
360 Stitching from Dual-Fisheye Cameras Based on
Feature Cluster Matching

Tancredo Souza, Rafael Roberto, Veronica Teichrieb ∗
∗ Voxar Labs - Centro de Informática
Universidade Federal de Pernambuco

Recife, Brazil
{tantan, rar3, vt}@cin.ufpe.br

João Paulo Silva do Monte Lima †∗
† Departamento de Computação

Universidade Federal Rural de Pernambuco
Recife, Brazil

joao.mlima@ufrpe.br

Jonysberg Peixoto Quintino ‡
‡ Projeto de P&D CIn/Samsung

Universidade Federal de Pernambuco
Recife, Brazil

jpq@cin.ufpe.br

Fabio Q. B. da Silva, Andre L M Santos §
§ Centro de Informática

Universidade Federal de Pernambuco
Recife, Brazil

{fabio, alms}@cin.ufpe.br

Helder Pinho ¶
¶ Samsung Instituto de

Desenvolvimento para a Informática
Campinas, Brazil

helder.p@sidi.org.br

Abstract—In the past years, captures made by dual-fisheye lens
cameras have been used for virtual reality, 360 broadcasting and
many other applications. For these scenarios, to provide a good-
quality experience, the alignment of the boundaries between the
two images to be stitched must be done properly. However, due to
the peculiar design of dual-fisheye cameras and the high variance
between different captured scenes, the stitching process can be
very challenging. In this work, we present a 360 stitching solution
based on feature cluster matching. It is an adaptive stitching
technique based on the extraction of feature cluster templates
from the stitching region. It is proposed an alignment based on
the template matching of these clusters, successfully reducing
the discontinuities in the full-view panorama. We evaluate our
method on a dataset built from captures made with an existing
camera of this kind, the Samsung’s Gear 360. It is also described
how we can extend these concepts from image stitching to video
stitching using the temporal information of the media. Finally, we
show that our matching method outperforms a state-of-the-art
matching technique for image and video stitching.

I. INTRODUCTION

A full-view panorama (or 360 panorama) creates an im-
mersive experience for the users, especially in virtual reality
applications. It is possible to use these full-view panoramas
for educational purposes, among others. As an example, the
Google Expedition1 project aims to use these panoramas as a
virtual teaching tool, enabling teachers to choose environments
for children to visit in virtual reality. In this case, to create such
environments, it is used a polydioptric camera. It consists of
multiple cameras, each one pointing to a certain direction and
having an overlapping field of view. The full-view panoramas
obtained with this kind of camera have a great quality, i.e. any
transition of point of view is almost imperceptible, which is
essential to create an immersive experience.

However, while virtual reality devices are more accessible
nowadays, such as the Google’s Cardboard and Samsung’s
Gear VR, this does not apply to polydioptric cameras. Some

1https://edu.google.com/expeditions/

setups may use more than 15 high-resolution cameras com-
bined, which can be very expensive. Also, they can be very
hard to handle, given their size and weight. Google Street View
Trekker, for instance, weighs 20 kg. and is 1.2 meters tall.

In contrast, dual-fisheye lens cameras emerged as a means to
popularize 360◦ captures. Dealing with size and weight issues,
these smaller cameras have a more accessible price and can be
held by one hand. Their design consists of two fisheye lenses
pointing at opposite directions (Fig. 1). Each lens has a field-
of-view greater than 180◦, creating a region in both images of
duplicate information. This area, called overlap, allows these
images to be stitched.

Fig. 1. Samsung Gear 360 C200 (left) and R210 (right) dual-fisheye cameras.

On the other hand, the stitching process for this kind of
camera is more challenging. The overlap region is much
smaller than the ones from the polydioptric cameras. This
means that there is less information to be extracted from
these regions, making the alignment estimation of these images
more difficult. We propose an adaptive stitching technique,
being more robust to absence of information and to distortions
caused by the image spherical representation.

The main contributions of this paper are:
1) An adaptive stitching method for dual-fisheye lens cam-

eras that considers the image regions with more texture
(Section III);

2) An extension of this method to stitch videos using tem-
poral aspects (Section IV);

3) A qualitative evaluation of this method for both image
and video stitching using different cameras. (Section V).

II. RELATED WORK

The problem of stitching images dates before the popu-
larization of virtual reality devices and 360◦ cameras. The
goal was to automatically create panoramic images. One of
the first works combined images by choosing the best corre-
sponding lines in the two images, which is locally smoothed
afterwards [1]. More recent solutions tackled this problem
as a multi-image matching problem, using invariant local
features to find matches between all of the images [2], which
created a foundation for many further studies. Then, some
works were proposed to improve this idea, such as addressing
pure rotation [3], misalignment of the input images [4] and
preserving image perspective [5].

Dealing with dual-fisheye images is more challenging due
to the limited overlap region. However, some methods tried to
address this problem before dual-fisheye cameras were widely
available. For instance, Deng et al. [6] proposed using the focal
length and line perspective on the spherical image to estimate
the rotation and intrinsic parameters of two fisheye images.
These two input pictures were captured using a fisheye lens
mounted on a single special camera and pointing to opposite
directions at different moments. A similar idea was used for
mobile devices [7], where two fisheye lens were mounted on
the front and rear camera simultaneously. The stitching method
was optimized to reduce the operating area in order to improve
the execution time on smartphones.

The recent release of cameras with two fisheye lenses made
it easier to capture 360◦ images. Following this popularization,
some studies were published aiming to stitch the output
pictures of such cameras. Ni et al. [8] proposed a method that
adapted the unwarping and blending procedures to address the
characteristics of the fisheye lens. Ho et al. created a method
that uses an initial static alignment combined with a post-
refinement step based on a template matching of the overlap
regions to stitch the images. They lately evolved this work to
remove jitter from videos using the temporal coherence of the
stitching boundary [9].

The main difference in our method is that we combine
invariant local features with template matching, which is more
suitable for images with small overlap region such as in
dual-fisheye lenses. In summary, we extract features in the
overlap region in order to find clusters that will be used to
perform template matching. With this modification, it was not
necessary to have preliminary alignments. Additionally, when
stitching videos, we use point interpolation to avoid abrupt
transition between different homographies.

III. DUAL-FISHEYE IMAGE STITCHING

The pipeline of the developed stitching method is shown in
Fig. 2. Initially, the original dual-fisheye image is unwarped

into two equirectangular projections (one for each lens). After-
wards, by detecting and matching their features, it is possible
to analyze objects with relevant texture details. These features
are then clusterized to create rectangular templates, which
can be matched to estimate an homography that successfully
aligns both images. Finally, it is applied a blending function
to provide a better visualization of the stitched result. We now
proceed to the details of each step.

Fig. 2. The proposed stitching method pipeline for dual-fisheye images.

A. Unwrapping

The design of dual-fisheye cameras capable of capturing
360-degree panoramas is different from conventional digital
cameras. First of all, it is necessary to understand how the
camera captures the world around it. The image acquired by
the dual-fisheye camera has the format shown in Fig. 3.

Fig. 3. The world seen by both fisheye lenses.

Given this format, some adaptations are required in order
to work with this image in planar coordinates. We apply a
warping function that comprises some changes of the coordi-
nate system [10] to obtain a rectangular representation of the
spherical image (Fig. 4).

The first step consists in normalizing the equirectangular
coordinates to the [−1, 1] range using the following equations:

x′ =
2x

w
− 1, y′ = 1− 2y

h
, (1)

where w and h are width and height of the equirectangular im-
age, respectively, and (x, y) the point position. After this step,

Fig. 4. Process to convert from fisheye coordinate (left) to 3D vector (center)
and them to equirectangular image (right). Image adapted from Bourke et
al. [10].

the 2D normalized equirectangular coordinates are represented
as longitude and latitude:

longitude = πx′ + λ0, latitude =
π

2
y′, (2)

where λ0 is the central meridian of the equirectangular pro-
jection. Considering the rotation between the fisheye lenses as
180◦, then λ0 = −π2 for one of the lens and λ0 = π

2 for the
the other.

The normalized 2D fisheye coordinates are obtained from
the 3D spherical coordinates:

r =
2 arctan

√
P 2

x+P
2
z

Py

aperture
, θ = arctan

Pz
Px
, (3)

where
Px = cos(latitude)cos(longitude),

Py = cos(latitude)sin(longitude),

Pz = sin(latitude).

(4)

Finally, to denormalize the 2D fisheye coordinates:

x′′ =
w(1− x)

2
, y′′ =

h(1− y)

2
. (5)

We obtain as a result two different projections of same
dimensions: the center (Ec) and border (Eb) equirectangular
projections, which are used to generate the full 360◦ panorama.
For convenience, we define the width and height of these
projections as, respectively, W and H . Since the field of view
for fisheye cameras is greater than 180◦, the equirectangular
projections will have a left and right region with redundant
information. These areas are defined as the left (∩l) and right
(∩r) overlap regions (Fig. 5).

B. Feature Clustering

Given Eb and Ec, we initially apply the ORB feature
extractor proposed by Rublee et al. [11] on their ∩l and ∩r
regions. Afterwards, it is proposed a method to cluster these
features into templates, based on their proximity. These created
templates can be matched and used to estimate an homography
matrix that aligns both images. We only consider these high
texture areas instead of using ∩l and ∩r as a single template
to be matched [12]. Doing this makes the homography more
related to the scene-position of an object seen through different
lenses, rather than only considering the similarity of the
overlapped information. This avoids closer objects suffering
from the parallax effect to worsen the homography estimation.

Fig. 5. Border (top) and center (bottom) equirectangular projections that
compose the full 360◦ panorama and their respective overlap regions.

1) Feature Detection and Matching: This step detects and
matches features related to the texture of an object, as shown
in Fig. 6. These features can be interpreted as important points
for the analysis of the misalignment between the two fisheye
lenses. For such task, we performed a feature correspondence
step with brute-force search for nearest-neighbors based on
binary descriptors. It was used hamming distance to measure
the disparity between descriptors. Finally, to remove spurious
correspondences, it was considered the distance ratio between
the two nearest neighbors.

Fig. 6. Some extracted features from the overlap regions.

2) Feature Evaluation: After a set of features L is detected,
we perform a feature evaluation. This step is important to
guarantee which features should be used to obtain a consistent
alignment. For a feature positioned at l(x, y) and its correspon-
dent l′(x′, y′), two conditions must be met:

(i) |l − l′| ≤ γ,
(ii) (l′)′ = l,

where γ = 0.05 ×W is the maximum position displacement
between the correspondent features. A feature is defined as
good, if both conditions were met, bad, if both criteria fail,
and average, otherwise.

3) Clustering: For the template matching step, regions must
be created out of the set of features L. In this step, the features
are grouped into clusters Ci (Fig. 7) based on the distance δ
to their neighbors:

Ci = {l ∈ L | ∀li ∈ Ci, |l − li| ≤ δ}, (6)

where Ci is the subset of features with the highest number of
elements and |Ci| ≥ 4. In our implementation, we defined
δ = 0.01 × W . Based on the evaluation performed in
Subsection III-B2, clusters are formed with features that have
a good quality.

We now proceed to the definition of the templates. Given
a cluster and its set of features, let l1(xl, yl) and l2(xr, lr)
be the farthest features to the left and right, respectively.
Finally, let l3(xt, yt) and l4(xb, yb) be the farthest upwards and
downwards. Using these points, we can define a rectangular
template Ti as described in Fig. 7.

Fig. 7. Feature clusters turned into rectangular templates. The farthest features
are represented as blue circles.

4) Template Expansion: In our experiments, we noticed that
some generated templates were too small, making it infeasible
to extract any information from that region. To avoid this issue,
we apply a template expansion step that guarantees a minimum
height and width for each cluster. Let h and w be the initial
template height and width and ∩h and ∩w be the height and
width of the overlap region, respectively. We define a height
and width threshold, th = 0.50×∩w and tw = ∩w, such that
for a template Ti generated from a cluster Ci, h ≥ th and
w ≥ tw. These templates are expanded from their center such
that both conditions are satisfied.

Ti(h
′, w′) =

{
h′ = max(h, th),

w′ = max(w, tw).
(7)

It is important to still respect the limits of ∩l and ∩r, otherwise
the template will then include information outside of these
areas (Fig. 8).

5) Template Balance: It is possible that one side of the
overlap region has much more templates than its opposite. If
this happens, the transformation may be biased in favor of the

Fig. 8. The cluster expansion while also respecting the region limits.

region with most templates. This, can result in a good align-
ment for that side while the other will be totally misaligned.
To avoid this, we perform a balancing step, forming templates
from clusters with less quality features to the short-numbered
side until both have the same template amount.

C. Matching

In this work, we aim to minimize the discontinuity when
transitioning from Eb and Ec using template matching. This
matching can be summarized as moving a template T such
that it perfectly aligns to its correspondent T ′. Let Tb and Tc
be, respectively, the sets of templates obtained from ∩l,r in
Eb and Ec. Each template in T ∈ Tb ∪ Tc will be matched
with a region in which the normalized cross-correlation value
ρ is maximum [13]. This will cause a displacement in the
template related to its original position. After this, there will
be a set of templates T ′b matched in Ec, and, by analogy, a
set T ′c matched in Eb. Let Pc = Tc ∪ T ′b and Pb = Tb ∪ T ′c.
These sets are built such that, for all ci ∈ Pc and bi ∈ Pb,

ci ←→ bi (8)

where ←→ denotes a point correspondence.
At this moment, we estimate an homography H which

relates Ec and Eb, based on the displacement information
for all templates in Pc and Pb. For such estimation, we
aim to minimize the back-projection error using RANSAC
to eliminate outliers. As a result, we obtain a perspective
transform that distorts Ec, which can then be overlayed to
Eb with less apparent discontinuity.

Finally, it is important to assure the homography does not
degenerate the final panorama. Indeed, even though RANSAC
is a good filter for outliers, the matching imperfection may lead
to a degenerated stitched panorama due to error propagation in
correspondences. To avoid this issue, we validate the estimated
homography, checking if all four farthest corners of Ec are
still within a displacement limit r = 0.15 × H (Fig. 9)
and, thus, did not degenerate. If that is not the case, the
estimated homography is discarded and the identity matrix
will be applied instead.

D. Blending

We apply a blending method to better visualize the stitching
results. In this step, to create two blended overlap regions Bl,r
from ∩l,r, we apply the ramp function proposed by Ho et
al. [12], which is defined as:

Bl(x, y) = α(∩l, x) ∗ Eb(x, y) + β(∩l, x) ∗ Ec(x, y),

Br(x, y) = α(∩r, x) ∗ Eb(x, y) + β(∩r, x) ∗ Ec(x, y),
(9)

Fig. 9. The original corner position in white, a valid displacement in blue
and invalid in red.

where (x, y) represents the pixel position from ∩l,r, α and β
are defined as

α(∩, x) =

{
∩w−x+1
∩w

, for ∩ = ∩l
x
∩w
, for ∩ = ∩r

,

β(∩, x) =

{
x
∩w
, for ∩ = ∩l

∩w−x+1
∩w

, for ∩ = ∩r
.

(10)

This function gradually changes the pixels in the overlap
region, as illustrated in Fig. 10.

Fig. 10. The ramp function applied for blending.

We summarize the proposed method for image stitching in
Algorithm 1.

Algorithm 1 Dual-Fisheye Image Stitching
1: variables
2: F , Dual-fisheye frame to be stitched
3: S, Stitched frame
4: end variables
5: procedure IMAGESTITCH
6: Eb, Ec ← equirectangularProjection(F)
7: Tb, Tc ← buildTemplates(Eb, Ec)
8: T ′b, T

′
c ← templateMatching(Tb, Tc)

9: H ← findHomography(Tc ∪ T ′b → T ′c ∪ Tb)
10: validateHomography(H)
11: E′c ← warpPerspective(Ec, H)
12: S ← blend(Eb, E

′
c)

IV. DUAL-FISHEYE VIDEO STITCHING

The pipeline for video stitching is shown in Fig 11. A
video is composed of individual frames as in Fig. 3. Thus, the
approach proposed in Section III can also estimate, for each
video frame f , an alignment matrix Hf . However, some chal-
lenges arise due to the temporal information of a video, such

as dealing with the jittering effect [9]. Applying a different Hf

every frame would make the video uncomfortable to watch,
since each minor displacement of Ec will be perceptible. We
describe a scoring system used to obtain a refined affine matrix
Hm as the video progresses, instead of constantly changing it.
Finally, it is used point interpolation to gradually change to
Hm, reducing the jittering effect.

Fig. 11. The proposed stitching method pipeline for dual-fisheye videos.

A. Homography Refinement

In this step, it is performed a weighted-average of all tem-
plates in the frame based on the number of inliers considered
by RANSAC when estimating the affine matrix. The frame
score sf is based on the number of inliers wi that a given
template Ti has when estimating Hi:

sf =

∑|T |
i=1 wi ∗ ρi∑|T |
i=1 wi

, (11)

where ρi is the normalized cross-correlation value for the
template matching of the template Ti. If the homography is
valid and the score increases, this indicates a change in the
homography, which will be gradually applied, avoiding the
jitter effect.

B. Interpolation Method

Let Hf and Hf+1 be the homographies estimated for
the frames f and f + 1. As previously discussed, changing
immediately from Hf to Hf+1 results in an unpleasant effect
to the viewer. In this step, we aim to reduce this effect using
point interpolation (Fig. 12). We create a set of intermediary
points pi using the following equation:

pi = (1−∆) ∗ pf + ∆ ∗ pf+1, for ∆ = [0, 0.02, ...1] (12)

where pf = wf ∗H−1f and pf+1 = wf+1 ∗H−1f and wf and
wf+1 are the inliers for the frames f and f + 1.

We summarize the proposed method for video stitching in
Algorithm 2.

V. RESULTS

The proposed stitching methods were evaluated on a diverse
picture and video dataset, which contained different scenarios
(indoor/outdoor captures, varying illumination and objects

Fig. 12. Points before interpolation (left). Points after interpolation (right).

Algorithm 2 Dual-Fisheye Video Stitching
1: variables
2: f , an individual frame of the dual-fisheye video
3: sm, maximum current score
4: Hi, homography to be applied to the frame
5: ∆, interpolation step
6: end variables
7: procedure VIDEOSTITCH
8: Hi ← I
9: while frame f not empty do

10: Eb, Ec ← equirectangularProjection(f)
11: Tb, Tc ← buildTemplates(Eb, Ec)
12: T ′b, T

′
c ← templateMatching(Tb, Tc)

13: Hf ← findHomography(Tc ∪ T ′b → T ′c ∪ Tb)
14: sf ← estimateScore(f)
15: if sf > sm and valid Hf then
16: Hm ← Hf

17: sm ← ρf
18: ∆← 0.0
19: if ∆ < 1.0 then
20: Hi ← interpolatePoints(∆, Hm)

21: ∆← min(1.00,∆ + 0.02)
22: E′c ← warpPerspective(Ec, Hi)
23: blend(Eb, E

′
c)

24: f ← getNextFrame()

closer/farther away from the camera in the same scene). It
consisted of 107 pictures and 6 videos registered with the
Samsung Gear 360 C200 and 31 pictures and 4 videos captured
with the Samsung Gear 360 R210 (Fig. 1). Table I shows the
picture and video resolutions for both models.

TABLE I
MAXIMUM RESOLUTION FOR THE DIFFERENT GEAR 360 MODELS.

Camera model Image Video
C200 7776 x 3888 3840 x 2160
R210 5792 x 2896 4096 x 2048

The resulting stitched panoramas are shown in Fig 15. We
compared our results with Ho et al. [12], which presents
state of the art results. In most cases, the template matching
step resulted in a consistent alignment. The reduction of the
ghosting effect caused by the blending function also shows the
robustness of this work. Fig. 13 highlights only the overlap
area of different images in order to emphasize the stitching
quality. We can see that our method is able to perform a good
stitching. This can be noted by looking at the lines, which run

continuously from the border image to the center one.
Concerning Video Stitching, our method was also able to

perform a good stitching in scenes when the camera is both
stationary or in movement2. Also, the stitching is not harmed
when there are changes in the overlap area, such as people
walking. In the scenes in which the camera the camera is
stationary, it is possible to note more clearly that changing
the homography improves the stitching quality in most of
the times. Moreover, the interpolation provided a smooth
transition when the homography changes, which produces a
more comfortable experience.

Since we rely on features available on overlap areas ∩l,r, our
method is expected to fail when there are few or no features
available. Fig. 14 shows some of these cases. Typically, one
of the overlap areas has some features while the other does
not. This results in cases such as the one on Fig. 14 (top),
in which only one of the overlap areas are correctly aligned.
It is worth to mention that in some of these cases there
are not many features in both overlap areas, which result
in incorrect homographies. Our method was able to identify
these invalid homographies, which means that there is no large
misalignment between the center and border images.

It was also measured the execution time of the proposed
technique. The hardware used for these evaluations was a
laptop with an Intel Core i7-6820 @ 2.70GHz processor and
16GB RAM. The proposed 360 stitching based on feature
cluster matching was implemented in C++ using the OpenCV
library. The execution times are shown in Table II.

VI. CONCLUSION

In this work, we proposed a 360 stitching technique based
on feature cluster matching for dual-fisheye cameras. In our
evaluation dataset, the method was able to deal with existing
challenges for this kind of cameras, by creating consistent full-
view panoramas. Initially, it projects the spherical captures
into two equirectangular projections. Then, using ORB, it
creates templates by detecting and matching relevant features
of the objects. These templates are then used to estimate
an alignment matrix that creates a full-view panorama with
smooth transitions. The method was able to obtain qualitative
good results based on regions containing very high texture
information. Also, it was shown how to extend the proposed
method for video stitching, progressively estimating a better
alignment for the video. It was discussed whether the proposed
cluster matching technique is more robust than considering the
entire overlap regions as single templates.

For future works, it is important to apply an illumination
normalization in the images captured from the different lenses.
This can improve feature matching in the overlap areas,
especially when the lenses are pointing to different places
with different lighting conditions. Another improvement is
the development of a more robust blending technique, which
can reduce most of the ghosting effect that appeared in some
situations [14].

2A video showing these results is available at https://goo.gl/dzS7Rq.

Fig. 13. Comparison between the results of Ho et al. [12] and ours.

TABLE II
AVERAGE EXECUTION TIME PER IMAGE/FRAME IN SECONDS.

Unwarping Cluster & Matching Blending Total Time

Image 0.640 0.792 0.046 1.4848
Video 0.500 0.732 0.034 1.2663

Fig. 14. Failure cases obtained using our method.

REFERENCES

[1] D. L. Milgram, “Computer methods for creating photomosaics,” IEEE
Transactions on Computers, vol. C-24, no. 11, pp. 1113–1119, Nov
1975.

[2] M. Brown and D. G. Lowe, “Automatic panoramic image stitching
using invariant features,” International Journal of Computer Vision,
vol. 74, no. 1, pp. 59–73, Aug 2007. [Online]. Available: https:
//doi.org/10.1007/s11263-006-0002-3

[3] J. Zaragoza, T. J. Chin, Q. H. Tran, M. S. Brown, and D. Suter, “As-
projective-as-possible image stitching with moving dlt,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp.
1285–1298, July 2014.

[4] F. Zhang and F. Liu, “Parallax-tolerant image stitching,” in 2014 IEEE
Conference on Computer Vision and Pattern Recognition, June 2014,
pp. 3262–3269.

[5] C. H. Chang, Y. Sato, and Y. Y. Chuang, “Shape-preserving half-
projective warps for image stitching,” in 2014 IEEE Conference on
Computer Vision and Pattern Recognition, June 2014, pp. 3254–3261.

[6] X. Deng, F. Wu, Y. Wu, and C. Wan, “Automatic spherical panorama
generation with two fisheye images,” in 2008 7th World Congress on
Intelligent Control and Automation, June 2008, pp. 5955–5959.

[7] T.-M. Liu, C.-C. Ju, Y.-H. Huang, T.-S. Chang, K.-M. Yang, and Y.-
T. Lin, “A 360-degree 4kx2k panoramic video processing over smart-
phones,” in 2017 IEEE International Conference on Consumer Electron-
ics (ICCE), Jan 2017, pp. 247–249.

[8] G. Ni, X. Chen, Y. Zhu, and L. He, “Dual-fisheye lens stitching and error
correction,” in 2017 10th International Congress on Image and Signal
Processing, BioMedical Engineering and Informatics (CISP-BMEI), Oct
2017, pp. 1–6.

[9] T. Ho, I. D. Schizas, K. R. Rao, and M. Budagavi, “360-degree video
stitching for dual-fisheye lens cameras based on rigid moving least
squares,” in 2017 IEEE International Conference on Image Processing
(ICIP), Sept 2017, pp. 51–55.

[10] P. Bourke. (2016) Converting dual fisheye images into a
spherical (equirectangular) projection. http://paulbourke.net/dome/
dualfish2sphere. [Online] Last access 2017-10-23.

[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in Computer Vision (ICCV), 2011 IEEE
international conference on. IEEE, 2011, pp. 2564–2571.

[12] T. Ho and M. Budagavi, “Dual-fisheye lens stitching for 360-degree
imaging,” in 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), March 2017, pp. 2172–2176.

[13] J. P. Lewis, “Fast template matching,” in Vision interface, vol. 95, no.
120123, 1995, pp. 15–19.

[14] H. Hejazifar and H. Khotanlou, “Fast and robust seam estimation
to seamless image stitching,” Signal, Image and Video Processing,
vol. 12, no. 5, pp. 885–893, Jul 2018. [Online]. Available:
https://doi.org/10.1007/s11760-017-1231-3

Fig. 15. Results obtained using the proposed method.

