.00 18.76 ± 6.68

(a) (b)

Fig. 8. Reconstructions obtained with our system configured with Local-
Solver: (a) A perfect reconstruction; (b) A reconstruction case with accuracy
of 73.91%.

is also important to stress that lower bounds depicted in Table I
are too restrictive, and may not indicate precisely the ability
of a compatibility score in inducing good solutions. Note that
Marques reached 78.91% of accuracy for D2 (Table II, column
LS), while the quality value was 14.38% (Table I).

Since the compared methods are known to be sensitive to
the damage imposed on the strips borders, we also report
results considering the removal of d border pixels (unfair
comparison, Section III). Figure 9 depicts the LocalSolver
performance for our system against the compared methods
in (a) their default configuration, and (b) optimally adjusted
in relation to d. This result shows clearly that the perfor-
mance of the compared methods can be drastically changed
depending on what pixel border is considered for calcula-
tions. Despite remarkable improvements for both datasets,
their performances are still worse than that achieved by our
reconstruction system. When compared to Marques, the best-
performed method among those used for comparison, our
system yields accuracies +22.17 and +16.71% superior for
D1 and D2, respectively. Note that, although the training data
was extracted from documents more similar to D2, our deep
learning approach achieved better results for both D1 and D2
datasets.
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Fig. 9. Performance comparison obtained with LocalSolver: (a) Default
methods configuration (fair comparison); (b) Optimal selection of d parameter
for the compared methods (unfair comparison).

V. CONCLUSION

In a typical document reconstruction framework, the most
critical step for obtaining accurate solutions is to properly
estimate the pairwise compatibility between paper fragments.
This is even more challenging for text documents since the
absence of color hinders the matching of fragments. In this
paper, we proposed a novel deep learning-based compati-
bility model to be applied in the reconstruction of strip-
shredded text documents. To circumvent the lack of (real)
mechanically-shredded datasets, we exploited the fact that text
documents are locally similar to train the model from small
image patches, which are extracted from simulated-shredded
documents, instead of using the entire strip. Experiments were
performed to assess the quality of the proposed compatibility
scoring approach (using deep learning models) in isolation,
and also in conjunction with the optimization step to provide
the performance of the reconstruction as a whole. Moreover,



five other compatibility scoring methods of the literature were
used for comparative evaluation. The reconstruction with our
deep learning approach (considering the best model) achieved
94.23% and 95.62% for the dataset in [22] and for a local
dataset, respectively, outperforming by a great margin the
compared methods (even considering their best performance
in relation to a specific parameter). Future work should in-
vestigate the effectiveness of this method when reconstructing
several documents at a time.
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