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Abstract—Keypoint extraction and matching has been widely
studied by the computer vision community, mostly focused on
pinhole camera models. In this paper we perform a comparative
analysis of four keypoint extraction algorithms applied to full
spherical images, particularly in the context of pose estimation.
Two of the methods chosen for the comparative study, namely A-
KAZE and ASIFT, have been designed considering a perspective
camera model, but were already applied in an omnidirectional
structure from motion pipeline, generating successful results in
the literature. The other two algorithms are properly adapted
versions of the traditional descriptors SIFT and ORB to the
spherical domain, subbed SSFIT and SPHORB. We conduct
our tests on captures of omnidirectional cameras, both synthetic
and real, arbitrarily translated and rotated with known ground-
truth transformations. The extracted keypoints are fed to the
well-known 8-point algorithm with RANSAC, allowing to esti-
mate the relative camera poses. These poses (translation vector
and rotation matrix) are then compared to the ground-truth
transformation parameters, generating the error metrics used
in our analysis. Our results indicated that spherical descriptors
SSIFT and SPHORB did not produce better results than planar
descriptors A-KAZE and ASIFT in the context of pose estimation,
particularly in the evaluation with real image pairs.

I. INTRODUCTION

Among the many algorithms and applications in image

processing and computer vision, a significant portion relies on

a step where relevant image points, keypoints, are extracted.

Traditionally, keypoints need to encode the local information

discriminatingly while being robust to affine transformations,

noise and contrast changes [1]. Techniques involving multiple

captures of a scene or temporal analysis of image sequences

often use keypoints, along with a (keypoint) matching phase.

Although keypoint extraction is a very common task,

presenting several solutions in literature when considering

perspective images [2]–[6], it needs to be revisited when a

different imaging paradigm arises. As an example, one can

see the several algorithms dedicated to the 3D variant of

this problem, being applied to data captured by, for instance,

color plus depth cameras. In this specific context, prominent

techniques are ISS [7], NARF [8] and adaptations of classical

methods like Harris [9] and SUSAN [10].

On the other hand, few studies [1], [11] have truly addressed

the keypoint extraction problem on omnidirectional imaging.

Omnidirectional cameras, which can capture the complete sur-

rounding scene with a single click, are becoming increasingly

popular due to the recent release of low-cost grade-consumer

(a) (b)

(c) (d)

Fig. 1. From left to right: perspective and omnidirectional captures of the
Classroom scene. Canonical view in (a) and (b) and transformed view in (c)
and (d). The camera in the latter was translated in the horizontal plane and
rotated -25 degrees around the vertical axis with relation to the canonical
view.

devices. A variety of content is being generated for both

standard devices, like desktops and smart-phones, and virtual

reality (VR) head-up displays (HUDs), inciting the pair market

and scientific community.

Novel applications enabled with the popularization of om-

nidirectional cameras, such as six degrees of freedom (6DOF)

VR [12], require 3D reconstruction from multiple spheri-

cal images, which typically involves keypoint extraction and

matching at some point. Once the spherical camera model has

intrinsic direction-dependent distortions [13], which are easily

perceived on the acquired omnidirectional images, standard

perspective algorithms designed to solve a variety of problems

tend to produce poor or incoherent results [1] when applied

to those images.

Fig. 1 presents two views of a synthetically generated scene

(Classroom benchmark1) in a canonical pose and after rotating

and translating the camera. Perspective and omnidirectional

captures (in equirectangular format) are shown side by side

aiming to illustrate the aforementioned distortions (cf. struc-

tures like the mural and the pipes on the ceiling).

1Available under CC0 license in https://www.blender.org.



In this paper, we investigate the performance of four key-

point extraction algorithms when dealing with full spherical

images (those that cover the 180◦×360◦ scene) in the context

of pose estimation. Two of them, Accelerated KAZE (A-

KAZE) [6] and Affine SIFT (ASIFT) [4], although originally

designed for perspective cameras, work relatively well with

distorted images [14]. They were used as part of structure

from motion (SfM) pipelines based on spherical images in

studies like [15], [16]. Other two algorithms, namely Spherical

SIFT (SSIFT) [1] and Spherical ORB (SPHORB) [11], are

adaptation of known keypoint extractors/descriptors to the

spherical camera projection model.

A relevant point is the definition of the error (or quality)

metric used to compare different methods. In the context of

keypoint extraction, repeatability [1] and precision-recall [11]

have been used. However, keypoint extraction and matching

is usually not the final goal in many computer vision applica-

tions: it is typically one module of a broader pipeline. One of

these applications is 3D scene geometry recovery [16], which

explores keypoint extraction and matching as an intermediate

step, but the final goal is to extract 3D information from the

scene, or estimate the camera poses.

In this paper we present an application-driven evaluation

of the four selected algorithms, in which the main goal is

to address the impact of each method in context of camera

pose estimation. More precisely, we use a set of synthetic and

real spherical image pairs with known ground truth camera

poses. For a given pair, we explore keypoint matching to

extract the Essential matrix using the 8-point algorithm [17],

whilst removing outliers through random sample consensus

(RANSAC) [18]. Then, we extract the relative camera pose

(translation vector and rotation matrix) using the Singular

Value Decomposition (SVD) [19]. Finally, the recovered pose

is compared to the ground-truth, generating a pair of error

metrics: one for translation and another for rotation.

The remaining of this paper is organized as follows. Sec-

tion II briefly describes each of the selected keypoint extraction

algorithms. In Section III we succinctly explain how one

can recover the camera pose from correspondence points in

the spherical domain and how we propose to evaluate the

algorithms in this context. Section IV presents the comparative

analysis in both synthetic and real scenarios and, finally, in

Section V the conclusions are drawn.

II. RELATED WORK

There are few studies focusing on the performance compari-

son of keypoint extraction and description algorithms. In [20],

3D keypoint descriptors, such Harris, ISS and SUSAN, are

assessed in terms of repeatability under rotation, translation

and scale changes. In their study, no specific application of

these algorithms is explored. On the other hand, in [21], 2D

keypoint algorithms, like A-KAZE and SIFT [2], are evaluated

in the stereo matching context, which somehow relates to the

pose estimation problem. The results presented in [21] are in

terms of the number of detected keypoints, proportion of valid

matches, and computation time, not exactly on the quality of

the produced disparity maps.

Here, we conduct our study focused on a goal application:

pose estimation using pairs of spherical images. Next, we

briefly describe the keypoint extraction algorithms considered

in our analysis. As explained in Section I, they were chosen

either for being designed for the spherical domain, or for

having being used in SfM applications that explore spherical

cameras. For a complete description of these techniques the

readers are referred to the original papers.

A. Accelerated KAZE (A-KAZE)

A-KAZE [6], a modified version of KAZE [5], is a fast

multi-scale keypoint detection and extraction algorithm which

exploits non-linear scale spaces in perspective images. In the

original paper [6], the authors claim that A-KAZE outperforms

methods like KAZE, SIFT and ORB [3] in terms of repeata-

bility, when applied artificial rotation, blurring, compression,

noise, etc., at same time it spends lower processing time than

the first two methods.

The pipeline of the A-KAZE algorithm consists basically

of: (i) building the non-linear scale-space by means of fast

explicit diffusion schemes in a pyramidal way; (ii) searching

for maxima responses in scale and spatial locations of the

scale-normalized determinant of the Hessian of each filtered

image in the scale-space; and (iii) describing the keypoint by

the modified-local difference binary (M-LDB) algorithm using

gradient and intensity information from the scale space.

Finding the dominant local orientation around the keypoint

and keeping the relation between the grid size of the M-

LDB and the scale of the filtered images makes the descriptor

invariant to rotation and scale. According to Pathak et al. [16],

A-KAZE works well under distortions and, for that reason it

was used in their spherical SfM pipeline.

B. Affine SIFT (ASIFT)

ASIFT [4] is a planar algorithm totally based on the

strengths and weaknesses of the consecrated SIFT keypoint

extractor and descriptor. In the original proposal, ASIFT is

supposed to replace the SIFT keypoint extractor, keeping the

descriptor unaltered. In practical terms, whilst SIFT achieves

invariance to translation, rotation and scale, ASIFT adds

invariance to “viewpoint changes”, proving to be fully affine

transformation invariant [4].

In a nutshell, it becomes viewpoint invariant by simulating

a comprehensive set of perspective distortions that the images

can suffer and comparing them by SIFT algorithm. In order

to minimize the running time of their algorithm, the authors

propose to use a two-resolution mechanism. The viewpoint

simulations are firstly performed in the lower resolution im-

ages and, if some keypoint matching is obtained, they are

redone in the original pair of images.

The authors in [4] show their improvements with relation to

SIFT, among others, when dealing with significant perspective

view changes. Since Pagani and colleagues [14], [15] achieved

interesting results using ASIFT in their tests when dealing with

spherical images, we consider this algorithm in our analysis.



C. Spherical SIFT (SSIFT)

The authors in [1] argue that standard planar keypoint

algorithms cannot be correctly applied to omnidirectional

images, in a geometric sense. They claim that the distortions

of omnidirectional cameras when mapped to planar image

representation are not affine and, more than that, are dependent

on the object position in the captured scene. In fact, an

example of these distortions is illustrated in Fig. 1.

In this sense, Cruz-Mota et al. [1] completely adapt the pla-

nar SIFT algorithm to the spherical domain, with omnidirec-

tional images mapped to the surface of the Riemannian sphere.

Each step of original SIFT keypoint detector is performed

on its spherical counterpart: (i) creation of the scale-space

representation, (ii) computation of the Difference of Gaussians

(DoGs); and (iii) local extrema extraction and filtering. The

proposed local spherical descriptor, as its planar version, is

invariant to rotation and scale.

The authors assess the performance of the SSIFT against

its planar version through the repeatability metric on spherical

images synthetically rotated and corrupted with noise. The

results presented in their paper show that the SSIFT algorithm

is considerably more robust to the omnidirectional sensor

distortions than planar SIFT.

As pointed out as a possible application of SSIFT in [1],

[13] use it as a fundamental building block for their spherical

SfM-based method and application.

D. Spherical ORB (SPHORB)

The authors in [11] propose a scale invariant version of the

FAST detector [22] associated to a rotation invariant ORB-

like descriptor, both operating on a hexagonal geodesic grid

representation of the sphere. More precisely, they presented

a fast and robust algorithm that constructs binary features

to describe image keypoints on the spherical domain, called

Spherical ORB (SPHORB).

The way omnidirectional images are represented is probably

one of the main insights of their work. The authors show

that the geodesic grid they use has important properties when

dealing with binary features that, differently from cubic and

equirectangular representations of the spherical images, helps

to speed up the SPHORB algorithm.

Basically, the spherical FAST detector searches for points

that are sufficiently brighter or darker than their neighborhood

and attributes a weight for how distinguishable from its vicin-

ity they are. This procedure is performed using a pyramidal

structure, enabling SPHORB with robustness to scale changes.

The bit-string that describes each of the selected keypoints is

nothing but a series of intensity comparisons that are further

reoriented in order to keep the algorithm invariant to rotations.

Zhao and collaborators [11] compare their algorithm, among

others, with SSIFT and planar versions of ORB and SIFT.

Their results point out the effectiveness of SPHORB regarding

repeatability, precision and recall under synthetic rotation and

noise corruption. The authors also present some statistics

regarding the proportion of correct matchings in real pairs of

images on small camera change setups.

III. THE PROPOSED METHODOLOGY

We investigate an application-oriented evaluation of key-

point extraction/matching algorithms, targeting the two-view

pose estimation problem in the spherical domain.

In this section, we briefly explain the epipolar geometry for

spherical cameras, and explain the adopted algorithm to re-

trieve the Essential matrix based on a set of matched keypoints.

Then, we revise the extraction of extrinsic camera parameters

(rotation matrix and translation vector) from the Essential

matrix, and introduce the proposed metrics to compare two

poses (which implicitly evaluates the quality of the underlying

keypoints).

A. Epipolar Geometry for Spherical Cameras

The core of spherical cameras is to project a 3D point X

in the world coordinate system onto the unit sphere [23], as

illustrated in Fig. 2.

If the spherical camera presents extrinsic parameters [R|t],
where R is the rotation matrix and t the translation vector,

the projected point x is given by

x =
RX+ t

‖RX+ t‖ . (1)

Note that the projected point is a unit vector in R
3, which can

be rewritten in terms of spherical coordinates as

x = [cos θ sinφ, sin θ sinφ, cosφ]⊤, (2)

with θ ∈ [0, 2π) and φ ∈ [0, π). Such a point can be mapped

to position (x, y) of an equirectangular w×h image, which is

the standard representation of spherical images, where x = θw
2π

and y = φh
π

, rounded to integer values.

The authors in [23] show that the epipolar geometry for

the spherical projection is analogous to its counterpart defined

for perspective images. In the perspective case, a pair of

projections x1 = [x1 y1 z1]
⊤ and x2 = [x2 y2 z2]

⊤ of a world

point X in homogeneous coordinates can be related according

to the epipolar constraint [23]

x
⊤

2
Ex1 = 0, E = [t]×R, (3)

where R is the rotation matrix and [t]× is the skew-symmetric

matrix [13], [24] of translation vector t that relate both camera

captures.

For spherical cameras, the projection onto the unit sphere

corresponds to a particular set of homogeneous coordinates

of the planar perspective projection, so that the underlying

3D vector presents unitary norm. Hence, the same constraints

shown in Eq. (3) are valid, using directly 3D spherical coor-

dinates instead of homogeneous coordinates.

Estimating the Essential matrix E can be formulated as a

least squares problem in which n ≥ 8 correspondence pairs

are required. In the 8-point algorithm [17] the solution to

this problem is achieved by selecting and reshaping the unit

eigenvector corresponding to the smallest eigenvalue of A⊤
A,

where the i-th row of A is given by

A
⊤

i =
[

xi
1
xi
2
xi
1
yi
2
xi
1
zi
2
yi
1
xi
2
yi
1
yi
2
yi
1
zi
2
zi
1
xi
2
zi
1
yi
2
zi
1
zi
2

]

,
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Fig. 2. Epipolar geometry for a stereo pair of spherical cameras. Points X,
x1, x2, C1 and C2 are the 3D world point, projection on the first and second
cameras, and the centers of the first and second cameras, respectively. The
cameras are related by the rotation matrix R and the translation vector t.

and [xi
1
yi
1
zi
1
]⊤, [xi

2
yi
2
zi
2
]⊤ are the spherical coordinates of the

i-th correspondence pair, for i = 1, . . . , n. As argued in [16],

unlike in perspective case, no coordinates normalization pre-

processing is required when dealing with spherical images.

In order to guarantee that the matrix E
′ obtained by this

process is in fact an Essential matrix, rank two constraint must

be imposed, for instance, using SVD [17]. More precisely, if

U
′
S
′
V

′⊤ = E
′ is the SVD of E

′, then its two first singular

values are set to their average value and the last one is

zeroed [24]

S = diag

(

s11 + s22

2
,
s11 + s22

2
, 0

)

, (4)

where S
′ = diag(s11, s22, s33). Moreover, if the determinants

of U
′ and V

′⊤ are negative, then the last column of these

matrices is negated, avoiding the estimation of improper

rotation matrices [25]:

U3 =

{

U
′
3
, if det(U′) > 0

−U
′
3
, otherwise

(5)

and

V
⊤

3
=

{

V
′⊤

3
, if det(V′) > 0

−V
′⊤

3
, otherwise

. (6)

Finally, the Essential matrix is given by E = USV
⊤.

In our study, this procedure is applied in a RANSAC

framework in order to better estimate E, whilst rejecting a

small number of erroneous keypoint matches (outliers). The

correspondence check is given by the Sampson distance [24]

thresholded to 10−2, and the minimum quantity of inliers is

set to 50% the number of matchings, i.e. n.

B. Pose Estimation from Essential Matrix

Pose estimation can be understood as obtaining the trans-

lation vector t and rotation matrix R that relate two views.

Once the Essential matrix E is estimated, the extraction of

candidates for these movement components is immediate.

Thus, the rotation matrix is given by

R = UWV
⊤ or R = UW

⊤
V

⊤, (7)

where USV
⊤ = E is the SVD of E and W is given by [24]

W =





0 −1 0
1 0 0
0 0 1



 . (8)

The translation vector is defined, up to a scale, as

t = −U3 or t = U3. (9)

To get rid of this ambiguity one can check for the positivity

of [14]

x1
⊤
X̃ and x2

⊤(RX̃+ t),

where X̃ ≈ αX and α ∈ R, can be computed from

the candidates R and t through, for instance, direct linear

transformation (DLT) [24].

C. Comparing Two Poses

The core of this paper is to evaluate how well different

keypoint extraction/matching methods work in the context of

two-view spherical pose estimation. For that purpose, it is

important do define a metric that evaluates how close the

estimated extrinsic parameters are from the ground-truth pose.

It is also important to point out that the translation vector

can only be estimated up to a scale factor from the Essential

matrix. Hence, in this work we explore only the direction of

the estimated translation vector. More precisely, we compare

the ground-truth and estimated translation vectors, tgt and

test, by their angular distance [19]

dt(tgt, test) = cos−1

(

tgt.test

‖tgt‖‖test‖

)

. (10)

On the other hand, the actual and estimated rotation ma-

trices, Rgt and Rest, are compared by their Riemannian

distance [26], which is defined as the angle between two

elements of SO(3) group needed to make them equal. The

Riemannian distance between Rgt and Rest is given by

dR(Rgt,Rest) =
1√
2
‖ log(R⊤

gt.Rest)‖F , (11)

where

log(R) =

{

0, if ψ = 0
ψ

2 sinψ
(R−R

⊤), otherwise
, (12)

ψ = cos−1

(

tr(R)− 1

2

)

. (13)

and tr(.) is the trace operation.

As both functions dt(·, ·) and dR(·, ·) are error metrics,

given in radians, smaller values indicate better estimates.

IV. EXPERIMENTAL RESULTS

In this section we assess the considered keypoint extraction

algorithms in terms of the error when estimating camera pose.

We consider both synthetic and real scenes, where camera has

arbitrary translation and rotation with known ground-truth.

Here, OpenCV2 implementations of A-KAZE and ASIFT,

and the original source codes for SSIFT3 and SPHORB4

provided by the authors are used. Adjustable parameters are

2Available in http://opencv.org.
3Available in http://www.javiercruz.com
4Available in https://github.com/tdsuper/SPHORB



(a)

(b)

Fig. 3. SSIFT keypoints computed from (a) a rotated image based on the
canonical capture in Fig.1b and (b) rendered image with camera rotation set
in 3D space. Keypoints in both captures are highlighted in the blue dots.

kept as indicated in each study, differently from [11], where

the methods were tunned aiming to get approximately the

same number of keypoints. The ratio matching strategy [27],

thresholded in 0.75, is adopted here since it is natively

applied in each one of the source codes. Once the considered

source codes are in different programming languages, C++ and

Matlab, we did not evaluate running times in this analysis,

focusing on accuracy only.

In the following, the experimental setups are described and

the obtained results are presented and discussed.

A. Synthetically Generated Scene Experiments

In [1], [11], omnidirectional images are projected to the

sphere, rotated with relation to the principal camera axis, and

then backprojected to the plane in equirectangular format,

allowing the authors to have a “pair of views” for testing their

methods. This process may cause both spurious insertion and

loss of information, since it is needed to interpolate regions

of the scene that now occupy more pixels than in the original

unrotated image and to downsample in the reverse case. As a

consequence, keypoint extraction and description, and possibly

matching, may be affected, as depicted in Fig. 3. Although

most keypoints are detected approximately around the same

region in both equirectangular images, the reader can see that

in the artificially rotated image some of them are missing, and

others that are not effectively important are detected .

Differently from those studies, we would like to simulate

rotations in all the three axes besides translational movements

without suffering from the aforementioned problems. Thus,

we create a dataset5 with different views of a synthetically

generated 3D scene (as illustrated in Fig. 1b and Fig. 4),

allowing us to precisely set the camera poses. The realistic

5This dataset will be available on the authors website.

Classroom scene, rendered with Blender6, was chosen since it

presents a variety of repetitive structures (the lamps, the chairs,

the pipes on the ceiling, the windows, etc.) configuring a

challenging scenario for the selected application. Furthermore,

there are parts of the scene which are practically textureless

(the ceiling, the doors, the top portion of the walls, etc.),

also making the keypoint matching task harder. Although

our goal was to perform our analysis using several synthetic

environments, we were not able to find other realistic indoor

scenes with free license.

The views are captured in such a way that the camera is

translated twice the magnitude for one direction with relation

its opposite, one at time, along the three axes of Cartesian

system coordinates. Furthermore, the rotation angles are set

to 15◦ in one direction and 45◦ to its opposite direction

along the three Cartesian axes, again one at time. Once the

three dimensions of the scene differ in the 3D space, the

distortions are perceived differently. With that, we introduce

in our experiments a small but representative set of distortions

caused by the six degrees of freedom motion to the generated

equirectangular images. These twelve camera transformations

(translations and rotations), starting from the canonical view

shown in Fig. 1b, are depicted in Fig. 4.

Considering the way this dataset was organized, we divide

our experiments focusing separately on the three kinds of

camera movement: purely translational, purely rotational and

both translation and rotational. Differently from the papers

that propose A-KAZE, ASIFT, SSIFT and SPHORB, which

assess only rotation movement, we evaluate the robustness of

each method in the pose estimation problem considering all

pairwise combinations of those twelve camera transformations,

besides the canonical view. Hence, there are P (7, 2) = 42
permutations of pairs in pure translation and pure rotational

view changes, and P (13, 2)− 2P (7, 2) = 72 permutations for

mixed translation and rotational movement.

It is important to highlight that we can only assess the

selected algorithms in the pose estimation context when

RANSAC is able to accept at least 50% of matchings as

inliers during the Essential matrix estimation, as discussed

in Section III-C. In the evaluation, we first analyzed the

percentage of times RANSAC fails to converge for each

method, as well as the percentage of inliers within the total

number of matched keypoints. When RANSAC converged

(and the pose was effectively estimated), we also compute

the average angular and Riemannian errors, along with the

standard deviations. A summary of results is shown in Table I.

One can note from Table I that SSIFT, although presenting

the best average angular distance when estimating the pose,

failed 21 out of 42 times it was tested in the experiment that

consider only translation. Also, when RANSAC converged for

SSIFT, the inlier ratio was very close to the limit threshold for

RANSAC, i.e., 50%. These results indicates that SSIFT, with

the original parameters, generates some very accurate matches,

6Available in http://www.blender.org



Fig. 4. Synthetic dataset of the Classroom scene with different pose transformations starting from the canonical position in Fig.1b. In pairs, the first six
images present camera translations of different magnitudes towards the positive and negative directions of the three axes of the Cartesian coordinate system.
The other six images, also in pairs, present camera rotations in different proportions towards the positive and negative angles around the same axes.

TABLE I
AVERAGE RESULTS FOR THE SYNTHETIC SCENE VIEWS EXPERIMENTS.

Method

Purely translational Purely rotational Translational and rotational

Angular

dist. (rad)
Inliers (%)

RANSAC

failures (%)

Riemann

dist. (rad)
Inliers (%)

RANSAC

failures (%)

Angular

dist. (rad)

Riemann

dist. (rad)
Inliers (%)

RANSAC

failures (%)

A-KAZE 0.411 ± 0.729 66.478 0.000 0.079 ± 0.157 89.486 0.000 0.262 ± 0.508 0.019 ± 0.038 67.709 0.000

ASIFT 0.252 ± 0.435 78.430 0.000 0.051 ± 0.151 88.617 4.762 0.262 ± 0.365 0.020 ± 0.050 84.733 0.000

SSIFT 0.133 ± 0.303 58.490 50.000 0.078 ± 0.156 89.335 0.000 0.231 ± 0.315 0.031 ± 0.044 61.732 16.667

SPHORB 0.281 ± 0.509 67.041 0.000 0.077 ± 0.159 84.486 2.380 0.346 ± 0.511 0.040 ± 0.084 63.424 0.000

but also some very bad ones (at least for for this evaluation

scenario).

SSIFT presented a similar behavior for the mixed camera

movement experiments: RANSAC did not converge in one

sixth of cases, but when it did the angular translational error

was the smallest. However, on average, very close results were

achieved by the two planar algorithms. For pure rotational

movements, ASIFT performed better than the other three

algorithms. ASIFT and SPHORB failed by far less then

SSIFT, and only in rotational tests. Their performance in the

translational experiment was similar to each other, but ASIFT

generated smaller errors (both translational and rotational) than

SPHORB in mixed camera movement tests.

One can also note from Table I that, in purely rotational

movement, the inlier ratio for all the compared methods

was quite similar. This kind of movement is exactly the

one which is tested in the works that originally propose the

techniques designed for spherical domains, namely SSIFT and

SPHORB. Fig. 5 depicts the general behavior when applying

the compared method to the synthetic view pairs. SSIFT tends

to spread much more the matchings throughout the images,

whilst SPHORB frequently find several matches around the

same neighborhoods. A-KAZE and ASIFT perform similarly

to SSIFT and SPHORB, respectively, although in most of the

cases the matches are around the image center, which is less

deformed. This behavior is briefly commented in [1], when

SSIFT is compared to its planar counterpart.

B. Real scene experiments

Besides assessing the methods using synthetic images, we

also present the analysis for a set of real scene captures.

The real omnidirectional images were captured with the first

release of the Samsung Gear 360 camera, and stitching was

performed by their official software. The captures were ob-

tained in five indoor and static scenarios with meticulously

positioned cameras over a fixed trail with a rotating base,

for performing horizontal translations and rotations on the

plane, and in a height adjustable tripod, for applying vertical

translations and rotations along the three axes. Fig. 6 depicts

two pairs of captures.

Although the controlled camera positioning provides a clue

of its pose, we obtain well approximated rotation matrices

and translation vectors by manually selecting about twenty

correspondence points in the equirectangular image pairs in

such a way that the selected points appear spatially distributed

throughout the images. They are then used to estimate the pose

as described in Section III with no RANSAC outliers (they

are assumed to be correct). Since it is practically impossible



(a) A-KAZE (89.630%) (b) ASIFT (77.130%) (c) SSIFT (64.400%) (d) SPHORB (65.437%)

Fig. 5. Examples of matching pairs set as inliers on both translational and rotational camera movement using the four considered keypoint extraction
algorithms. Inlier proportion is given for each pair of views.

(a) (b)

(c) (d)

Fig. 6. Two pairs of real scene captures used in our experiments. Camera
transformation in pair (a–b) is dominantly translational on the horizontal plane,
and in pair (c–d) it is basically rotational (with a rotation angle of -60◦ on
the vertical axis).

to keep the camera without the rotations (translations) when

performing the translational (rotational) experiments, we refer

to the real scene experiments as “dominantly” translational

or rotational, instead of “pure”, and both translational and

rotational when the pair of transformations were designedly

applied.

The average results for a total of fifteen pairs of images

are shown in Table II, which corroborate the findings for the

synthetic experiments. It is noticeable, in both angular distance

and inlier ratio columns in Table II, that the methods per-

formed significantly better in dominantly translational move-

ment experiments. The results for these techniques were, on

average, also better in dominantly rotational camera movement

when considering real scene tests instead of the synthetic scene

ones. A possible explanation is the fact the real scenes do

not have so many “ambiguous scene objects”, which might

facilitate keypoint extraction, description and matching.

Representative examples of real matching pairs obtained by

the four considered methods are presented in Fig. 7. It is

interesting to note the high inlier ratio achieved by ASIFT,

a planar keypoint extractor/descriptor, even in very distorted

images, as presented in Fig. 7b.

V. CONCLUSION

In this paper we evaluated four algorithms for extraction

and description of keypoints on the context of pose estimation

using full spherical images. Two of them were originally

proposed for perspective cameras (planar descriptors), and the

other ones tailored to the spherical domain. We selected two

figures of merit that measure the error between estimated trans-

lation vector and rotation matrix from the respective ground-

truths. According to the experiments performed in this work,

with both a challenging synthetic dataset and real indoor image

pairs, using spherical descriptors did not produce more accu-

rate pose estimates than using traditional planar descriptors. It

is important to note that in the papers that presented SSIFT

and SPHORB, the authors showed that spherical descriptors

performed better than planar ones. Since they used generic

metrics in their evaluation (e.g. repeteability), their findings

and ours are not necessarily contradictory. Nevertheless, we

plan to further investigate if this discrepancy was due to the

evaluation procedure (generic versus application-driven) or to

the used datasets.

As future work, we intend to enlarge our database to expand

the comparative analysis. We also intend to investigate how the

spatial distribution of the extracted keypoints impacts the pose

estimation and further 3D reconstruction of the environments.
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