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Fig. 1. Simplified illustration of a max-tree. The arrows point to the connected components that each node represents.

Abstract—The max-tree is a mathematical morphology data
structure that represents an image through the hierarchical
relationship of connected components resulting from different
thresholds. It was proposed in 1998 by Salembier et al., since then,
many efficient algorithms to build and process it were proposed.
There are also efficient algorithms to extract size, shape and
contrast attributes of the max-tree nodes. These algorithms al-
lowed efficient implementation of connected filters like attribute-
openings and development of automatic and semi-automatic
applications that compete with the state-of-the-art. This paper
reviews the max-tree principles, algorithms, applications and its
current trends.
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I. INTRODUCTION

Connected operators [1] are morphological filters that do
not blur the image. They act by merging flat-zones [1] in
the image and can be efficiently implemented on hierarchical
region-based representations of the input image [2]. Among
these representations, the max-tree [3] is arguably the most
popular. Some authors consider it as being a synonym of

the component tree [4]. Although both structures allow to
do the same operations and analysis, they are different in
their definition. The max-tree can be seen as an efficient and
compact representation of the component tree [5].

Max-trees can be computed, and processed fast [6], [7], [8],
[9], [10]. The best algorithm depends on the image data type
and the number of cores available for processing. There are
many different structures used to represent a max-tree: array-
based [6], [7], array-based node-oriented [10], and linked-list
node-oriented [11].

Max-trees allow the efficient implementation of many con-
nected filters like area-open [12], hmax [3], ultimate opening
[13], statistical attribute filters [14], vector attribute filters
[15], among others. They have been used in a wide range
of automatic applications like object recognition [5], scale
and rotation invariant image classification [16], detection,
tracking and recognition of license plates [17], recognition
of text in natural scenes [18], 3D magnetic resonance (MR)
brain segmentation [19], angiographic image segmentation
[20], dermatological image segmentation [21], medical image



registration [22], remote sensing [23], [24], [25], [26], detec-
tion of local features like Maximally Stable Extremal Regions
(MSER) [27] and Morse Regions [28], among many others.

The max-tree has also been used in interactive applications.
Westenberg et al. [29] proposed an interactive volumetric
filtering and visualization of 3D images using the max-tree.
Ouzounis and Gueguen [30] proposed a technique for interac-
tive collection of training samples from the max-tree nodes.
Naegel and Passat [31] proposed an interactive segmentation
method, where the user selects regions of interest in the
image and the method returns the set of max-tree nodes
corresponding to the segmentation result. In the interactive
methods previously cited, the interaction occurs by setting
filtering parameters or by selecting regions in the input image.
The work by Tavares et al. [32] was the first interactive
method, where the interaction occurs in the max-tree domain.
They provided a graphical representation of the max-tree,
where the user is able to navigate and select nodes to perform
interactive segmentation, filtering and collection of training
samples. In a subsequent work, Tavares et al. [33] extended
their interactive method to work with 3D images and to use
a color map to display attribute values of the nodes in their
max-tree graphical representation.

This paper reviews the max-tree literature, pointing to
interesting works and analyzing current trends. The paper
is organized as follows: Section II reviews the max-tree
theory and its difference to the component tree. Section III
discusses the max-tree construction and processing algorithms.
Section IV describes max-tree applications. Section V presents
the current research trends in the field. Finally, Section VI
concludes the paper.

II. THEORY

A. Max-tree vs component tree

Informally speaking, suppose we have a gray-scale image.
An upper threshold (≥) results in a binary image, where each
“white island” (value 1) is called a connected component 1

(CC). The higher the threshold value, the smaller the size
of the CCs, i.e. there is an inclusion relationship between
the connected components obtained at different threshold
values. The component tree represents an image through this
hierarchical property of threshold decomposition. For every
CC resulting of every possible threshold of the image, there
is a component tree node and this node stores all the pixels
of the connected component. This results in a redundant
representation, since most pixels will belong to more than
one node. Also, there are CCs that do not change from one
threshold to the other, therefore being redundant to use more
than one node to represent them. The max-tree is a compact
representation for the component tree, its nodes store only the
pixels that are visible in the image at that corresponding gray-
level, therefore CCs that stayed the same for a sequence of
thresholds are represented in a single node called composite
node [5]. We think in terms of the component tree when

1Actually the “island” definition depends on the connectivity rule [34].

designing methods and applications, but we process using the
max-tree, since it is a more compact and efficient structure.
That is the reason why many authors treat component trees
and max-trees as being synonyms.

The component tree and max-tree representations for a 1D
image I = [0, 5, 4, 2, 3, 1, 4, 3, 5, 0] are depicted in Fig. 2. The
composite nodes are represented by double circles and the
filled pixels in each horizontal CC represent the pixels each
node stores. For a more formal definition of max-trees and
component trees, the readers are referred to [3], [4], [5], [35].

(a) (b)

Fig. 2. (a) Component tree and (b) max-tree of the 1D image I =
[0, 5, 4, 2, 3, 1, 4, 3, 5, 0].

B. Filtering

It is possible to make an analogy between max-trees and
reversible transforms, like the Fourier Transform. When fil-
tering an image using a reversible transform, the first step
is to compute the the transform of the signal. Then, in the
transform domain different operations like convolutions and
multiplications are performed. Finally, the inverse transform
gives the filtered image.

Filtering an image using max-trees is the same. First, the
image max-tree is built using the appropriate connectivity rule.
Then, some of its nodes are removed (contracted) according to
the filtering criteria, usually size and shape criteria are used.
From the filtered max-tree representation, the filtered image
is reconstructed. The max-tree filtering pipeline is represented
by the black path in Fig. 3. One difference between filtering
images with max-trees and using image transforms is that the
image reconstruction from the max-tree is considerably faster
than building the max-tree (see Table I), while using image
transforms like the Fourier Transform, the times to go to the
transform domain and back to the image domain are similar.

(a)

Fig. 3. Max-tree filtering pipeline (black path) and space of shapes filtering
pipeline (black + red paths).



The max-tree filters are based on the attributes that can
be extracted from its nodes, like size, contrast and shape
attributes. Filtering an image using a max-tree is a connected
anti-extensive filter [3]. In order to obtain extensive filters,
the min-tree should be employed, which consists in the same
idea of the max-tree, but it is based on a lower threshold
decomposition. Equivalently, the duality property [36] can be
employed to obtain extensive filters, i.e. build the max-tree of
the negative of the image.

There are two rules for filtering the max-tree: the direct rule
[3] and the subtractive rule [37]. The direct rule preserves the
gray-level of the descendants of the nodes removed, while the
subtractive rule lowers the gray-level of the descendants of the
nodes removed, preserving image contrast.

There are also two strategies for filtering the max-tree:
pruning and non-pruning strategies. Pruning strategies usu-
ally result of thresholding an increasing attribute, such as
area, and non-pruning strategies result from thresholding
a non-increasing attribute, such as most shape attributes
like eccentricity and circularity. Some authors consider non-
pruning strategies unstable, therefore when dealing with a
non-increasing criterion many authors use the min, max or
Viterbi algorithms [3] to transform the non-pruning filter into
a pruning. Other authors prefer to use non-pruning strategies
in order to simplify more the max-tree, and still preserve its
topology [5].

C. Max-tree attribute signature analysis

One important concept related to the max-tree is the at-
tribute signature proposed by Jones [4]. The max-tree signature
consists in analyzing an attribute variation starting at a leaf
node and going towards the root, composite nodes must be
considered in this analysis. Signature analysis is a powerful
tool to inspect how the connected components evolve when
you go through many threshold values. For instance, when
there is a sudden change in the area signature value, it may
represent a connected component that split in two or more
significant connected components. A connected component
whose area remains practically unchanged for a sequence of
thresholds is a MSER region. An example using a brain image
showing where the brain and the scalp split is displayed in
Fig. 4. The CC immediately before the sudden change in
the signature (Fig. 4(c)) has an area of 24989 pixels and it
represents the brain and the scalp connected, while the CC
immediately after the sudden change (Fig. 4(d)) has an area
of 12291 pixels and it represents the brain after disconnecting
from the scalp.

Any attribute can be used used in signature analysis. There
are many size, shape and energy attributes that can be ef-
ficiently computed from the max-tree [38], [10]. Also, the
combination of signatures of different attributes can be used
for more complex analysis.

III. ALGORITHMS

There are three groups of max-tree construction algorithms:
immersion algorithms [39], [9], flooding algorithms [3], [40]

(a) (b)

(c) (d)

Fig. 4. (a) Original image. The red dot corresponds to a regional maximum
(max-tree leaf). (b) Area signature. (c) Node reconstruction before the sudden
drop in the area signature value and (d) node reconstruction after.

and merge-based algorithms [6], [30]. Carlinet and Géraud
[7] presented a comparative review with the state-of-the-art
algorithms. They proposed a decision tree to choose the best
algorithm based on image quantization, memory limitation and
availability of multiple cores in the system. In order to com-
pare the different algorithms, they standardized their outputs,
i.e., the max-tree representation, to be the same. Instead of
simply using an array that stores the parent relationship, they
propose to use two arrays: one to store the parent relationship
and a sorting array that allows to do tree traversals from
the root to the leaves and vice versa more easily. These
data structures used to represent the max-tree can be seen
as a pixel oriented max-tree representation, since the max-tree
nodes, called level-roots, cannot be accessed directly. The pixel
oriented max-tree representation of a 3× 4 image is depicted
in Fig. 5. The tree has seven nodes and it was built using a
8-connectivity rule.

More recently, Souza et al. [10] proposed a data structure
that also uses two arrays called node index and node array to
represent the max-tree. Node index is an array with the same
shape as the image that tells to which node each pixel belongs
and node array encodes the parent relationship of the tree and
the gray level of each node. The nodes are identified by the
line (or column) index used to access node array. Node array
has the property that if traversing from the first line (column)
towards the last line (column) of the array, the ancestors of the
node being processed will already have been processed. The
node array/node index structure is node-oriented, i.e. provides
direct access to the max-tree nodes, and is more memory
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Fig. 5. (a) Original image (pixel ID: gray-value). (b) Parent and sorting
(S) arrays with the level-roots highlighted in red. (c) Pixel oriented max-tree
graphical representation.

efficient than the representation used by Carlinet and Géraud
[7] for storing 8-bit images as long the ratio between the
number of image pixels and the number of max-tree nodes
is larger than 1.6, which is usually true in practical cases
[10]. The node-oriented max-tree of the image in Fig. 5(a)
is illustrated in Fig. 6.

There are also max-tree representations based on linked
lists [11], but they have not gained much popularity in the
mathematical morphology community, probably due the fact
that it is harder to manage linked lists than arrays.

Filtering the max-tree is very fast, when compared to the
time necessary to build it. There are three main algorithms for
filtering the max-tree. Wilkinson et al. [6] proposed a parallel
algorithm that uses only the parent array structure. Carlinet
and Géraud [7] proposed a sequential algorithm that uses the
parent and the sorting arrays to traverse the tree from the root
to the leaves and perform the filtering. They say that their
algorithm is faster and simpler than [6], but without experi-
mental evidence. Souza et al. [10] proposed a parallel filtering
algorithm that uses the node array and node index structures.
Their experiments showed a superior performance compared
to [7], specially when performing successive filtering steps.

Another subject of interest is the efficient extraction of

(a) (b)

Fig. 6. (a) Node array and node index max-tree representation of the image
in Fig. 5(a). (b) Node-oriented max-tree graphical representation.

attributes from max-tree nodes. Xu et al. [38] proposed
efficient algorithms for incrementally computing information
on region, contour, and context. Bertrand [41] proposed an
efficient algorithm to compute the dynamics [42]. Silva and
Lotufo [43] proposed a generalization of Bertrand’s algorithm
to compute extinction values [44], which is a generalization
of the dynamics, on the max-tree.

There are a few max-tree libraries. The SDC morphology
toolbox for MATLAB and Python [36] has a limited number of
max-tree processing functions. It is not public and the source
code is not available. The quasi-linear component tree [9]
with bindings for MATLAB has only the max-tree construc-
tion algorithm implemented, no max-tree filters and feature
extraction methods are available. Carlinet and Géraud [7]
provide the code of many max-tree computation algorithms.
The Milena implementation [45] in C++ with Python bindings
is not focused on max-trees, but its advantage is that it works
with generic data structures and not just images. The PINK
image processing library [46] was developed for research and
teaching purposes. It contains implementations of over 200
algorithms but it is not focused on max-trees, but mathematical
morphology in general. More recently, the iamxt toolbox2 was
proposed. It was written using an array programming style
using Python in association with the Numpy [47] library and
C++. This toolbox is devoted solely to max-trees and it has
the implementation of many filters, attribute extraction and
visualization routines.

In order to illustrate the order of magnitude of the max-tree
processing time, we used the iamxt toolbox implementation.
The toolbox uses the node array/node index structure and
the max-tree construction implemented in the toolbox is the
sequential union-find with level compression algorithm [7].
The filtering and image reconstruction algorithms are the

2https://github.com/rmsouza01/iamxt



ones described in [10]. The measurements were performed
on a 4-core virtual machine running in the Intel Xeon X5675
server with clock of 3.06 GHz. We used the three 256× 256
pixels sample images shown in Fig. 7. We measured the av-
erage times for building the max-tree using a 8-neighborhood
connectivity rule, filtering the max-tree using an area-open
filter set to remove nodes with area smaller than 500, and
reconstructing the image. The images were interpolated up
to 1280 × 1280 pixels. The average processing times are
summarized in Table I. We can see that for 1 megapixel images
the total processing time is close to 0.2 seconds, and more than
90% of the total processing time is related to the max-tree
construction, which could be improved even further by using
a parallel implementation if multiple cores are available.

(a) (b) (c)

Fig. 7. Sample images.

TABLE I
AVERAGE MAX-TREE CONSTRUCTION, FILTERING AND IMAGE

RESTITUTION PROCESSING TIMES IN MILLISECONDS.

Dimensions Construction Filtering Restitution Total
256× 256 11.71 9.14 0.12 20.97
512× 512 47.26 9.35 0.42 57.03
768× 768 111.10 10.23 0.93 122.26

1024× 1024 198.98 9.49 1.56 210.03
1280× 1280 310.42 9.56 2.64 322.62

IV. APPLICATIONS

The fact that the max-tree can be computed efficiently
combined with its information concerning size and shape of
image structures allow the development of many applications.
Entire applications can be build using almost solely the max-
tree or it can be used in combination with other methods
in a larger pipeline. It is specially well suited for medical
image segmentation problems, where intervals of the size and
a model of the shape of the structures of interest are usually
known. Also, because filtering images using the max-tree does
not change the contours of the structures in the image, which
is a very important feature for medical applications. In this
section, we illustrate some possibilities of using max-trees in
real applications. For applications detailed in more depth, see
the references listed in Section I.

A basic use of max-trees is image filtering. They are better
suited than classical filters like mean and median filters, be-
cause they do not blur the image. A lung computer tomography
(CT) image and the result of applying mean, median and area-
open filters are depicted in Fig. 8. It is visible that the mean

and median filters cause considerable blurring to the image,
while the area-open implemented on the max-tree filters the
image without producing that undesirable effect. The structural
similarity index [48] between the original image and the
filtered with the mean filter is 0.88, with the median filter
is 0.90, and with the area-open is 0.99. The closest to 1 the
higher is the structural similarity between the images.

(a) (b)

(c) (d)

Fig. 8. (a) Lung CT image. (b) Mean filter and (c) median filter using a
7× 7 window. (d) Area-open removing structures with area smaller than 25.

Another important use of max-trees filtering is segmenta-
tion. For example, we can use contrast, size and shape criteria
to filter all structures in the image, but the ones we are
interested. For instance, the carotid artery is usually imaged
using MR systems. The shape of the carotid is circular and
its diameter range is known. The segmentation of the carotid
artery wall and its interior can be done solely through max-
tree filtering steps. A carotid wall and its interior segmentation
is depicted in Fig. 9. This segmentation was obtained solely
by filtering the max-tree for the artery wall and the min-tree
for its interior using a combination of height extinction filter
[49], bounding-box and circularity filtering.

Another max-tree application is its use to select nodes to
be provided as input markers for a segmentation technique,
such as the Watershed Transform [50]. For instance, based
on average values and standard-deviations of the brain white-
matter volume and its shape description, it is possible to select
a max-tree node that corresponds to most of the brain white-
matter (Fig. 10). This node can be used as a marker for brain
segmentation.

Another application of max-trees is vessel segmentation in



(a) (b)

Fig. 9. (a) Carotid MR image. (b) Segmentation result using size and shape
filtering. Carotid wall shown in red and its interior in green.

Fig. 10. Brain MR and max-tree node corresponding to the brain white-
matter overlaid in white. Only some slices of the volume are displayed.

images of retina. A supervised classifier can be trained to tell
which max-tree nodes correspond to vessels, and which nodes
do not. The composition of the vessels’ nodes corresponds
to the final segmentation. A retinal image from the DRIVE
dataset [51] and its vessel segmentation using the methodology
described is depicted in Fig. 11.

One drawback of applying classification methods directly to
the max-tree nodes is that max-trees corresponding to natural
images may have tens of thousand of nodes making the classi-
fication procedure slow. The max-tree graphical representation
of the retina image in Fig. 11(a) is depicted in Fig. 12 using
the Scalable Force Directed Placement (SFDP) algorithm [52]
to position all the 32938 nodes of this max-tree.

In order to simplify the max-tree without losing relevant
information and preserving its topology, the maximal max-
tree simplification (MMS) methodology [5] may be employed.
It consists in applying an extinction filter followed by the
maximal max-tree simplification filter. This methodology guar-
antees that at the end the number of max-tree nodes is bounded

Fig. 11. (a) Retinal image and (b) max-tree segmentation result.

Fig. 12. Max-tree graphical representation of the retina image in Fig. 11(a).
The red node is the max-tree root.

between the number of tree leaves plus one and two times the
number of leaves. The application of this methodology to a
sagittal brain MR slice is illustrated in Fig. 13. The original
max-tree has 14312 nodes, after the area extinction filter set
to preserve 8 leaves, the tree has 614 nodes. After the MMS
filter, the resulting max-tree has only 16 nodes and many
relevant structures like scalp, brain stem, cerebellum, and the
corpus callosum are still present in the image as can be seen
in Fig. 14. This methodology is very useful for simplifying the
max-tree, so its nodes can be used in association with machine
learning techniques faster than using the entire set of nodes of
the original max-tree.

Another option is to display a simplified max-tree for
processing purposes. For instance, Fig. 15 illustrates the layout
of the interactive max-tree visualization tool proposed by
Tavares et al. [33]. It displays a reduced number of max-tree
nodes, but through features for zooming specific portions of



(a) (b)
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Fig. 13. (a) Original image. (b) Result of the area extinction filter set to
preserve 8 leaves. (c) Result of the MMS filter.

Fig. 14. Max-tree after the MMS methodology.

the tree, the user is able to access all max-tree nodes. The
tool also implements an attribute color map, that the user can
use as a guide for selecting the most relevant nodes for the
problem at hand. This max-tree interactive tool is useful for
semi-automatic image segmentation. The user can select a set
of nodes to be the segmentation or select nodes to be used as
input markers for another segmentation technique. A demo
of this tool is available at http://adessowiki.fee.unicamp.br/
adesso/wiki/code/MainPage/view/.

Six examples of max-trees applications were described in
this section. The first was a simple filtering step to mitigate
noise in the image without blurring it. The second showed
that a filtering step combining size and shape information
can be used for segmentation purposes. The third application
illustrated how to use the max-tree to select markers to be used
as input for other segmentation techniques. The fourth appli-
cation illustrated the combination of the max-tree information

(a)

Fig. 15. Interactive max-tree tool.

with machine learning techniques for image segmentation. The
fifth used the MMS methodology to simplify the max-tree and
speed-up the nodes classification. Finally, the sixth application
illustrated the use of the interactive max-tree visualization tool
for segmentation purposes.

V. CURRENT TRENDS

The max-tree was one of the first tree-based image repre-
sentations proposed. After its popularization, many new tree-
based image representations were proposed. Salembier and
Garrido [53] proposed the Binary Partition Tree, which is
a compact multiscale representation of the image composed
of meaningful regions that can be extracted from an image.
It is devoted to image processing, segmentation and infor-
mation retrieval applications. Ouzounis and Wilkinson [54],
[55] proposed the dual-input max-tree and fast algorithms to
compute it. Morimutsu et al. [56] proposed an incremental
algorithm to compute families of max-trees with connectivity
rules of increasing neighborhoods. Jalba and Westenberg [57]
compared the filtering procedure on the max-tree with the fil-
tering procedure on the watershed tree. Monasse and Guichard
[58] proposed a contrast-invariant image representation called
tree of shapes, which represents the hierarchical relationship
between the shapes in the image. Géraud et al. [59] proposed a
quasi-linear algorithm to build the tree of shapes, which can be
seen as an extension of the max-tree union-find [60] construc-
tion algorithms. There is also some work trying to extend these
tree structures to multivalued images [61], [62], [63], the main
difficulty is that there is no strict order relationship between
pixel values when working with multivalued images.

Xu et al. [64] proposed to build max-trees of tree-based
image representations, i.e. build a max-tree of a max-tree or
a max-tree of a tree of shapes. This second tree construction
takes the image to the space of shapes allowing the creation

http://adessowiki.fee.unicamp.br/adesso/wiki/code/MainPage/view/
http://adessowiki.fee.unicamp.br/adesso/wiki/code/MainPage/view/


of a novel class of connected operators from the leveling
family and more complex morphological analysis, such as the
computation of extinction values for non-increasing attributes.
This pipeline is illustrated by the black and red paths in Fig. 3.
This methodology was used for blood vessels segmentation, a
generalization of constrained connectivity [65], and hierarchi-
cal segmentation [66].

Max-trees of real images usually have thousands of nodes,
therefore it may be useful to simplify it trying to preserve the
most relevant nodes according to the problem being analyzed
[49]. Also, the tree topology may be relevant, since under
controlled circumstances, such as in brain MR images, it is
expected that a common topology be present, some max-
tree filters like the maximal max-tree simplification [5] try
to simplify the max-tree and preserve its topology at the same
time.

VI. CONCLUSIONS

This paper presented an overview of the max-tree principles,
algorithms and applications. We pointed to interesting works
on the field and illustrated how the max-tree can be used in
different applications. We tried to emphasize the fact that the
size and shape information that the max-tree provides about
the structures in the image is well suited for applications,
such as medical imaging applications, where we have prior
knowledge of size and shape of the structures of interest. Since
the max-tree is based on a threshold decomposition, which
is sensitive to noise, it is expected that with the advance of
imaging techniques and consequent improvement of images
quality, the max-tree based applications will be even more
accurate.
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