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Abstract—High-dimensional data are typically handled as
laying in a single subspace of the original space. However, data
involved in real applications are usually spread around in distinct
subspaces which may have different dimensions. We would like
to study how the subspace structure information can be used to
improve visualization tasks. On the other hand, what if the data
is tangled in this high-dimensional space, how to visualize it’s
patterns or how to accomplish classification tasks? One could, for
example, map the data in another high-dimensional space using
a mapping capable of untangle the data making the patterns
clear, rendering the visualization or classification an easy task.
This paper presents an study for both problems pointed out
above. For the former, we use subspace clustering techniques to
define, when it exists, a subspace structure, studying how this
information can be used to support visualization tasks based on
multidimensional projections. For the latter problem we employ
kernel methods, well known in the literature, as a tool to assist
visualization tasks. We use a similarity measure given by the
kernel to develop a completely new multidimensional projection
technique capable of dealing with data embedded in the implicit
feature space defined by the kernel.

I. INTRODUCTION

High-dimensional data can be aquired from many sources.

This kind of data is usually described using coordinates

in a cartesian high-dimensional space (Rn with big n). As

these spaces can’t be visualized directly, we use mathematical

and computational tools, such as multidimensional projection,

wich are able to process and present this kind of data in a

compreensive way.

Some multidimensional projection techniques assume the

data is embedded completelly (or likelly) in a single subspace

with dimension smaller than the number of attributes in the

data. However, there is no reason to believe this afirmation is

always true. To deal with data laying in multiple independent

subspaces we use subspace clustering techniques [1]. The goal

of this class of techniques is to segment the data in clusters

each one belonging to a different subspace. These techniques

can be divided into algebraic [2]–[4], iterative [5]–[7], statisti-

cal [8], [9], and spectral methods [10], [11]. Low-Rank Repre-

sentation (LRR) [10] is a state of the art technique, which aims

to find a low-rank representation of the data by solving for a

matrix with minimum rank, subject to some restrictions. Some

visualization techniques are designed to perform optimally in

labeled data. Linear Discrimant Analysis (LDA) [12] computes

a linear combination of the data attributes wich allow us to

find the subspace with best separability between labels. We

use this techniques in our implementation. In Section II we

study how effective could be the combination of the subspace

information with multidimensional projection in visualization

tasks.

Another aproach while studying high-dimensional data can

be made using kernel methods [13]. The data is implicitly

embedded in a higher-dimensional space (feature space), mak-

ing patterns and intrinsic structures in the data more clear

and easilly segmented. A kernel functions is a similarity

measure in this higher-dimensional space. These measures

allow us to study the data without knowing the implicit

map in the feature space. Most multidimensional projection

methods are able to map data from similarity information

either are not flexible enough as to user interaction or do not

scale properly to large data sets [14]–[17]. Existing interactive

and computationally efficient methods can only handle data

embedded in a Cartesian space [18], [19], what considerably

restricts their applicability. We propose a technique called

Kernel-based Linear Projection (Kelp) wich is abble to deal

with the data laying in the feature space to fill this gap, since it

is computationally efficient, enables interactive manipulation

of the projection layouts and it is able to handle kernelized

data (data embedded in the feature space). Kelp relies on a

solid mathematical formulation, it has low computational cost

and enables interactive resources for users dynamically interact

with the resulting layout. These desirable properties render

Kelp an attractive visualization tool in different scenarios.

Moreover, we derive a kernel-based version of differential

coordinates which allows for analyzing how neighborhood

structures change due to the action of a kernel.

The main contributions of this work1 are:

• We use subspace clustering and visualization techniques

combined for dimensionality reduction;

• A study on the capabilities of subspace segmentation in

visualization techniques;

• A modification on the LAMP [19] to make use of the

segmentation information;

• A novel kernel-based multidimensional projection tech-

nique called Kelp, which relies on a solid mathematical

formulation to provide a computational efficient visual-

ization to for analyzing kernelized data;

1This work is the result of a PhD Thesis



• The use of Kelp as a visualization tool to assist kernel-

based applications such as data classification and image

segmentation (in the Thesis [20]);

• The combination of kernel differential coordinates (also

proposed in this work) with Kelp towards understanding

how kernel functions affect neighborhood structures dur-

ing the embedding process. This novel mechanism is a

step forward in enabling visualization resources for users

comprehend the behavior of kernels.

This paper is organized as follows: Section II describes the

study on the effect of subspace clustering and visualization

techniques combination; Section III describes the kernel-based

technique Kelp; Section IV makes some conclusions about the

work.

II. SUBSPACE CLUSTERING AND MULTIDIMENSIONAL

PROJECTION

Suppose the high-dimensional data is drawn from multiple

independent linear subspaces, we would like to visualize it’s

patterns and intrinsic structures. Using LRR we compute the

subspaces and find the data membership. The next step is to

use the subspace membership information found by LRR as

labels for LDA, which projects data to a visual space based on

the labels. LDA performs the projection using a linear mapping

that separates data with distinct labels.

A. Subspace Clustering

Given a data set X = {x1, x2, . . . , xm}, xi ∈ R
d, with m

instances in a d-dimensional space, suppose the data can be

decomposed as X = X0 + E0, where X0 are the data drawn

from the independent linear subspaces and E0 is the “error”

of the data, due to corruptions such as noise or outliers. The

LRR method aims to find a low-rank matrix X0 from the given

data set X corrupted by errors E0. The solution is given by

the following minimization problem:

min
Z,E

rank(Z) + λ‖E‖l, s.t. X = AZ + E, (1)

where A is a “basis” for the space where the data lie, and

‖ · ‖l is a matrix norm that may vary depending on what kind

of error we wish to filter.

As the problem (1) may not have a unique solution, the

following problem is solved instead:

min
Z,E

‖Z‖∗ + λ‖E‖l, s.t. X = AZ + E,

where ‖ · ‖∗ is the nuclear norm (sum of singular values).

When the data are affected by sample-specific cor-

ruptions or outliers, we can use the norm ‖E‖2,1 =∑m

j=1

√∑m

i=1 ‖Eij‖2, which is sensible to this kind of er-

ror [10].

The minimizer Z is a matrix with information about the

data membership, and the non-zero entries of the matrix E
represent data corruption. Let Z = UDV ⊤ be the singular

value decomposition of Z. To perform the segmentation, we

compute the affinity matrix W defined by Wij = (Ũ Ũ⊤)ij ,

where Ũ is formed by UD
1

2 with normalized rows, and then

apply the Normalized Cuts [21] clustering algorithm.

B. LDA Projection

Given data instances {x1, x2, . . . , xm} with labels

{l1, l2, . . . , lm}, let Ci denote the set of instances

with label li, mi the cardinality of Ci, and

x̄i = 1
mi

∑
xj∈Cj

xj be the centroid of Ci. From this,

we can compute the “between groups scatter matrix”

SB = 1
m

∑m

j=1 mj(x̄j − x̄)(x̄j − x̄)
⊤

and the “within groups

scatter matrix” SW = 1
m

∑k

l=1

∑
xj∈Cl

(xj − x̄l)(xj − x̄l)
⊤

,

where k is the number of groups, and x̄ is the centroid (mean)

of the entire data.

Maximization of the objective function J(P ) = P⊤SBP
P⊤SWP

gives us a projection matrix such that the data projection has

small variance in each subspace, and large variance between

group centroids. This problem is solved by the generalized

eigenvalue problem SBP = SWPΓ . Where the columns of

P are the eigenvectors associated to the eigenvalues that form

the diagonal matrix Γ .

We then use the first p columns of P (which are associated

to the p absolutely largest eigenvalues) as the projection matrix

to reduce the dimension of the data, mapping them to a p-

dimensional space. For visualization, we usually use p = 2.

C. Experiments

In our tests use two data sets: an artificially generated

consisting of 50 instances of data drawn from R
3, 50 instances

drawn from R
7, and 50 instances drawn from R

10, and

embedded all 150 instances in R
30 and the well-known Iris

data set [22], wich consists of 150 instances of dimension 4
divided in 3 labels, each one of the species of the flower iris.

The results of LRR, with λ = 0.5, are shown in Figure 1.

(a) Artificial data set
Z Matrix

(b) Iris data set Z
Matrix

(c) E matrix in both data
sets

Fig. 1. LRR minimizer on Artificial and Iris data sets.

Notice that for the Artificial data set all subspaces are

perfectly identified while for the Iris data set one of the labels

is well identified in the block diagonal matrix Z, while the

other two labels are more difficult to distinguish. The matrix

E is empty in both cases due to the nature of the data sets

and because we are using the norm ‖ · ‖2,1, which is sensible

to sample-specific corruptions.

We projected the Iris data set using LDA with labels given

by the LRR segmentation (Figure 2a) and the real data set

labels (Figure 2b).

D. Results, Discussion, and Limitations

We evaluate the method by comparing the projections

generated by LDA with three other techniques: LAMP [19], t-

SNE [23], and a modified version of LAMP. The modification

we applied to LAMP is to add the label information for the



(a) Color given by segmentation (b) Real label color

Fig. 2. LDA projection of the Iris data set.

computation of weights. Originally, we had αi = 1
‖x−xi‖2 ,

where x is the instance to be projected, and xi is a control

point. In the modified version, we have:

αi =

{
1

‖x−xi‖2 , if x and xi have the same label

0, otherwise.

The quality of the projections generated by our approach is

evaluated using four metrics: stress, neighborhood preserva-

tion, and two silhouettes. The stress function we use is given

by 1∑
ij

dij

∑
ij (dij − dij)

2
/d2ij , where dij is the distance in

the original space and d̄ij is the distance in the visual space.

For each instance of data, the neighborhood preservation

measures how many k-nearest neighbors in the original space

are among the k-nearest neighbors in the visual space. The

silhouette measures cohesion and separation between clusters.

It is given by S = 1
m

∑
i

bi−ai

max{ai,bi}
, where ai (the cohesion) is

calculated as the average of the distances between a projected

instance yi (projection of xi) and all other projected instances

belonging to the same cluster as yi, and bi (the separation)

is the minimum distance between yi and all other projected

instances belonging to other clusters. The silhouette ranges in

the interval [−1, 1] and the larger the value of S the better

is the cohesion and separation of the data. To compute the

silhouette, we need to know the labels of the data. We use

both, the real labels (silh1) and the labels given by LRR

(silh2) to compute the silhouettes. We use some of the data

sets described in the Table II.

Table I summarizes the results. Compared to LAMP, the

modified version of LAMP performs better in terms of silh2

(with labels given by LRR), with a small difference in terms

of stress. While the stress of LDA is bigger than LAMP and

modified LAMP (which is expected, because the objective of

LDA is to find the subspace with better separability between

labels), it gives a good result in terms of silh2. The results of

LDA indicate that the combination of LRR and LDA can be

a good choice for dimensionality reduction and unsupervised

classification problems where the true label is unknown.

1) Limitations: Subspace clustering techniques assume that

the data are drawn from independent subspaces, but this may

not be always true in real world data sets. We have extensively

tested some examples for many parameters, with no success

in finding any reasonable subspace structure. In these cases,

we assume that such a subspace structure does not exist and

thus that the method cannot be applied properly.

TABLE I
RESULTS, FROM LEFT TO RIGHT THE COLUMNS CORRESPOND TO THE

DATA SET NAME, TECHNIQUE AND METRICS: STRESS, NEIGHBORHOOD

PRESERVATION, AND SILHOUETTES. BOLD VALUES ARE THE BEST FOR

EACH DATA SET AND METRIC.

Data set Technique Stress NP (%) Silh1 Silh2

Iris

LAMP 0.0418 81.8 0.6371 0.3437
LAMP (M) 0.0791 77.8 0.6032 0.4221
LDA 0.3095 63.6 0.6889 0.6758

t-SNE 1.71e+6 86.9 0.7633 0.3392

Synthetic

LAMP 0.0597 80.9 0.8584 0.8584
LAMP (M) 0.0521 82.0 0.9045 0.9045
LDA 0.0862 85.7 0.9299 0.9299
t-SNE 6.2266 89.4 0.9956 0.9956

Artificial

LAMP 0.0539 85.4 0.6770 0.6770
LAMP (M) 0.0749 86.0 0.7787 0.7787
LDA 0.3749 81.2 0.9492 0.9492
t-SNE 0.2962 90.9 0.8961 0.8961

Wine

LAMP 0.0383 90.7 0.2174 0.3629
LAMP (M) 0.1371 86.9 0.2269 0.4491
LDA 0.9802 53.3 0.2694 0.5314

t-SNE 0.9312 94.3 0.3139 0.4262

Mammals

LAMP 0.0112 87.9 0.9825 0.9825
LAMP (M) 0.0172 85.5 0.9924 0.9924

LDA 1.0000 81.4 0.9311 0.9311
t-SNE 0.3829 87.7 0.9653 0.9653

III. KERNEL-BASED LINEAR PROJECTION

Our kernel-based multidimensional projection method relies

on a subset of samples to perform the mapping. Let Xs ⊂
X, Xs = {xs1 , xs2 , . . . , xsn} be a subset of samples from X
(n accounts for the number of samples while m is the total

number of instances in X) and Ys = {ys1 , ys2 , . . . , ysn} be

the image of Xs in the visual space (Ys results from the Force

Scheme [24] applied to Xs). Lets also denote by Ks the Gram

matrix built from Xs, that is, the entries in Ks are given by

the values of a kernel function k : X ×X → R, k(xsi , xsj ).
Suppose that the implicit map φ : X → H associated to the

kernel k is known (φ(xsi) is the embedding of the instance xsi

in the feature space H), our goal is to find a linear mapping

M : H → R
2 (R2 being the visual space) such that

Mφ(xsi) = ysi . (2)

The linear transformation M should map each sample

φ(xsi) to ysi in the visual space. The rationale behind the

construction above is that, due to linearity, the neighborhood

structure of each φ(xsi) should be preserved by M .

Equation (2) can be written in matrix form as

MΦ = Y. (3)

Multiplying both sides of Equation (3) by Φ⊤ we obtain

MΦΦ⊤ = Y Φ⊤ ⇒ nMCs = Y Φ⊤ , (4)

where Cs = 1
n

∑n

i=1 φ(xsi)φ(xsi)
⊤

is the covariance ma-

trix computed from the subset of samples Xs. Since Cs is

symmetric it can be decomposed as Cs = UDU⊤, where

the columns of U are the orthonormal eigenvectors ui of

Cs and D is a diagonal matrix containing the eigenvalues λi



as diagonal elements. The pseudo inverse of Cs is given by

C+
s = UD̃−1U⊤, being D̃−1 the inverse of nonzero diagonal

elements in D. Applying the pseudo inverse in Equation (4)

results in:

M =
1

n
Y Φ⊤C+

s =
1

n
Y Φ⊤

(
UD̃−1U⊤

)
.

The projection of any instance φ(x) is so given by

Mφ(x) =
1

n
Y Φ⊤UD̃−1U⊤φ(x) . (5)

Let A be the matrix with columns formed by eigenvectors ai

of Ks and, making an abuse of notation, let U be now the

matrix containing only the eigenvectors of Cs associated to

nonzero eigenvalues. In the Thesis [20], we prove that

U = ΦA ⇒ Φ⊤U = Φ⊤ΦA ⇒ Φ⊤U = KsA (6)

and

U⊤φ(x) = (ΦA)
⊤
φ(x) = A⊤Φ⊤φ(x) = A⊤

kx , (7)

where kx = (k(x, xs1), k(x, xs2), . . . , k(x, xsn))
⊤

.

Using the fact that the eigenvalues of Cs and Ks relate

to each other according to γi = nλi (also proved in the

Thesis [20]), where γi are the eigenvalues of Ks, and using

Equations (6) and (7) in Equation (5) we have

Mφ(x) = Y KsAΓ
−1A⊤

kx , (8)

where Γ−1 is the diagonal matrix with elements 1/γi.
Notice that the term on the right in Equation (8) involves

only known quantities. In fact, Y is the matrix containing

the coordinates of the samples in the visual space, Ks is the

Gram matrix built from Xs, matrix A has columns given by

eigenvectors of Ks, diagonal elements in Γ−1 are the inverse

of the eigenvalues of Ks, and the vector kx is made up of

kernel values between x and xsi , where x is an instance to

be projected. Therefore, given the samples, their image in the

visual space, and the kernel k(x, xsi), we project any data

instance xi from X to the visual space by simply evaluating

Equation (8) in x = xi. In fact, besides Ys, only k(·, ·) need

to be known to accomplish the projection of X .

A. Experiments and results

The quality of Kelp is attested through two different sets

of comparisons. The first set assesses Kelp’s performance

as to accuracy and computational time. Kelp is compared

against 5 existing techniques employing 8 data sets which

vary considerably in terms of size and dimensionality (see

Table II). Techniques employed in the comparisons were

chosen because they share similarities with Kelp, namely, they

also rely on a subset of samples to perform the projection and

can deal with kernelized data (data in the feature space). More

specifically, Fastmap [25], Hybrid [26], Landmark MDS [27],

Pekalska [28], and PLP [29] are methods that present a good

performance in terms of stress/time.

The blue box plots in Figure 3 show the range of stress

obtained by Kelp and the other techniques when mapping the

data sets in Table II. One can easily see that Kelp is one
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Fig. 3. Box plot of stress and time for data sets in Table II.

of the most accurate technique, being comparable to highly

precise methods such as Landmark MDS and Pekalska. Box

plots in yellow show that Kelp also performs well in terms of

computational times, being comparable to Fastmap, which is

well known for its computational efficiency. Notice that Kelp

is almost one order of magnitude faster than Landmark MDS

and Pekalska, the two methods comparable to Kelp in terms

of accuracy.

(a) Kelp Original S = 0.323 (b) Kelp S = 0.449

(c) PLMP S = 0.129 (d) LAMP S = 0.422

Fig. 4. Comparing Kelp’s sensitivity as to user interaction. The upper right
insets show the position of the samples.

Kelp’s sensitivity with respect to user intervention is ana-

lyzed in Figure 4. Figure 4a shows the projection produced

by Kelp when samples are arranged in the visual space by

the Force Scheme. The top right inset depicts the position of

the samples after applying the Force Scheme to a subset of

randomly selected samples. Figures 4b, 4c, and 4d show the

layouts produced by Kelp, PLMP, and LAMP respectively,

after user intervention, that is, user has manually grouped

samples accordingly to their groups so as to better define

clusters in the visual space (see the top right insets). Notice
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(a) ‖δi‖ (PLMP) (b) ‖δφi
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Fig. 5. Visualizing how a kernel affects neighborhood structures (artificial data set with 150 instances and 4 dimensions): differential coordinate magnitudes
in a layout generated by PLMP with Euclidean distance (a) and Kelp using Gaussian (b) and polynomial kernels (d); Magnitude ratio in the Kelp-Gaussian
(c) and Kelp-polynomial layouts (e).

that the layout resulting from Kelp has the highest silhouette

value, even superior to LAMP, which is known to be quite

sensitive to user intervention. Moreover, PLMP and LAMP

require data embedded in a Cartesian space, thus they can not

be directly employed in kernelized data.

B. Applications

The visualization tool described in this section is a first

attempt in visualizing the behavior of kernels and assisting

users in kernel-based applications.

Our approach relies on a metric to compare neighborhood

structures defined in the original Cartesian space against their

counterpart in the feature space induced by a kernel. The

metric is defined as follows: let δi = xi −
1

#Ni

∑
j∈Ni

xj

be the differential coordinate of xi, where Ni accounts for

the indexes of the k-nearest neighbors of xi and #Ni is the

cardinality of Ni. The norm ‖δi‖ is a measure of how far xi

is from the centroid of its neighbors. Let now φ(xi) be the

image of xi in a feature space induced by a kernel k. The

norm of the differential coordinate δφi
of φi = φ(xi) in the

feature space is given by ‖δφi
‖ =

√
δφi

⊤δφi
with

‖δφi
‖2 = k(xi, xi)−

2

#Ni

∑

j∈Ni

k(xi, xj) (9)

+
1

(#Ni)
2

∑

j,s∈Ni

k(xj , xs)

Equation (9) shows that the norm of differential coordinates

in feature space can be obtained from kernel values, making

it possible to measure how far each instance φ(xi) is from

the centroid of its neighbors in the feature space. Notice that

we are always defining neighborhoods in the Cartesian space,

because our goal is to measure how those neighborhoods are

affected by the kernel.

Figures 5a and 5b show color maps corresponding to values

of ‖δi‖ and ‖δφi
‖ computed in each data instance (artificial

data set generated from [30]) in layouts generated by PLMP

and Kelp, respectively. Red regions correspond to large values

of ‖δi‖ and ‖δφi
‖ while blue colors represent low values,

(green color accounts for intermediate values). Notice that that

after applying the kernel groups of instances becomes even

better defined.

The ratio ‖δi‖/‖δφi
‖ measures changes in neighborhood

structures when data is embedded in a feature space by the

kernel k. Values close to 1 indicate no changes, values close

to 0 indicate that instances get farther from their neighbors in a

non-symmetric way, and values greater than 1 means that, after

applying the kernel, instances become more centralized with

respect to their neighbors. Using a transfer function we can

visualize the regions where neighborhoods are more affected

by the kernel. Figure 5b tells us that the Gaussian kernel

better positions instances in terms of their neighbors within

the data groups, that is, within the well defined groups, the

Gaussian kernel tend to place instances closer to the centroid

of their neighbors. However, Figure 5c clearly shows that,

when analyzing the ratio between the norm of differential

coordinates, red regions (corresponding to values close to zero

or greater than one) show up within well defined groups. Since

‖δφi
‖ is small within well defined groups (Figure 5b) and

the groups have not spread out due to the kernel action, we

conclude that the large values of ‖δi‖/‖δφi
‖ are due to a

tighter grouping produced by the Gaussian kernel. Therefore,

as expected, a Gaussian kernel tends to better define the

groups.

The same analysis can be performed with kernels other

than Gaussian, as illustrated in Figure 5d and 5e. Figure 5d

depicts ‖δφi
‖ when a polynomial kernel is used to map data

to a feature space. Using visualization tool, though, one can

see that the polynomial kernel behaves quite similarly to the

Gaussian kernel, avoiding to push “outliers” closer to clusters

while tightening instances that lie within clusters.

As one can clearly see, differential coordinates turn out to

be quite effective to visualize neighborhood changes induced

by kernels. It is worth mentioning that, as far as we know, this

is the first time that differential coordinates is used to measure

neighborhood structures in the context of kernelized data, thus

being another contribution of this work.

IV. CONCLUSION

This paper presented a study of visualization aided by

subspace learning and a novel projection technique, called

Kelp, designed to map kernelized data to a visual space.

Subspace clustering techniques have been shown to be a

promising way to account for the possible intrinsic subspace

structure of data. The use of subspace clustering allows us



TABLE II
DATA SETS USED IN THE COMPARISONS, FROM LEFT TO RIGHT THE

COLUMNS CORRESPOND TO THE DATA SET NAME, SIZE, DIMENSION

(NUMBER OF ATTRIBUTES), AND SOURCE.

Name Size Dim Source

Section II

Iris 150 4 [22]
Synthetic 150 4 [30]
Artificial 150 30 *
Wine 178 13 [22]
Mammals 1000 72 [22]

Section III

wdbc 569 30 [22]
diabetes 768 8 [22]
segmentation 2,100 19 [22]
us-countries 3,028 14 [31]
wine 4,898 11 [22]
letter rcn 20,000 16 [22]
mammals 50,000 72 [22]
viscontest 200,000 10 [32]

to use LDA to perform dimension reduction and classification

tasks with good quality in terms of the metrics we have tested.

On the other hand, the potential use of Kelp to support kernel-

based applications with visualization resources opens new

possibilities which could not be efficiently addressed until now.

Therefore, flexibility, effectiveness, and ease of implementa-

tion render Kelp one of the most attractive multidimensional

projection methods for handling kernelized data.
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