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Abstract—Despite the success of Principal Component Analysis
(PCA) for dimensionality reduction, it is known that its most
expressive components do not necessarily represent important
discriminant features for pattern recognition. In this paper, the
problem of ranking PCA components, computed from multi-class
databases, is addressed by building multiple linear learners that
are combined through the AdaBoost.M2 in order to determine
the discriminant contribution of each PCA feature. In our
implementation, each learner is a weakened version of a linear
support vector machine (SVM). The strong learner built by the
ensemble technique is processed following a strategy to get the
global discriminant vector to sort PCA components according
to their relevance for classification tasks. Also, we show how the
proposed methodology to compute the global discriminant vector
can be applied to other multi-class approaches, like the linear
discriminant analysis (LDA). In the computational experiments
we compare the obtained approaches with counterpart ones
using facial expression experiments. Our experimental results
have shown that the principal components selected by the
proposed technique allows higher recognition rates using less
linear features.

Keywords-PCA; Ranking PCA Components; Separating Hy-
perplanes; Ensemble Methods; AdaBoost; Face Image Analysis

I. INTRODUCTION

Nowadays, increasingly large amount of high dimensional

image databases are being generated, leading to a strong de-

mand for dimensionality reduction for discarding redundancy,

and features selection techniques to reduce the feature space

for discriminating sample groups before executing classifica-

tion tasks [1].

In this avenue, we follow statistical learning approaches

whose basic pipeline can be described as follows [2]: (a) Lin-

ear subspace learning for dimensionality reduction; (b) Among

the linear components obtained, select the most discriminant

ones; (c) Solve the classification problem; (d) Reconstruction

problem, that is, visualize the information captured by the

discriminant linear components.

The step (a) can be accomplished through classical works

on linear dimensionality reduction including the principal

component analysis (PCA), factor analysis (FA) [3], multi-

dimensional scaling (MDS) [1] and projection pursuit (PP)

[4], [3]. The determination of discriminant features (step (b)

above) is very known in the context of PCA. In this case,

it was observed that, since PCA explains the covariance

structure of all the data its most expressive components, that

is, the first principal components with the largest eigenvalues,

do not necessarily represent the most important discriminant

directions to separate sample groups [5], [6]. This observation

motivates the development of specific techniques to compute

discriminant subspaces which, in general, depend on the

incorporation of prior information based on labeled data. The

Fisher’s linear discriminant analysis (LDA) [1], discriminant

principal components analysis (DPCA) [5] and its extension to

multi-class problems, named Multi-Class DPCA [7], Zhu and

Martinez [8] criterion, are techniques reported in the literature

for discriminant features selection.

In this work we focus on discriminant analysis on multi-

class problems. In this case, given an N -class database, the

Multi-Class DPCA builds a linear support vector machine

(SVM) ensemble, composed of N SVM machines, to get the

discriminant weights that are combined through the AdaBoost

technique in order to determine the discriminant contribution

of each feature.

Contributions: In this paper we keep the Multi-Class

DPCA methodology, but we replace the AdaBoost by the

AdaBoost.M2 algorithm and combine the separating SVM

hyperplanes through a simple strategy to compute the global

discriminant weights. In this way, we get a new ranking

method for the principal components, called Multi-Class.M2

DPCA algorithm, given by the group-differences extracted

by a linear ensemble based on the AdaBoost.M2 technique.

The computational experiments demonstrate that the new

discriminant technique improves the Multi-Class DPCA for

both reconstruction and recognition. Also, we show that the

proposed methodology to compute discriminant weights can

be applied to other multi-class approaches, like the linear

discriminant analysis (LDA).

It is important to highlight that we do not deal with the prob-

lem of computing general discriminant directions that are not

principal components. Rather, we apply the idea of using a set

of linear classifiers and an ensemble method (AdaBoost.M2,

in this case) to compute a matrix of discriminant weights that

is processed to select among the principal components the

most discriminant ones. We have focused here on the SVM

[9] method but any other separating hyperplane could be used.

To evaluate the Multi-Class.M2 DPCA algorithm, we per-

form group separation tasks in facial expression experiments

involving neutral, happiness, sad, fear, and anger face images.
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The experiments show that the SVM can be used as an

effective component classifier to generate the discriminant

weights for the multi-class discriminant principal components

analysis. Furthermore, the computational experiments demon-

strate the benefits of sorting principal components using the

Multi-Class.M2 DPCA if compared with the traditional PCA,

and the Multi-Class DPCA methodologies for selecting PCA

components.

The paper is organized as follows. In section I-A we

survey related works for discriminant analysis. Next, section

I-B presents the main stages of the proposed method. Then,

in section II we review the theory behind DPCA approach.

Section III presents the Multi-Class.M2 DPCA algorithm. The

computational experiments are described in section IV. Finally,

in Section V, we conclude the paper, summarizing its main

contributions and describing further developments.

A. Related work

Given a feature space, a key question is ”how can we deter-

mine (or compute) the most important discriminant features for

a pattern recognition task, like classification?” Discriminant

analysis techniques address this question, which is very known

in the context of PCA.

The Figure 1 is a simple example that pictures the limitation

of PCA for discriminant features extraction. Both Figures

1.(a) and 1.(b) represent the same data set. Figure 1.(a) just

shows the PCA directions (x̃ and ỹ) and the distribution

of the samples over the space. However, in Figure 1.(b)

we distinguish two patterns: plus (+) and triangle (H). We

observe that the principal PCA direction x̃ can not discriminate

samples of the considered groups because the projection of

the data points over direction x̃ will mix the patterns in the

corresponding one-dimensional subspace.

(a) (b)

Fig. 1. (a) Scatter plot and PCA directions. (b) The same population but
distinguishing patterns plus (+) and triangle (H).

In general, Fisher’s linear discriminant analysis (LDA) is

used to identify the most important linear directions for sepa-

rating sample groups rather than PCA [1]. This method, as well

as the weighted pairwise variant of the well-known multi-class

Fisher criterion introduced in [10] has the limitation of finding

number of groups - 1 meaningful discriminant directions.

In [5] it is proposed the DPCA technique, based on the

idea of using the discriminant weights obtained by separat-

ing hyperplanes to select among the principal components

the most discriminant ones. In [7] the DPCA was extended

for multi-class problems and, the so called multi-class dis-

criminant principal components analysis (Multi-Class DPCA),

consists of the following steps: (a) apply PCA technique for

dimensionality reduction in order to eliminate redundancy. (b)

Compute a linear ensemble, based on the one-against-all SVM

multi-class approach. (c) Combine the discriminant weights

computed through the separating SVM hyperplanes in order

to determine the discriminant contribution of each feature.

So, given a N -class database, the step (b) builds N SVM

machines in the PCA space. The step (c) is implemented by

adapting an ensemble technique, the AdaBoost one [11], to

yield a global discriminant vector. The proposed solution was

evaluated in group separation tasks involving facial expression

experiments and achieves higher recognition rates using less

PCA features. However, the Multi-Class DPCA is not efficient

for reconstruction. Also, the number of iterations (step (b)

above) is equal to the number of classes in the main loop of

Multi-Class DPCA. Such characteristic may limits the ability

of the method to select discriminant features. These drawbacks

have motivated the current work that is described next.

B. Technique overview

The whole Multi-Class.M2 DPCA methodology is schema-

tized in Figure 2. We follow [7] and keep the application of

PCA technique for dimensionality reduction in the step (1)

of the pipeline. Then, in step (2), we compute a set of linear

SVM hyperplanes, based on the one-against-all SVM multi-

class approach. We also apply an ensemble technique, the

AdaBoost.M2 algorithm, to combine the linear classifiers in

order to compute the global discriminant vector. The key idea

of this step is based on the fact that AdaBoost.M2 linearly

combines weak classifiers to get the strong hypothesis. So, it

is straightforward to obtain the global discriminant weights

from the expression that defines the strong classifier by using

a simple scheme, that corresponds to step (3) of Figure 2. This

strategy can be also used to combine discriminant directions

computed by other multi-class approaches, like linear discrim-

inant analysis (LDA).

However, it is known that a strong learner like SVM

does not work well as the base component for Adaboost

[12]. Therefore, we follow [12] and implement a strategy to

compute a weakened version of SVM that is useful as an

Adaboost.M2 component [13].

Fig. 2. Flowchart with main steps of the proposed technique.



Finally, in the stage (4) of Figure 2, we follow the traditional

DPCA proposal and sort PCA components in the decreasing

order of the global discriminant weights. The result of Multi-

Class.M2 DPCA algorithm is the PCA components arranged

according to the discriminant weights. The method is not

restricted to any application or particular probability density

function of the sample groups and the number of meaningful

discriminant directions is not limited to the number of groups.

II. TECHNICAL BACKGROUND

The Multi-Class.M2 DPCA technique is based on the DPCA

[5], the weakened SVM proposed in [12], the AdaBoost.M2

algorithm described in [13], and the nonseparable linear SVM

[9]. Following, we describe the DPCA methodology. The

reader can find a summary of all the other techniques in [14].

Let the training observations xi ∈ ℜn, i = 1, · · ·,M that

generate a M × n training set matrix Θ̃ centered respect to

the global mean x̂. Hence, the PCA algorithm computes a

transformation matrix Ppca = [p1,p2, ...,pm′ ] whose columns

pi, i = 1, . . . ,m′ minimize the mean square reconstruction

error, being the m′ ≤ n eigenvectors of the covariance matrix

Ω of Θ̃ that correspond to the m′ largest eigenvalues [15].

If to each training sample xi it is associated a label yi ∈
{−1, 1}, then we have a labeled training set:

X = {(x1, y1), (x2, y2) . . . (xM , yM )}, (1)

and, we can apply the DPCA technique to select the most

discriminante principal components to separate sample groups.

The original DPCA is implemented taking as input a

training set X , like in expression (1). Firstly, for discard-

ing redundancies, the PCA transformation matrix Ppca =
[p1,p2, ...,pm′ ] is computed and each zero mean data vector

x̃i is projected generating a vector xi = (Ppca)
T
x̃i. After-

wards, the obtained M × m′ data matrix and their corre-

sponding labels are used as input to calculate the separating

hyperplane. In the following we focus on the SVM technique,

although any other linear classifier could be used.

Since DPCA assumes only two classes to separate, there

are only one discriminant vector φsvm = (w1, w2, · · ·, wm′)
given by the SVM hyperplane. If we multiply the M × m′

most expressive features matrix by the m′ × 1 discriminant

SVM vector:

c1 = x11w1 + x12w2 + ...+ x1m′wm′ , (2)

c2 = x21w1 + x22w2 + ...+ x2m′wm′ ,

...

cM = xN1w1 + xN2w2 + ...+ xNm′wm′ .

we get the most discriminant feature ci ∈ R of each one of the

m′-dimensional vectors xi. Therefore, we can determine the

discriminant contribution of each feature by investigating the

weights [w1, w2, ..., wm′ ]. In fact, weights that are estimated

to be 0 or approximately 0 have negligible contribution on the

discriminant scores ci described in equation (2), indicating

that the corresponding features are not significant to separate

the sample groups. In contrast, largest weights (in absolute

values) indicate that the corresponding features contribute

more to the discriminant score and consequently are important

to characterize the differences between the groups.

Therefore, instead of sorting these features by selecting

the corresponding principal components in decreasing order

of eigenvalues, as PCA does, DPCA selects as the most

important features for classification the ones with the highest

discriminant weights, that is, |w1| ≥ |w2| ≥ ... ≥ |wm′ | .

III. MULTI-CLASS.M2 DISCRIMINANT ANALYSIS

The Multi-Class.M2 DPCA procedure is described by the

Algorithm 1. At the input of the procedure, the training

instances in the database X ⊂ ℜn are supposed independently

and identically distributed from an uniform distribution D.

Following the pipeline in Figure 2, the first stage of Multi-

Class.M2 DPCA applies the PCA, for dimensionality reduc-

tion in order to eliminate redundancy (line 2).

The labeled projected data set is built in line 3 and composes

the input to generate the weak SVM classifiers. In line 9 of

Multi-Class.M2 DPCA algorithm, each weak learner generates

an hypotheses, which has the form h : X × Y → [0, 1],
and can be interpreted as the probability that y is the correct

label associated with instance x. So, given a sample xi,

the probability of choosing an incorrect label y is [13]:

Pr = 1
2 (1− h(xi, yi) + h(xi, y)).

However, we have |Y |−1 possibilities to obtain the incorrect

answer. So, we can define the loss of the hypothesis through

a weighted average according to some qi,y , called the label

weighting function, that assigns to each example i in the

training set a load, with
∑

y 6=yi
qi,y = 1. The resulting formula

is called the pseudo-loss of h on training instance i with

respect to q [13]:

plossq (h, i) =
1

2


1− h(xi, yi) +

∑

y 6=yi

qi,yh(xi, y)


 . (3)

So, following the AdaBoost.M2 strategy [13], in each it-

eration t of the Algorithm 1, the weak learner’s goal is to

minimize the expected pseudo-loss, computed in line 10 of

the Algorithm 1, for a distribution Dt and weighting function

qt. The algorithm uses a second weight vector whose values at

time t are denoted by wt
i,y , i = 1, · · ·,M , y ∈ Y −{yi}, which

is initialized in line 1, based on the initial distribution D. The

main loop of the algorithm aims to update these weights in

order to minimize the expected pseudo-loss. So, the weighting

function qt and the distribution Dt are computed using the

wt
i,y (line 5 of procedure 1).

Next, the Multi-Class.M2 DPCA computes a set of SVM

hyperplanes, based on the one-against-all SVM multi-class

approach presented in [16]. Hence, as we have N classes,

the internal loop in the Algorithm 1 (line 6 to 9) constructs N
weakened SVMs, in the PCA subspace, using the Algorithm

2. To do this, in line 7 of Algorithm 1 we buid the Θ
y

set by

taking all ky projected samples from class y and label them

as 1. Then, using random sampling we choose (2ky)/(N −1)



projected samples from classes other than y and label them

as −1. The obtained set of feature vectors x
y
m ∈ ℜm′

and

corresponding labels ym ∈ {−1, 1}:

Θ
y
=

{
(xy

1, l1) , (x
y
2, l2) , ...

(
x
y
3ky

, l3ky

)}
, (4)

are the input to call the Algorithm 2 which construct the weak

SVM (WSVM) model y, represented by a hyperplane direction(
φty

)
and a linear coefficient

(
bty
)
. Each hypothesis ht, in

line 9 of Algorithm 1, is generated through a WSVM and

the following normalization function:

f (z) =
z − ztmin,y

ztmax,y − ztmin,y

, (5)

where f : [ztmin,y, z
t
max,y] → [0, 1], with ztmin,y and ztmax,y

being the minimum and maximum values, respectively, of the

set
{
< xi, φ

t
y > +bty, i = 1, 2, . . . ,M

}
.

The lines 16-18 of the Algorithm 1 are based on the

AdaBoost.M2 idea of deriving a strong learner hf by using

the linear combination of weak (WSVM, in our case) learners

h1, h2, · · ·, hT :

hf (x) = argmax
y∈Y

T∑

t=1

α̃tht(x, y), (7)

where α̃t is computed in line 16. This expression offers the

possibility of extending the DPCA methodology to multi-class

problems using the Adaboost.M2 result. To see this, we shall

remember that ht(x, y) in line 9 is computed through the

function f , in expression (5), and rewrite expression (7) as:

hf (x) = argmax
y∈Y

[
T∑

t=1

α̃tf
(
< x, φty > +bty

)
]
. (8)

But, from equation (5), we get:

f
(
< x, φty > +bty

)
=
< x, φty > +bty − ztmin,y

ztmax,y − ztmin,y

. (9)

Therefore, by substituting this expression into equation (8),

and using the linearity of the inner product, we can show that:

hf (x) = argmax
y∈Y

[< x,Φy > +ψy] , (10)

where:

Φy =

T∑

t=1

α̃t
φty

ztmax,y − ztmin,y

, ψy =

T∑

t=1

α̃t

(
bty − ztmin,y

)

ztmax,y − ztmin,y

,

with Φy ∈ R
m′

and ψy ∈ R. The bias ψy can be incorporated

in the inner product through a translation T y that satisfies

< T y,Φy >= ψy , which renders:

hf (x) = argmax
y∈Y

[
n∑

i=1

(
xi + T i,y

)
Φi,y

]
. (11)

This expression is the key to generalize the DPCA technique

for multi-class problems. Specifically, each feature i has a

vector of weights Φi,y with size |Y |. So, for each feature i
we need to seek for the most important weight, in absolute

Algorithm 1: Multi-Class.M2 DPCA Procedure

Input: Samples: X = {(x1, y1), (x2, y2) . . . (xM , yM )};

where yi ∈ Y and Y = {1, 2, 3, .., N};

Distribution D over the M examples; Percentage

µ;

1 Initialize the weight vector: w1
i,y = D(i)

|Y |−1 ,

for i = 1, · · ·,M ; y ∈ Y − {yi}
2 Calculate Ppca and the projected data xi = (Ppca)

T
x̃i

where x̃i = xi − x̂, with, x̂ = 1
M

∑M

i=1 xi
3 Build the labeled projected data set

Θ = {(x1, y1), (x2, y2) . . . (xM , yM )}
4 for t = 1, ... to T do

5 for y 6= yi: q
t
i,y =

wt
i,y

W t
i

; and set Dt(i) =
W t

i∑
N
i=1

W t
i

6 for y = 1, ... to N do

7 Build the subset Θ
y
, given by expression (4);

8 (φty, b
t
y) =WSVM(Θ

y
,Y, Dt, µ) where

Y = {−1, 1};

9 Get hypothesis ht : X × Y −→ [0, 1], given by

ht(x, y) = f
(
< x, φty > +bty

)

10 Compute:

et =
1

2

N∑

i=1

Dt(i)


1− ht(xi, yi) +

∑

y 6=yi

qti,yh
t(xi, y)




11 if et > 0.5 then

12 break;

13 Calculate AdaBoost.M2 weights: αt = 1
2 ln

(
1−et

et

)
;

14 for i = 1, ...N and y ∈ Y − {yi} do

15 Update:

wt+1
i,y = wt

i,yexp(−α
t(1− ht(xi, yi) + ht(xi, y)));

16 Normalize α̃t = αt/
∑T

j=1 α
j , t = 1, 2, . . . , T

17 for i = 1, ... to m′ do

18

|Φi,y| =

∣∣∣∣∣

T∑

t=1

α̃t
φti,y

ztmax,y − ztmin,y

∣∣∣∣∣ , y ∈ Y (6)

19 Compute v (i) = maxy∈Y {|Φi,y|}, i = 1, 2, . . . ,m′

20 Sort discriminant weights: v (1) ≥ v (2) ≥ . . . v (m′)
21 Select the principal components following v (i)

Output: Discriminant principal components:

q1,q2, · · ·,qm′



Algorithm 2: WSVM Procedure: Build a Weakened ver-

sion of SVM.

Input: Labeled samples:X = {(xi, yi), i = 1, 2, · · ·, n′}
where yi ∈ Y is the label of the sample xi;

Samples probability distribution D(xi);
Percentage µ;

Select J so that,
∑

j∈J D(xj) ≤ (1− µ);
Select (xi, yi); i ∈ J , and define D∗ = DJ ;

Compute the weighted data X∗ = {(D∗
i · xi, yi), i ∈ J }

Compute the (weak) SVM hyperplane φsvm using X∗;

Output: WSVM hyperplane φsvm, b.

value |Φi,yi
|, which can be interpreted as a measure of

the discriminant contribution of the corresponding feature.

These values are used to generate the vector v in line 19
of Algorithm 1. Next, we shall sort the obtained array in

decreasing order, as performed in line 20 of the Algorithm

1, to get the global discriminant weights. The output of the

Multi-Class.M2 DPCA procedure is the discriminant principal

components q1,q2, . . . ,qm′ where qi is a PCA component

selected according to its discriminant weight v (i).
On the other hand, if we compute the LDA in the PCA

space, we get N − 1 hyperplane directions φilda ∈ R
m′

, i =
1, 2, . . . (N − 1). Consequently, we obtain in this case a LDA

weight matrix φi,jlda, which can be processed according to lines

19-20 of Algorithm 1, by just replacing Φi,y by φi,jlda. The

obtained global discriminant weights are named Multi-Class

LDA-DPCA in the following sections.

We also aim to study the influence of the denominator

ztmax,y − ztmin,y in expression (6) of line 18 of Multi-

Class.M2 DPCA algorithm . To perform this task, we test

a version of the Algorithm 1 with equation (6) replaced by

|Φi,y| =
∣∣∣
∑T

t=1 α̃
tφti,y

∣∣∣. We call the obtained (non normalized)

algorithm as the Multi-Class.M2 DPCA-NN.

IV. COMPUTATIONAL EXPERIMENTS

In this section we perform facial expression experiments

using the Radboud (RaFD) [17] and the Japanese Female

Facial Expression (JAFFE) image databases [18]. In order to

save memory allocation along the Algorithm 1 execution, we

convert each pose to gray scale and resize it to 50×50 before

computation.

In the following, we consider the PCA as well as the

Multi-Class DPCA discriminant technique, presented in [7],

and the discriminant approaches explained in the section III:

Multi-Class.M2 DPCA, Multi-Class.M2 DPCA-NN, and the

Multi-Class LDA-DPCA. For evaluation of the discriminant

principal components, the following separation tasks have

been performed using frontal face images of the mentioned

databases (see [14], section 6):

• Three-Class experiment: neutral, happiness, and sad

samples;

• Five-Class experiment: neutral, happiness, sad, fear, and

anger classes.

The recognition tasks experiments are carried out using

the full rank PCA subspace with all non-zero eigenvalues. In

these experiments we have assumed equal prior probabilities

and misclassification costs for all the classes. On the PCA

subspace, the mean of each class i has been calculated from the

corresponding training images and the Mahalanobis distance

from each class mean x̂i has been used to assign a test

observation xr to either the different facial expressions. That

is, we have assigned xr to class i that minimizes:

di(xr) =

k∑

j=1

1

λj
(xrj − x̂ij)

2, (12)

where λj is the corresponding eigenvalue, k is the number of

principal components retained, xrj and x̂ij are the projections

of the sample xr and of the mean x̂i, respectively, in the jth
component considered.

The Figure 3 shows the average recognition rates of the 10-

fold cross validation experiments for PCA and the discriminant

techniques for the three and five-class classification problems

above mentioned. When analysing the Figures 3.(a)-(d) we

notice that the Multi-Class.M2 DPCA and Multi-Class.M2

DPCA-NN achieve highest recognition rates or perform closer

to the best one. Specifically, let us highlight the intervals

where the highest recognition rates are not achieved by Multi-

Class.M2 DPCA or Multi-Class.M2 DPCA-NN. This happens

in the Figure 3.(a), for 25 < k < 29, where the Multi-Class

DPCA is the best technique. Also, in Figure 3.(b), the Multi-

Class LDA-DPCA outperforms both Multi-Class.M2 DPCA

and Multi-Class.M2 DPCA-NN in the range 10 ≤ k ≤ 17.

For k > 110 all the methods, except the Multi-Class DPCA,

achieves the same accuracy. In Figure 3.(d) shows that in the

range 8 ≤ k ≤ 20 the Multi-Class LDA-DPCA technique

is the best method. However, in all these cases, if we take

the absolute value of the difference between the minimum

classification rate obtained by Multi-Class.M2 DPCA and

Multi-Class.M2 DPCA-NN and the maximum accuracy of the

other ones, we get the values 1, 4% for k = 17 and 3% for

k = 10, for Figure 3.(b) and Figure 3.(d) respectively , which

are not expressive values.

Moreover, although Multi-Class LDA-DPCA and PCA clas-

sification rates are equal to the highest accuracy in some

intervals of Figures 3.(b)-(d), we must observe that the maxima

of the recognition rates are obtained by Multi-Class.M2 DPCA

(Figure 3.(a): 86% in k = 8; Figure 3.(d): 82% in k = 120)

and Multi-Class.M2 DPCA-NN (Figure 3.(b): 94% in k = 30;

Figure 3.(c): 66% in k = 15). However, in the case of Figure

3.(c) we shall notice also that Multi-Class.M2 DPCA gets an

accuracy very close to the maximum (64%) but using just

10 components. These facts indicates a slight superiority of

Multi-Class.M2 DPCA subspaces against the Multi-Class.M2

DPCA-NN ones for expression recognition tasks. Also, it is

important to notice in Figures 3.(a)-(d) a degradation in the

accuracy of all techniques for higher subspace dimensions,

probably due to overfitting.

In the results to be presented bellow, we use only the Rad-

boud database because it has gender and expression variations
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Fig. 3. Expression experiments using the JAFFE and Radboud databases.
Average recognition rates of PCA components selected by the focused
techniques:(a) Three-class tasks with JAFFE. (b) Three-class experiments
using Radboud. (c) Five-class tasks with JAFFE. (d) Five-class experiments
using Radboud.

which allow a more complete analysis of the discriminant

components meaning (see [14] for more complete results).

Table I, lists the 10 principal components with the highest

discriminant weights given by the Multi-Class.M2 DPCA al-

gorithm and the counterparts, for discriminating the expression

samples, when considering the three-class experiment with

the Radboud database. We can observe that all the consid-

ered techniques have selected some distant PCA components

among the first 10 most discriminant principal components. In

the specific case of the of Multi-Class.M2 DPCA, it selected

the 42th, 38th and 81th PCA components among its first

10 discriminant principal components. Since principal com-

ponents with lower variances describe particular information

related to few samples, these results confirm the ability of

Multi-Class.M2 DPCA of zooming into the details of group

differences. However, components with lower variances should

count less for the global reconstruction than PCA components

with higher variances. We expect some consequences of this

fact in the reconstruction experiments, as we will see next.

Multi-Class.M2 DPCA 24 36 26 32 20 38 81 42 29 9

Multi-Class.M2 DPCA-NN 24 26 36 20 32 8 9 38 17 19

Multi-Class LDA-DPCA 24 26 20 71 81 36 56 19 59 21

Multi-Class DPCA 24 26 20 22 19 17 34 40 8 44

TABLE I
TOP 10 (FROM TOP TO BOTTOM AND LEFT TO RIGHT) DISCRIMINANT

PRINCIPAL COMPONENTS, RANKED BY THE DISCRIMINANT TECHNIQUES,
USING THE RADBOUD DATABASE FOR THREE-CLASS TASKS.

To understand the changes described by the principal com-

ponents for the three-class separation tasks with the Radboud

data set, we reconstruct one expressive feature by varying a

discriminant principal component qi using the equation:

I = x̂+ δ · qi, (13)

where x̂ is the global mean, δ ∈ {±j · λ̄0.5, j = 0,±3},

and λ̄ is the average eigenvalue of the total covariance matrix

of PCA. We choose λ̄ instead of λi because some λi can

be very small (or big) in this case, showing no changes (or

color saturation) between the samples when we move along

the corresponding principal components.

From Table I we notice that the first three columns do

not show expressive differences between the selected principal

components. Hence, in Figure 4 we illustrate the transforma-

tions on the forth PCA most expressive component contrasted

with the forth discriminant principal component selected by

the discriminant techniques to separate facial expressions.

In Figures 4.(m)-(o), it can be seen that the forth PCA

most expressive direction captures essentially the changes in

gender, which are the major variations of all the training

samples. Owing to the fact that changes in facial expression

are much less significant than the gender ones, the standard

PCA is unable to capture such minor variations in its most

expressive components. However, when we compare these

results with the ones reconstructed by the forth most discrim-

inant principal component selected by the other techniques,

illustrated by Figures 4.(a)-(l), we can see that more distant

principal component (see Table I) carry more information

about expression variations then the first PCA ones. That is

why the discriminant methods achieves, in general, higher



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 4. Visualization of the changes described by the forth principal direction,
using the Radboud face database for three-class experiments, selected by: (a)-
(c) Multi-Class.M2 DPCA. (d)-(f) Multi-Class.M2 DPCA-NN. (g)-(i) Multi-
Class LDA-DPCA. (j)-(l) Multi-Class DPCA. (m)-(o) PCA.

classification rates than PCA. On the other hand, we can notice

in Figure 4.(a)-(f) that the Multi-Class.M2 DPCA and Multi-

Class.M2 DPCA-NN forth discriminant principal components

capture more clearly the facial expression with less artifacts

in the reconstruction than the other discriminant techniques

which agrees with the observed superiority of Multi-Class.M2

DPCA and Multi-Class.M2 DPCA-NN in the recognition

experiments. An analogous result is observed for five-class

classification tasks [14].

Now, it is worthwhile to consider the accumulated variance,

for Radboud experiment, explained by the selected subspaces

which is computed by:

V accl,i (k) =

∑k

j=1 λ
l
j∑m′

j=1 λ
l
j

, (14)

where i ∈ {3, 5}, l ∈ {1, 2, 3, 4, 5} with l = 1 corresponds to

Multi-Class.M2 DPCA, l = 2 to Multi-Class.M2 DPCA-NN,

l = 3 to Multi-Class LDA-DPCA, and l = 4, 5 correspond

to Multi-Class DPCA and PCA, respectively. Also, λlj is

the variance associated to the jth component selected by the

discriminant techniques l. The expression (14) is important

for this discussions because we expect some correlation be-

tween the performance for reconstruction and the accumulated

variance in expression (14) due to the known fact that the

components with larger variances keep global information

related to features that most vary in the samples [6]. In Figure

5 we plot the result of expression (14).
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(b) 5 classes(Radboud)

Fig. 5. Total variance computed by expression (14), explained by discriminant
principal components selected by Multi-Class.M2 DPCA (dashed red line);
Multi-Class.M2 DPCA-NN (solid red line); Multi-Class LDA-DPCA (black
line); Multi-Class DPCA (magenta line); and PCA (blue line) using Radboud
dadabase.

We observe that the Multi-Class LDA-DPCA gives the

lowest results for the V acc while PCA technique gives the

largest accumulated variances for both three and five-class

Radboud experiments. The V acc of the other considered

techniques fall between Multi-Class LDA-DPCA and PCA in

both Figures 5.(a),(b). Although PCA gives the largest values

for V acc its recognition rates are, in general, outperformed

by the discriminant principal components. Since PCA explains

features that most vary in the samples the principal subspaces

do not necessarily represent important discriminant directions

to separate sample groups.

However, the reconstruction results are expected to give

lower errors if we take components with higher variances, like

PCA does. Besides, in the case of five classes, we expect a

better reconstruction performance for Multi-Class.M2 DPCA

and Multi-Class.M2 DPCA-NN once their accumulated vari-

ances are closer to the PCA ones in this case. To make clear

these observations, let us quantify the reconstruction quality

through the root mean squared error (RMSE), computed as

follows:

RMSEl,i(k) =

√∑M

j=1 ||P.I
l
k.P

Txj − xj ||2

M
, (15)

where the index l and i follows the same maps used in

expression (14), I lk is a truncated identity matrix that keeps

the selected subspace with dimension k, P = Ppca, and ‖·‖
is the usual 2-norm.

In Figure 6 shows the RMSE for the reconstruction process

for the subspaces given by the focused techniques. It is no-

ticeable that for all experiments, PCA reconstruction performs

equal or better than the multi-class discriminant components

for all the simulated values of k. This observation agrees

with the accumulated variance reported in Figure 5 which is

such that V acc5,i (k) ≥ V accl,i (k) for all values of k, l and

i = 3, 5. Therefore, while in the classification tasks the PCA



method is, in general, outperformed by the Multi-Class DPCA

method, in the reconstruction experiments the PCA subspaces

become more efficient for almost all the simulated values.

Let us compare the reconstruction performance of the

discriminant approaches. From Figure 6.(a), for 1 ≤ k ≤ 5 the

discriminant techniques performs equal to each other. For 5 ≤
k ≤ 116 the RMSE for Multi-Class LDA-DPCA is the largest

one. The other discriminant technique performs as: (a) For 5 ≤
k ≤ 42, RMSE1,3(k) > RMSE2,3(k) > RMSE4,3(k);
(b) For 42 ≤ k ≤ 116, RMSE1,3(k) ≥ RMSE4,3(k) ≥
RMSE2,3(k). Therefore, the Multi-Class.M2 DPCA is equal

or worst than the Multi-Class DPCA and Multi-Class.M2

DPCA-NN in terms of RMSE results. On the other hand,

the Multi-Class.M2 DPCA-NN performs better than the Multi-

Class DPCA and Multi-Class.M2 DPCA for 42 ≤ k ≤ 116.

This observations are in accordance with the corresponding

accumulated variances in Figure 5.(a).

In the case of the RMSE for the five-class experiments

with the Radboud, shown in Figure 6.(b), we observe an

analogous behaviour for PCA and Multi-Class LDA-DPCA

for 1 ≤ k ≤ 180. All the other discriminant methods

perform equal for 1 ≤ k ≤ 5. For 5 ≤ k ≤ 21 we notice

that RMSE2,5(k) ≤ RMSE4,5(k) ≤ RMSE1,5(k). Next,

in the range 21 ≤ k ≤ 194 we have RMSE2,5(k) ≤
RMSE1,5(k) ≤ RMSE4,5(k). The reported behaviors agree

with the accumulated variances in Figure 5.(b).

Therefore, in terms of reconstruction, the Multi-Class.M2

DPCA-NN is better or equal than the Multi-Class.M2 DPCA

in both three and five-class experiments. The Multi-Class

DPCA performs better than the Multi-Class.M2 DPCA-NN

only for 5 ≤ k ≤ 42 and three-class problems. The PCA

is the best technique and the Multi-Class LDA-DPCA is the

worse one.
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Fig. 6. RMSE computed by equation (15) for: Multi-Class.M2 DPCA (dashed
red line); Multi-Class.M2 DPCA-NN (solid red line); Multi-Class LDA-DPCA
(black line ); Multi-Class DPCA (magenta line); and PCA (blue line).

V. CONCLUSION AND FUTURE WORKS

This paper introduces the Multi-Class.M2 DPCA and Multi-

Class.M2 DPCA-NN algorithms for ranking PCA components

computed from multi-class facial expression databases. The

basic methodology has a computational complexity dominated

by the AdaBoost.M2 algorithm plus PCA computation. The

facial expressions experiments show that, in general, the PCA

components selected by Multi-Class.M2 DPCA and Multi-

Class.M2 DPCA-NN allow higher recognition rates using

less linear features than Multi-Class LDA-DPCA, Multi-Class

DPCA and the standard PCA.

Further work is being undertaken to test the algorithm for

more than 5 classes as well as with other applications. We

shall replace the AdaBoost.M2 technique by the bagging one

[11] as a direction to improve the classification performance

when increasing the number of classes. Moreover, we need to

improve its reconstruction in low dimensional subspaces.
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