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Abstract—The incidence of skin cancer in the world population
is a public health concern, and the first diagnosis takes into
account the appearance of lesions on skin. In this context,
automated methods to aid the screening for malign lesions can be
an important tool. However, the efficiency of developed methods
depends directly on the quality of the generated feature space
which may vary when considering different image datasets and
sources. We present a detailed study of feature spaces obtained
from deep convolutional networks (CNNs), using the benchmark
PH2 dataset, considering three CNN architectures, as well as
investigating different layers, impact of dimensionality reduction,
use of colour quantisation and noise addition. Our results
show that, features have discriminative capability comparable
to competing methods with balanced accuracy 94%, and 95%
with noise injection. Additionally, we present a study of fine-
tuning and generalisation across image quantisation and noise
levels, contributing to the discussion of learning features from
deep networks and offering a guideline for future works.

I. INTRODUCTION

Skin cancer is an abnormal and uncontrolled growth in
cells with potential to be invasive, spreading to other tissues
or organs. Early diagnosis is crucial to favour probabilities
of cure: if the disease is detected before malignant cells
grow or spread to other parts of the body, the treatment is
often more efficient [1]. Because the appearance of skin is
used as screening for an initial diagnosis in such scenarios,
digital image processing methods have been continuously
developed for skin cancer diagnosis, via analysis of images
and classification of skin lesions [2], [3]. However, there are
some important challenges in addressing this problem because
images are acquired under different conditions of illumination,
may have blur due to the focal field, and also present strong
texture due to the appearance of skin and other confusing
components [4].

The standard pipeline in this application comprises: pre-
processing, segmentation, feature extraction, and classifica-
tion [5]. In order to perform feature extraction, ABCD Rule
is often adopted [4], [6], [7] to characterise asymmetry, edge
regularity, colour homogeneity, and texture uniformity. Some
studies consider only part of ABCD Rule with handcrafted
methods to represent feature spaces [2], [3]. However, by treat-
ing each feature separately, in this approach, it is necessary
to apply different algorithms aiming to form an ideal vector
of features [8]. Accordingly, the efficiency of one classifier
depends directly on the appropriate descriptors choice.

Fig. 1. Feature Extraction. From raw images (PH2), new sets were generated
by colour quantisation and noise injection (Gaussian and impulsive). Feature
maps, extracted using a pre-trained CNN, were used to evaluate skin lesion
classification and generalisation capacity between raw and different levels of
distortions. PCA was applied to raw set to measure space reduction efficiency.

Recent studies have shown the efficiency of deep con-
volutional neural networks (CNNs) as extractors of low-
level (shapes and edges) and high-level features (textures and
semantics) due to the high abstraction capacity codified in
many layers [9]. In some scenarios, layers are able to filter
relevant features so it is even possible to neglect filtering or
segmentation steps [10].

A basic requirement to guarantee that a CNN can learn con-
cepts of one domain is the amount of labeled data [11], which
can be very expensive [12], [13]. Accordingly, one domain
rarely has representation enough to learn its own concepts,
and the higher number of parameters in hidden layers, the
greater amount of samples is required [14]. In skin cancer
images scenario, the aforementioned issues are even more
evident, since images are obtained in hospital environments
without any acquisition control (noise, different illumination,
and presence of clutter [4]). Therefore, the domain alone has
discrepancies that strengthen the challenge of CNN training.
In addition, the number of collected and annotated images
is limited making it almost impossible to train a CNN from
scratch [15]. In this context, the use of pre-trained networks
with different domains becomes a viable option in skin cancer
analysis.

CNN methods were found to be efficient also for skin
cancer classification [16]. In [17], authors collected a large
image dataset, with many categories, and they were capable of
building a model that was comparable to dermatologists when
classifying lesions, but this dataset is not fully available. The
generality of feature spaces in this context is put into question,



since small variations in the test set can lead to a significant
decrease in testing error [18], and some models may memorise
the data distribution, resulting in over-training [19].

Since the classification depends directly on the built-in
feature space, the goal of this paper is to analyse feature
spaces generated by a pre-trained CNN and impacts caused
by distortions applied to images, to discuss the generality of
such features and the potential for transfer learning. We found
that, as expected, it is possible to use a CNN model to learn
features from the raw dataset. Features from PH2 benchmark
dataset [20] were extracted in three different CNNs pre-trained
with ImageNet challenge dataset [21]: MobileNet [22]; VGG-
19 [23]; and ResNet50 [24]. In the best raw feature space
extracted was applied dimensionality reduction with PCA. In
parallel, colour quantisation and noise addition (Gaussian and
impulsive) were assigned, separately, to the raw set, generating
new feature spaces. This structure is illustrated in Fig. 1.

Consequently, our contribution include: (i) the use of several
CNN models and different layers for feature extraction and
skin lesions image classification with and without fine-tuning
process; (ii) a detailed study of the impact of dimensionality
reduction in the final classification; (iii) in-depth analysis of
colours space contraction and noisy effects in the feature
space; and (iv) feature generalisation analysis between raw
and distorted sets. To our knowledge, this study is the first
that analyses feature space’s robustness for skin lesions, in
particular using PH2 dataset.

II. RELATED WORK

The use of convolutional networks as feature extractor in
medical field is seen in several studies, such as analysis of
blood images for leukemia diagnosis [25], mammography
images classification [26], and chest pathology [27]. Accord-
ingly, this scenario may be expanded to other diagnoses, e.g
skin lesion classification. Despite the use of the same pre-
trained CNN, AlexNet [28], these studies [16], [29], [30] are
distinguished by the layer choice used as descriptor and by
different skin lesion images datasets, making a direct com-
parison among performances impossible. Majtner et. al [30]
compared handcrafted methods in contrast to second last layer
of AlexNet. Meanwhile, Pomponiu et. al [16] explored the
last three layers as descriptors, separately, to measure the
best accuracy among them. Similarly to [16], Mahbod et.
al [29] used the same adjustment (layers) from AlexNet,
including feature map fusion and latest VGG-16 [23] layers.
However, only dense layers were exploited, considering plenty
of semantic information contained in ImageNet dataset. Also,
there are newer architectures showing better properties when
compared to AlexNet, that can be explored.

Considering that there is not a large labeled dataset enough
to fine-tune a state-of-the-art CNN and feature extraction from
a CNN pre-trained in another domain is widely used, this paper
explores different layers (intermediate-level and top-level) for
skin lesion classification. As we described, our investigation
is supported by many experiments, including generalisation,
which remains well discriminative, practically maintaining

same accuracy. We also show that fine-tuning with same
skin lesion domain does not offer discriminative capability as
ImageNet due to the limited amount of examples available.
Consequently, our study explores a new horizon in this field,
in order to analyse more deep layers systematically [31] in
more complex networks. We consider that intermediate layers
may offer greater discriminative spaces than the latter ones.

III. FEATURE EXTRACTION

Feature extraction was performed using the following
CNNs: MobileNet [22]; VGG-19 [23]; and ResNet50 [24].
These models were chosen because they have different struc-
tures and layer depths. While MobileNet is considered a
lightweight model, ResNet50 is very demanding in processing.
VGG-19 is intermediate in this factor. First, skin images were
re-sized to 224×224 pixels (architectures restriction). For each
CNN, pre-trained with ImageNet [21], the feature space was
obtained using activation values from each last seven layers.

Among many layers contained in a CNN, three types stand
out with great relevance: convolutional; pooling; and fully
connected (FC). Convolutional layers provide a filters set,
with fixed size, in which an activation function generates a
space representation as input for the next layer. Due to the
large increase in the number of parameters accumulated during
successive convolutions, pooling layers operate dimensionality
reduction. When there is a transition between convolutional
and FC, after the pooling layer is placed a flatten (reshape)
layer to realign the input for the next layer without content
transformation. At the model top, FC layers aim to vectorize
feature maps, converting the data to classes probabilities
contained in the training dataset [19].

Every CNN has in its architecture filters capable of pro-
viding features of low-level and high-level [9]. As the image
proceeds through first layers, the built-in feature map adds both
shape, border, and color information. Because of hierarchical
model, the aspect of these layers, regardless architecture, refers
almost exclusively to Gabor filters or color blobs [31]. This
important property allows networks pre-trained in datasets
from different domains to be used as feature descriptors for
a target domain. In situations where dissimilarity between
the target domain and the training domain applied to the
network is evident, the semantic information contained in last
layers should be avoided or minimized. However, bottom-level
and top-level layers threshold is still uncertain, with several
heuristics prevailing to determine the optimal layer for each
problem [31].

MobileNet uses the concept of depthwise separable convo-
lutions. A standard convolutional layer joins inputs and filters
into an output set in a single step. However, depthwise convo-
lution keeps the data separated, one layer for filtering (depth-
wise convolution) and another for combining them (pointwise
convolution). In this structure, pointwise convolution (1 × 1)
performs linear combination among filters applied to input
(single filter per channel). The factorisation allows a model
size reduction and less computation cost [22].



Fig. 2. Last seven layers from MobileNet, VGG-19, and ResNet50. These
CNNs have different structures: MobileNet used dephtwise convolution and
dropout layers; and ResNet50 does not contain FC layers. Meanwhile, they all
have a prediction layer as the last one (softmax). Reshape and flatten layers
have same feature space of its previous layer in a new shape. Dropout is
a layer with the purpose of deactivates neurons with a defined probability.
In ResNet50, identity layers do not have the addition of input with data
transformation, occurring only in the convolutional layer. We refer to layers
as -1 (last layer), then -2 (one before the last), and so on until -7.

VGG-19 was developed with 19 layers in which most of
filters are 3× 3 size. The almost exclusive use of this size is
based on the concept that two consecutives 3× 3 filters have
an effective receptive field equivalent to one 5 × 5 filter, and
three 3 × 3 filters can be use as one 7 × 7 filter. Moreover,
features from this hierarquical model are more discriminative
and the amount of parameters is smaller [23].

ResNet applies residual blocks to allow training networks
with greater number of layers, e.g. 152 layers. Residual blocks
aim to preserve features from input vector before its trans-
formation, adding both values as output of delimited block.
Another interesting property in this architecture is the absence
of FC layers. ResNet used in this paper applies three weight
layers for each residual block, resulting in 50 layers [24].

In common, the last layer of each CNN corresponds to
probabilities of each class (1000 categories from ImageNet),
as shown in Fig. 2. As we can see, the final structure of each
CNN differs in layers composition and, consequently, in the
quantity of attributes. Therefore, for MobileNet, layers output
from 1000 to 50176 features, and for VGG-19 and ResNet50
from 1000 to 100352 features.

IV. EXPERIMENTS

PH2 [20] is a benchmark dataset for skin lesion classifica-
tion, composed of 200 dermoscopic images, divided into two
main categories: malignant (40 melanomas) and non-malignant
(80 common nevi and 80 dysplastic nevi). These lesions have
a variety of chromatic and texture appearance, and an original
resolution of 768×574 RGB pixels, as shown in Fig. 3. By the
appearance of skin lesions, categories differ in shapes, edges,

(a) (b) (c)
Fig. 3. Skin Lesions: (a) Common Nevus; (b) Displasic Nevus; and (c)
Melanoma. The preliminary diagnosis of skin cancer includes visual analysis
of low-level features, being that common nevi have more regular structures
than melanomas. Additionally, in these samples are also evident presence
of confusing objects in the image composition, such as the black circle on
margins and some bubbles superimposed on the lesion (c), increasing the
challenge of finding an adequate feature space.

and colors (low-level features). In principle, the more irregular
these properties are, the greater is the malignancy likelihood
in the lesion.

A. Classifiers

For our analysis, three classifiers were used: Linear SVM
(LSVM); Random Forest (RF); and AdaBoost (ADA). The
choice of LSVM is to verify how linearly separable the
generated space is. RF is a more complex classifier that
constructs an ensemble of decision trees, producing many
decision boundaries. ADA algorithm is also an ensemble
method based on linear classifiers. Our experiment used 100
iterations for ADA, and 100 trees for RF. Intuitively, a more
adequate feature space performs well in LSVM then in en-
semble methods, since LSVM is the algorithm with a more
restricted bias, and it has stronger learning guarantees [32].

B. Feature Spaces

After performing a standard scale normalisation on feature
vectors obtained from last layers of MobileNet, VGG-19, and
ResNet50, we computed the balanced accuracy using a 20-
folds cross validation (each fold is class-balanced) for LSVM,
RF, and ADA. For each layer, we also verify the real amount
of features used (Variance). Despite the high dimensionality
provided from layers, those are sparse, with many attributes
having no variance, i.e. with equal value on all examples [33].
These specific attributes do not contribute to the classification,
only increase the computational cost. Due to this reason, a
cleanup is performed on the data to eliminate these attributes.

Results in Table I show details of the experiments, including
the number of features actually used. It can be seen that
the best performance was obtained in earlier layers: LSVM
achieved 94% in MobileNet (-3); RF and ADA achieved
88.5% and 93%, respectively, in MobileNet (-5) and ResNet50
(-5). As expected, layers containing predictions (-1) achieved
significantly poorer results: LSVM 80.5% in ResNet50; RF
84%, and ADA 83%, both using VGG-19. Due to the ran-
domly cross validation folders creation, layers with the same
space representation (MobileNet layers -4 and -5, VGG-19
layers -4 and -5, and ResNet layers -2 and -3) do not have the
exactly balanced accuracy, meanwhile the variation is minimal.

In addition to best accuracy, the feature space provided
by MobileNet is more compact, containing attributes more



TABLE I
CNNS: 20-FOLDS CROSS VALIDATION BY BALANCED ACCURACY (%)

CNN Layer Features Variance LSVM RF ADA

MobileNet

-1 1000 1000 85.0 ± 12.04 87.0 ± 7.14 91.0 ± 9.95
-2 1000 1000 92.0 ± 8.72 87.0 ± 7.81 85.5 ± 12.44
-3 1024 1024 94.0 ± 6.63 84.5 ± 7.4 87.5 ± 8.87
-4 1024 1024 93.5 ± 7.26 86.0 ± 8.0 85.0 ± 9.22
-5 1024 1024 93.0 ± 8.43 88.5 ± 8.53 84.5 ± 7.4
-6 50176 (90.2%) 45263 90.5 ± 8.65 83.5 ± 8.53 89.0 ± 8.89
-7 50176 50176 91.5 ± 7.26 86.5 ± 7.26 87.5 ± 8.87

VGG-19

-1 1000 1000 81.0 ± 12.61 84.0 ± 5.83 83.0 ± 9.0
-2 4096 (93.7%) 3837 88.5 ± 6.54 88.0 ± 8.72 89.0 ± 8.31
-3 4096 (93.7%) 3839 88.5 ± 8.53 86.0 ± 7.35 86.0 ± 7.35
-4 25088 (86.8%) 21774 89.0 ± 6.24 84.0 ± 5.83 87.5 ± 8.87
-5 25088 (86.8%) 21774 88.5 ± 7.26 82.0 ± 5.1 87.5 ± 9.94
-6 100352 (75.2%) 75440 91.5 ± 7.92 86.5 ± 7.26 87.5 ± 8.87
-7 100352 (92.8%) 93085 91.5 ± 6.54 88.0 ± 7.48 91 ± 5.39

ResNet50

-1 1000 1000 80.5 ± 11.17 88.5 ± 9.1 88.5 ± 7.92
-2 2048 2048 90.0 ± 7.75 88.5 ± 9.63 88.0 ± 9.8
-3 2048 2048 90.5 ± 7.4 85.5 ± 7.4 88.0 ± 10.77
-4 100352 (96.3%) 96684 91.5 ± 7.92 85.0 ± 6.71 88.5 ± 4.77
-5 100352 100352 91.5 ± 7.26 85.0 ± 7.42 93.0 ± 8.43
-6 100352 100352 90.5 ± 7.4 85.0 ± 8.06 90.0 ± 7.75
-7 100352 100352 90.5 ± 9.73 84.0 ± 5.83 88.5 ± 8.53

discriminative than VGG-19 and ResNet50 for skin images
classification. This discriminative capacity is evidenced not
only by the amount of attributes, but mainly by the vari-
ance contained in these attributes. VGG-19 generates more
attributes without variance (all layers), and its performance is
also surpassed by ResNet50. However, the best result achieved
by ResNet50 (ADA in layer -5) demonstrates the complexity
of the generated space: 100352 features and 100 iterations.

Hence, the lighter CNN, MobileNet, provides the best
results in terms of accuracy versus model complexity and
feature space dimensionality. This indication corroborates the
idea that smaller datasets that are application-specific do not
need networks with high capacity. Results with feature spaces
obtained from different layers, shown in Fig. 4, imply that
semantic features, extracted from last layers are less relevant
for skin lesions classification, while earlier layers may be more
adequate. MobileNet presents a steady curve, falling only in
layer -6. In contrast, VGG-19 has two growth peaks (layers -1
to -2 and -5 to -6), and ResNet50 maintains itself balanced
from layers -2 to -7. MobileNet also provides, overall, a
more linearly separable feature space, while VGG-19 and
ResNet50 features require more hyperplanes to discriminate
classes, which was confirmed by better performances using
RF and ADA (see Table I). Therefore, all further analysis are
carried out on MobileNet best layer (-3).

Based on these results, we can analyze layers in three
groups: (i) prediction layers; (ii) dense layers between softmax
and pooling/flatten; and (iii) layers prior to pooling/flatten.
As expected, softmax layers provide the worst results because
they represent probabilities of training dataset classes in other
domain, as shown in Fig. 5. Therefore, the dissimilarity
between domains makes those not adequate. Other layers have
different behaviour for different CNN architectures. Because
it is more compact, MobileNet has less complexity and the

Fig. 4. LSVM balanced accuracy in last seven layers. MobileNet has better
performance (94% in layer -3) and stays on top (layers -2 to -5). However,
ResNet50 is more consistent (90% to 91, 5% from layers -2 to -7). VGG-19
has a growing accuracy from softmax layer into hidden layers.

Fig. 5. Results in group of layers. In the second group, MobileNet and
VGG-19 have four layers and ResNet50 only two. Hence, ResNet50 is more
concentrated in convolutional layers (before pooling) with four layers.



second group is more discriminative (93.12%). All three CNNs
are equivalent considering layers prior to pooling (91% to
91.5%). Due to the large number of layers in Resnet50, the
second and third groups are similar (90.25% and 91%). For
these reasons, the ideal layer to be used as feature extractor
must be investigated depending on the capacity of the network.

C. Dimensionality Reduction
The output of CNN layers are often high-dimensional

vectors. Depending on the number of available examples the
dimensionality can be an issue in this scenario. We use PCA
algorithm in the feature space provided by MobileNet layer
-3, originally with 1024 features, to select from 128 to 1
principal components, halving the size each step. As seen
in Fig. 6, a space with dimensionality between 64 to 16
features (LSVM ≈ 92%) is sufficient to discriminate the
data without serious performance loss. Other classifier results
follow similar behaviour: there is a smaller feature space with
similar accuracy: RF has higher performance gain (between 32
and 4 dimensions); and ADA is more stable from 128 to 32
features. However, LSVM tends to show better performance
overall, implying that reducing dimensionality does not affect
the linear separability of the space, and that the manifold of
the data lies in a subspace with less dimensionality.

Fig. 6. Dimensionality reduction by PCA, MobileNet (layer -3). LSVM
is only surpassed by RF and ADA with extreme space representativity
contraction. Curves of each classifier have a lack of smoothing due to
the small size of the dataset. These dimensions were selected to show a
gradual feature space reduction. In addition, PCA imposes as a limitation
the minimum between samples (200 skin lesions) and amount of features
(1024 for MobileNet layer -3).

TABLE II
PCA VARIANCE FROM MOBILENET (LAYER -3)

Number of Features Variance
1024 1.0000
128 0.9585
64 0.8533
32 0.7314
16 0.6080
8 0.4870
4 0.3502
2 0.2181
1 0.1254

To complement the dimensionality reduction discussion, we
show the percentage of variance maintenance in Table II,

showing that a 60.80% variance threshold allow class separa-
bility (LSVM ≈ 92%, 16 features). As expected, PCA variance
decreases gradually as the space contraction increases.

D. Colour Quantisation and Image Noise

We investigate the impact of colour quantisation in the
quality of feature spaces, as it can play a significant role in
feature extraction [34]. New versions of the raw dataset were
created by computing 64, 32, and 16 colours per channel.
In general, the feature space becomes less linearly separable,
yielding lower performance, as presented in Table III.

TABLE III
QUANTISED AND NOISY SPACE: 20-FOLDS CROSS VALIDATION BY

BALANCED ACCURACY (%)

Set LSVM RF ADA
Quant 64 94.5 ± 4.97 84.5 ± 4.97 88.0 ± 6.78
Quant 32 92.5 ± 8.29 86.5 ± 7.92 89.5 ± 7.4
Quant 16 90.0 ± 9.49 87.0 ± 8.43 89.5 ± 7.4
G 0.008 93.0 ± 7.81 85.0 ± 7.42 89.0 ± 6.24
G 0.016 93.0 ± 6.4 87.0 ± 7.14 86.0 ± 9.17
G 0.032 94.5 ± 7.4 87.5 ± 8.29 87.0 ± 10.1
SP 0.005 95.0 ± 6.71 88.0 ± 8.72 91.5 ± 7.26
SP 0.01 91.5 ± 9.1 88.0 ± 6.78 89.0 ± 8.31
SP 0.02 90.5 ± 8.65 87.5 ± 6.98 88.5 ± 9.1

Similarly to the quantisation experiment, we artificially gen-
erated Gaussian and impulsive (salt & pepper) noisy images,
with results also presented in Table III. For each type of
noise, three sets of images were generated: Gaussian noise
variances are 0.008, 0.016, and 0.032; salt & pepper noise
probabilities are 0.005, 0.01, and 0.02. With the progressive
increase of Gaussian noise, the accuracy of classifiers remains
relatively constant, especially with LSVM. On the other hand,
the impulsive noise shows initially a positive impact (with SP
0.005 by LSVM), but then results degrade.

E. Cross-training/test for generalisation analysis

To study feature spaces in more depth, we employed differ-
ent dataset versions (regarding quantisation and noise levels)
for training and testing. This experiment has the intention of
measuring how well the feature space generalises for images
with unseen quantisation or noise levels. We performed Hold-
out 50/50 in which folder contained exactly 80 non-malignant
and 20 malignant lesions. The final balanced accuracy is the
average of each tested set. As in previous experiments, LSVM
obtained the best result in general. Contrary to LSVM perfor-
mance, RF and ADA are less robust to colour quantisation
influence and noise injection, with accuracies dramatically
impoverished. It is interesting to observe that the experiment
showed some average when quantised or noisy versions of
images are used and, in particular improve the robustness of
the representation when testing on noisy and quantised images.
Regarding the quantisation, the generalisation reduces accord-
ing the bigger distances among colours spaces, as expected.
The same behaviour occurs with noisy application. All results
are shown in Table IV.



TABLE IV
FEATURE SPACE GENERALISATION - BALANCED ACCURACY (%)

HOLD-OUT 50/50

Training Testing LSVM RF ADA

Raw
Quant 64 91.5 84.0 86.5
Quant 32 90.0 86.0 86.0
Quant 16 86.5 82.0 87.5

Quant 64
Raw 91.0 82.5 90.0

Quant 32 90.5 85.0 89.0
Quant 16 87.0 84.5 88.5

Quant 32
Raw 90.0 82.0 86.5

Quant 64 91.0 84.5 89.0
Quant 16 87.0 83.5 86.0

Quant 16
Raw 91.0 81.5 81.5

Quant 64 91.5 84.5 82.5
Quant 32 91.5 85.5 84.0

Raw
G 0.008 90.5 83.0 85.0
G 0.016 89.0 80.5 87.0
G 0.032 88.5 83.5 86.0

G 0.008
Raw 90.0 83.0 86.0

G 0.016 89.0 83.5 87.5
G 0.032 88.0 85.0 84.0

G 0.016
Raw 89.5 84.5 84.5

G 0.008 88.5 85.5 85.5
G 0.032 88.0 84.0 86.0

G 0.032
Raw 90.0 82.5 81.0

G 0.008 90.0 85.5 80.5
G 0.016 89.0 85.5 84.0

Raw
SP 0.005 89.5 85.0 88.0
SP 0.01 88.5 84.0 85.5
SP 0.02 88.5 81.0 84.0

SP 0.005
Raw 92.5 81.5 84.0

SP 0.01 89.0 83.5 85.5
SP 0.02 91.0 82.5 83.0

SP 0.01
Raw 88.0 84.0 85.0

SP 0.005 88.0 83.0 85.0
SP 0.02 89.5 82.0 85.0

SP 0.02
Raw 89.0 84.5 84.0

SP 0.005 89.5 84.0 85.5
SP 0.01 89.0 81.5 82.0

The average balanced accuracy obtained by each training set
in the colour quantisation implies in the training of CNN with
mild colour reduction parameter (16 bins per channel) which
provides the best generalisation of the feature space (average
of 91.33% with LSVM). In this context, the high complexity
in colour space implies a greater difficulty of generalisation
for images with less amount of intensities available (average
of 89.3% using Raw as training and LSVM as classifier). With
respect to noise types, additive noise causes a positive impact:
the lowest average reached among Gaussian sets was 88.66%
(for G 0.016); similarly for salt & pepper, with a highest
average of 90.83% (for SP 0.005). These results indicate that
noise can cause positive perturbations on the data so that the
CNN model produces a more robust space, facilitating the
classification algorithm to find a linearly separable classifier
even for unseen noise/quantisation levels.

Furthermore, as highlighted in Fig. 7, the performance
reduces according to the greater dissimilarity between original
and distorted sets. Considering only the Raw set as training,
colour quantisation proves deep degradation of feature space
(Raw with 94% and Quant 16 with 86.5%). Despite the recur-
rent deterioration, noise addition behaves with less variation

Fig. 7. LSVM balanced accuracy by training with Raw. As expected, as the
colour space contraction or the noise concentration increases, the similarity
between sets decreases and, consequently, the performance. The horizontal
axis of the graph denotes test sets.

between transitions (Gaussian by 2% and SP by only 1%).

F. Fine-tuning

Aiming to confirm the high performance from MobileNet
(layer -3) pre-trained with ImageNet, we performed fine-
tuning with all CNNs used in previous experiments. Fine-
tuning consists of using initial parameters obtained with a
large dataset (e.g ImageNet), copying the first n layers, and
re-train some of the last layers using available annotated
images. To fine-tune the CNNs, we employed the HAM10000
dataset [35], [36] with 10000 skin lesions images categorized
into 7 distinct classes (training set).

In the fine-tuning process, one may freeze pre-trained layers,
allow them to adapt, or even reinitialise them with random
values [37]. For VGG-19 and ResNet50, all layers before the
pooling were maintained. The last layers (4 layers in VGG-19
and 2 layers in ResNet50) are randomly initialised. From that,
the last seven layers were allowed to adapt, freezing previous
ones. For MobileNet we employed two approaches: the first
one resets all dense layers (5 layers); and the second one resets
only the last two layers which are related to the classifier.

We used a batch size of 32 images (stipulated optimal
value [38]), and the Adaptive Moment Estimation (Adam) with
a binary cross-entropy loss function [37], [39]. In addition,
this experiment was carried out with 10, 25, 50, 100, and
500 epochs. In Table V, we present the best result achieved
in each adaptation. MobileNet (last 2) had the best overall
result (91.5% with LSVM). Other adaptations showed similar
results, and slightly below the ones without fine-tuning.

Note that, due to the greater complexity of architectures,
both VGG-19 and ResNet50 need more epochs to obtain their
best results. Note that MobileNet and ResNet50 quickly con-
verged to perfect training accuracy, For the VGG-19 network,
the loss saturated at 1.477, which kept unchanged even after
500 epochs. This indicates the images used for fine-tuning
did not offer a relevant gradient in terms of classification
loss that allowed improvement. This result can be interpreted



TABLE V
BEST RESULTS FROM FINE-TUNING

CNN Training Training Epochs Layer Features Classifier Test
Loss (%) Accuracy (%) Accuracy (%)

MobileNet (Last 2) 0.7 100.0 10 -3 1024 LSVM 91.5 ± 9.1
MobileNet (Full Top) 1.6 99.0 10 -5 1024 ADA 90.5 ± 7.4

VGG-19 147.7 90.7 50 -7 100352 ADA 91.0 ± 7.68
ResNet50 0.0 100.0 50 -5 100352 LSVM 90.0 ± 7.75

TABLE VI
FEATURE SPACE GENERALISATION - BALANCED ACCURACY (%)

HOLD-OUT 50/50 AFTER FINE-TUNING

Training Testing LSVM RF ADA

Raw
Quant 64 83.0 81.5 83.0
Quant 32 84.0 80.5 81.5
Quant 16 84.5 81.0 83.5

Quant 64
Raw 90.0 87.0 88.5

Quant 32 84.5 82.5 84.0
Quant 16 83.0 79.5 82.5

Quant 32
Raw 90.5 86.0 85.5

Quant 64 85.0 83.0 84.0
Quant 16 84.0 83.0 83.5

Quant 16
Raw 89.5 82.5 85.0

Quant 64 85.5 83.5 86.0
Quant 32 86.5 84.0 86.5

Raw
G 0.008 83.0 83.0 84.0
G 0.016 82.0 82.5 81.5
G 0.032 82.5 81.0 84.0

G 0.008
Raw 85.5 82.0 84.0

G 0.016 86.5 85.0 84.0
G 0.032 85.0 80.5 82.0

G 0.016
Raw 85.5 83.0 82.5

G 0.008 85.5 81.0 81.5
G 0.032 84.0 80.0 81.5

G 0.032
Raw 87.5 80.5 83.0

G 0.008 86.0 83.0 85.5
G 0.016 85.0 80.0 81.5

Raw
SP 0.005 82.0 79.5 82.5
SP 0.01 80.5 80.5 80.0
SP 0.02 79.5 81.0 79.5

SP 0.005
Raw 85.0 81.5 83.5

SP 0.01 83.5 80.0 80.5
SP 0.02 84.0 82.0 83.0

SP 0.01
Raw 83.0 80.0 83.0

SP 0.005 82.0 82.0 82.0
SP 0.02 82.5 77.5 79.5

SP 0.02
Raw 79.5 80.0 81.5

SP 0.005 80.0 81.5 80.0
SP 0.01 79.5 80.5 80.0

intuitively according to the architectures: MobileNet is smaller
allowing convergence, while ResNet50 converges due to the
skipping layers. On the other hand VGG-19 is to deep for
the problem, and, without using skipping layers, could not
converge properly. We also performed generalisation experi-
ments with feature extraction from fine-tuning MobileNet (last
2), as shown in Table VI. However, feature generalisation
from HAM10000 is lower in comparison to ImageNet training
parameters, being worse, mainly, with noise injection.

G. Competing Methods

We compared our results with competing state-of-the-art
methods in PH2 dataset (see Table VII). Overall, CNN feature
extraction followed by a LSVM classification produces results

TABLE VII
COMPETING METHODS RESULTS (%), OURS IN BOLD

Method Accuracy Balanced Accuracy
Barata et. al (2015) [40] — 84.3

Bi et. al (2016) [41] 92.0 90.31
Salido and Ruiz Jr. (2018) [42] 93.0 —

VGG-19 (LSVM) 90.5 91.5
Fine-tuning (LSVM) 84.0 91.5

Hold-out [Raw, SP 0.005] (LSVM) 89.5 92.5
ResNet50 (ADA) 91.5 93.0

MobileNet (LSVM) 95.0 94.0
SP 0.005 (LSVM) 94.0 95.0

above all competing methods. MobileNet achieved even better
results, reaching 94% balanced accuracy with raw images,
while competing methods comprise preprocessing steps to
achieve at most 90.31%. As shown in our feature generalisa-
tion experiments without fine-tuning, even with noisy images,
results are robust (see SP 0.005 results).

V. CONCLUSION

We report an in-depth analysis of feature spaces from raw
PH2 dataset, extracted using last seven layers of state-of-the-
art CNNs. The best space was generated by a dense layer
of MobileNet (94% balanced accuracy), bettering competing
methods. Only 16 features were sufficient to represent the
raw space with good accuracy (92%), which is relevant for
a low running time in practical scenarios. Furthermore, we
performed generalisation studies, indicating that the space
remains adequate and more robust with artificial perturbation.

In this sense, our study offers important guidelines for
future studies with the use of pre-trained CNNs for feature
extraction. Researchers can leverage pre-trained CNNs with
ImageNet and other very large datasets to obtain feature spaces
even for different image domains, such as skin lesion images,
exploring more mid-level layers. Noise injection of SP type
may help producing more robust feature spaces, while fine-
tuning with images from different datasets and same domain
should be investigated with care. The depth of the CNN must
be considered when performing fine-tuning: architectures with
less capacity or employing skipping layers seem to converge
better.
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