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Abstract—Parkinson’s Disease (PD) automatic identification in
early stages is one of the most challenging medicine-related tasks
to date, since a patient may have a similar behaviour to that of
a healthy individual at the very early stage of the disease. In this
work, we cope with PD automatic identification by means of a
Convolutional Neural Network (CNN), which aims at learning
features from a signal extracted during the individual’s exam by
means of a smart pen composed of a series of sensors that can
extract information from handwritten dynamics. We have shown
CNNs are able to learn relevant information, thus outperforming
results obtained from raw data. Also, this work aimed at building
a public dataset to be used by researchers worldwide in order
to foster PD-related research.
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I. INTRODUCTION

Parkinson’s disease (PD) is a chronic, progressive, multi-

lesion and neurodegenerative disease caused by the loss of

a neurotransmitter called dopamine [1]. Usually, PD is more

common in the elderly population, producing alterations in

gait and posture that may increase the risk of falls and lead

to mobility disabilities. As such, it impacts daily activities

and reduces the quality of life concerning patients and their

families [2], [3], [4].

Although some well-known drugs can help coping with the

disease in early stages, their usage along the years might has-

ten neurodegeneration [5]. Therefore, a number of researchers

from different domains aim at combining knowledge in order

to aid PD diagnosis as early as possible. Due to their emerging

use in a number of applications, decision-making techniques

based on machine learning might be the most fruitful ones to

deal with PD recognition [6].

Das et al. [7], for instance, presented a comparison

among some classification techniques concerning PD diag-

nosis, achieving around 92.2% of classification accuracy by

means of Neural Networks. Spadotto et al. [8] introduced the

Optimum-Path Forest (OPF) [9], [10] in the context of auto-

matic PD identification, and Gharehchopogh et al. [11] used

Artificial Neural Networks with Multi-Layer Perceptron to

diagnose the effects caused by Parkinson’s Disease. Spadotto

et al. [12] also considered using a meta-heuristic-driven feature

selection aiming at recognizing such illness.

Other works, such as the one by Pan et al. [13], analyzed

the performance of Support Vector Machines with Radial

Basis Function in order to compare the onset of tremor in

patients with PD. Later on, Peker et al. [14] used sound-

based features and complex-valued neural networks to aid

PD diagnosis as well, and Hariharan et al. [15] developed a

new feature weighting method using Model-based clustering

(Gaussian mixture model) in order to enrich the discriminative

ability of the dysphonia-based features, thus achieving 100%

of classification accuracy.

However, most works make use of audio-based datasets

to cope with PD identification. Very recently, Pereira et

al. [16] proposed to aid PD diagnosis by means of handwriting

movements. In addition, the very same group of authors

made available a dataset with hundreds of images containing

handwriting drawings made by both healthy individuals and

patients. Since the writing ability is affected by Parkinson’s

Disease, it is very usual to find such exams in hospitals

and clinics, but only a few works have considered them for

automatic diagnostic purposes.

Some years ago, a group of German researchers developed a

very clever way to assist PD diagnosis: the so-called Biometric

Smart Pen - BiSP R© [17], which is essentially a pen composed

of sensors that measure some information captured during

handwritten exams. Although the pen has been originally

designed for biometric purposes, it was further employed to

aid PD diagnosis. Some years ago, Peuker et al. [18] used the

signals extracted from the pen to perform PD identification,

obtaining very suitable results. However, the authors extracted

around 400 hand-crafted features from the signal, which were

obtained by means of a sequential-driven feature selection

algorithm, which may be too costly.

In this work, we proposed to learn pen-based features by

means of a Convolutional Neural Network (CNN) [19], which

can process information through a set of layers, being each

one in charge of learning a different and finer representation.

Moreover, as far as we are concerned, we have not noticed

any work that deal with automatic PD diagnosis by means of

deep learning techniques, which turns out to be the main con-

tribution of this work. Additionally, another main contribution

of this work is to make available a dataset composed of the

signals extracted from patients and healthy individuals through
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the smart pen.

The remainder of this paper is organized as follows. Sec-

tions II and III present some theoretical background with

respect to CNNs and the methodology employed in this work,

respectively. Section IV presents the experimental results, and

Section V states conclusions and future works.

II. CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks can be seen as a represen-

tation of a bigger class of models based on the Hubel’s and

Wiesel’s architecture, which was presented in a seminal study

in 1962 concerning the primary cortex of cats. This research

has identified, basically, two kinds of cells: (i) simple cells,

which possess an analogous duty to the filter bank step, and

(ii) the complex cells, which perform a similar job to the CNN

sampling step.

The first model that simulated a computer-based con-

volutional neural network was the well-known “Neocogni-

tron” [20], which implemented an unsupervised training al-

gorithm during the filter bank step, followed by a supervised

training algorithm applied in the last layer. Later on, LeCun

et al. [19], [21] simplified this architecture by proposing the

use of the Backpropagation algorithm to train the network in

a supervised way. Thus, several applications that used CNN

emerged in the subsequent decades.

Basically, a CNN can be understood as an N -layered image

processing sequence. Thereby, given an input image1, a CNN

essentially extracts a high level representation of its, called

multispectral image, whose pixel attributes are concatenated

in a feature vector for later application of pattern recognition

techniques. Figure 1 introduces the naı̈ve architecture of a

Convolutional Neural Network.
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Fig. 1. A typical Convolutional Neural Network architecture.

As aforementioned, each CNN layer is often composed

by three operations, being the first one a convolution with

a filter bank, followed by a sampling phase and then by a

normalization step. As one can observe in Figure 1, there is

still a possibility of a normalization operation in the beginning

of the whole process. The next sections describe in more

details each of these steps.

A. Filter Bank

Let Î = (DI , ~I) be a multispectral image such that DI ∈
n×n is the image domain, and ~I = {I1(p), I2(p), . . . , Im(p)}

1The same procedure can be extended to signal processing-based applica-
tions.

corresponds to a pixel p = (xp, yp) ∈ DI , and m stands for the

number of bands. When Î is a grey-scale image, for instance,

we have that m = 1 and Î = (DI , I).
Let φ = (A,W ) be a filter with weights W (q) associated

with every pixel q ∈ A(p), where A(p) denotes a mask of

size LA × LA, centered at p, and q ∈ A(p) if, and only

if, max{|xq − xp| , |yq − yp|} ≤ (LA − 1)/2. In case of

multispectral filters, their weights can be depicted as vectors
~Wi(q) = {wi,1(q), wi,2(q), . . . , wi,m(q)} for each filter i,
and a multispectral filter bank can be then defined as φ =
{φ1, φ2, . . . , φn}, where φi = (A, ~Wi), i = {1, 2, . . . , n}.

Thus, the convolution between an input image Î and a filter

φi generates the band i of the filtered image Ĵ = (DJ , ~J),
where DJ ∈ DI and ~J = {J1(p), J2(p), . . . , Jn(p)}, ∀p ∈
DJ :

Ji(p) =
∑

∀q∈A(p)

~I(q)⊗ ~Wi(q), (1)

where ⊗ denotes the convolution operator. The weights of

φi are usually generated from an uniform distribution, i.e.,

U(0, 1), and afterwards normalized with mean zero and unitary

norm.

B. Sampling

This operation has an extreme importance for a CNN, which

intends to provide a translational invariance to the extracted

features. Let B(p) be the sampling area of size LB × LB

centered at p. Additionally, let DK = DJ/s be a regular

sampling operation every s pixels. Therefore, the resulting

sampling operation in the image K̂ = (DK , ~K) is defined

as follows:

Ki(p) = α

√

∑

∀q∈B(p)

Ji(q)α, (2)

where p ∈ DK denotes every pixel of the new image, i =
{1, 2, . . . , n2}, and α is a parameter that controls the operation

sensitiveness.

C. Normalization

The last operation of a CNN is its normalization, which

is a widely employed mechanism in order to enhance its

perfomance [22]. This operation is based on the apparatus

found on corticals neurons [23], being also defined under a

squared-area C(p) of size LC × LC centered at pixel p, such

as:

Oi(p) =
Ki(p)

n
∑

j=1

∑

∀q∈C(p)

Kj(q)Ki(q)

. (3)

Thus, the above operation is accomplished for each pixel p ∈
DO ⊂ Dk of the resulting image Ô = (DO, ~O).

III. METHODOLOGY

In this section, we present the methodology used to design

the dataset, as well as the proposed approach to analyze the

pen-based features (signals) by means of CNNs. In addition,

we present the experimental setup as well.



A. HandPD Dataset

The writing of parkinsonian patients is often distorted and

smaller (micro-graphing) than that of healthy individuals due

to the tremors, reduced movement amplitudes, slowness and

rigidity [24]. Currently, it is not straightforward to pinpoint a

specific exam that can identify a patient in the early stages.

Also, PD can be misidentified with other brain disorders.

Recently, Pereira et al. [16] built a dataset2 concerning

images acquired during handwriting exams, which aim at

describing an individual skills when filling a form out, as

the one depicted in Figure 2. The idea of the form is to ask

a person to perform some specific tasks that are supposed

nontrivial to PD patients, such as drawing “spirals” (row ‘c’

in Figure 2), “meanders” (row ‘d’ in Figure 2), and performing

the so-called diadochokinese test, which is basically a test

where the individual holds the pen with straight arms and

perform hand-wrist movements. Since there are no drawings

involved, only the signal generated though these movements

are recorded by the pen.

Fig. 2. Form used to assess the handwritten skills of a given individual.

The former HandPD dataset was collected at the Faculty

of Medicine of Botucatu, São Paulo State University, Brazil,

2http://wwwp.fc.unesp.br/∼papa/pub/datasets/Handpd

being composed of images extracted from handwriting exams

of individuals divided into two groups: (i) healthy people and

(ii) PD patients. In this work, we proposed to extend the

original HandPD dataset with signals extracted from the smart

pen as well. Figure 3 displays an image of the BiSP R© used

in this work. The signals generated by the pen concern six

sensors, as described above:

• CH 1: Microphone;

• CH 2: Fingergrip;

• CH 3: Axial Pressure of ink Refill;

• CH 4: Tilt and Acceleration in “X direction”;

• CH 5: Tilt and Acceleration in “Y direction”; and

• CH 6: Tilt and Acceleration “Z direction”.

tilt & acceleration sensor

refill pressure sensor

writing’s pressure sensor

grip pressure sensor

Fig. 3. Biometric Pen: sensors are located at four different points (extracted
from [25]).

The difference between the exams of healthy individuals

and patients are due to a dysfunction of movement disorders.

The parkinsonian patients, for instance, present high levels of

tremor during drawing tasks. Since each sensor outputs the

whole signal acquired during the exam3, we can represent

such data as a time series, as depicted in Figure 4, which

represents the output of an exam from a healthy individual

when drawing a spiral (e.g. Figure 7a). We can observe the

drawing is pretty much the standard form of the image, while

the signal extracted from the patient seems to be too much

noisy, as displayed in Figure 5 (e.g. Figure 7b).

In order to build this initial dataset4, we used signals

extracted from spirals and meanders only. The new dataset

comprises 35 individuals, being 14 patients (10 males and 4
females) and 21 control (healthy) individuals (11 males and

10 females). Each person is asked to fill the form out using

the smart pen starting from inward to outward. This activity

concerns the analysis of the movement provided by spirals and

meanders drawings, which quantify the normal motor activity

3The extension of the exam is defined as the time interval between a
computer beep (a start call) and the end of the drawing process.

4We are now working on to expand the dataset with the diadochokinese
and circles test (row “ab” in Figure 2).

http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd
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Fig. 4. Signals recorded by the pen from a control individual when drawing
a spiral.
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Fig. 5. Signals recorded by the pen from a PD patient when drawing a spiral.

in a healthy individual, as well as the dysfunction of PD

patients.

B. Modelling Time Series in CNNs

We propose to model the problem of distinguishing PD and

control individuals as an image recognition task by means of

CNNs. Roughly speaking, the signals provided by the smart

pen are transformed into pictures. Each exam is composed

of r rows (exam time in milliseconds) and 6 columns, which

stand for the aforementioned 6 signal channels (e.g. sensors).

Therefore, each exam needs to be resized to a squared matrix

in order to fulfil our purposes (notice the number of rows

r may differ from each test, since a person may take longer

than another to perform the exam). After rescaling, each exam-

based matrix is then normalized in order to be modelled as a

gray-scale image. Figures 6 and 7 illustrate some drawings

and their transformed versions into time series-based images.

One can observe the different patterns between spiral and

meander images, as well as different patterns between the same

drawings of healthy and PD patients.

(a) (b)

(c) (d)

Fig. 6. Meander samples from: (a) control and (b) PD patient, and their
respective time series-based images in (c) and (d).

(a) (b)

(c) (d)

Fig. 7. Spiral samples from: (a) control and (b) PD patient, and their
respective time series-based images in (c) and (d).

C. Experimental Setup

In this work, we classified meanders and spirals images

drawn by the control group and PD patients using a CNN-

based approach. Also, we conducted an additional experiment

over the raw data to serve as a baseline for comparison

purposes. Although one can use any supervised machine

learning technique, we opted to employ the OPF classifier,

which is a fast and parameterless technique [9], [10].

We divided the experiments into two datasets: (i) the me-

anders and the (ii) spirals. Both datasets are composed of 308
images, being 224 PD patients and 84 control group samples.

In addition, we evaluated the robustness of CNNs over two

different image resolutions: 64 × 64 and 128 × 128 pixels.

Also, we evaluate the influence of the training set size over two



distinct experiments: one with 75% of the dataset for training

and 25% for testing, and another with 50% for training and

50% for testing purposes.

In regard to the source-code, we used the well-known Caffe

library5 [26], which is developed under GPGPU (General-

Purpose computing on Graphics Processor Units) platform,

thus providing more efficient implementations. Each experi-

ment was evaluated by a different CNN architecture provided

by Caffe using 10, 000 training iterations with mini-batches

of size 16. In order to provide a statistical analysis by means

of Wilcoxon signed-rank test with significance of 0.05 [27],

we conducted a cross-validation with 20 runnings. Different

CNN architectures were used to provide a deeper experimental

analysis:

1) ImageNet: composed of 5 convolution layers, 5 pooling

layers and 2 normalization layers. It is also constituted

by 5 ReLU layers among the convolution ones, 2 inner

product layers, 2 dropout layers, 1 softmax loss layer

and 1 accuracy layer for testing purposes.

2) CIFAR-10: a quick version is used, composed of 3 con-

volution layers and 3 pooling layers. It is also constituted

by 3 ReLU layers among the convolution ones, 2 inner

product layers, 1 softmax loss layer and 1 accuracy layer

for testing intentions.

3) LeNet: composed of 2 convolution layers and 2 pooling

layers. It is also constituted by 2 inner product layers

and a single ReLU layer among the inner product ones.

Finally, we have 1 softmax loss layer and 1 accuracy

layer for testing duties.

Since the images used in the experiments are domain-specific,

we did not employ transfer learning, i.e. we opted to train the

networks using our own datasets.

IV. EXPERIMENTAL RESULTS

This section aims at presenting the experimental results con-

cerning the CNN-based Parkinson’s Disease identification. As

aforementioned in Section III-C, we compared three distinct

CNN architectures and a baseline approach by means of the

OPF classifier considering both meander and spiral datasets.

Tables I and II describe the average results regarding meander

dataset. The most accurate results, according to Wilcoxon

signed-rank test, are in bold. Table I presents the overall

accuracy, while Table II presents the recognition rates per

class. Notice the overall accuracy is computed using the

standard formulation, i.e., (1 − errors
dataset size

) ∗ 100.

50% / 50% (Train / Test) 75% / 25% (Train / Test)
64× 64 128 × 128 64× 64 128 × 128

ImageNet 86.14% 84.74% 85.00% 87.14%

CIFAR-10 56.59% 50.00% 68.83% 64.22%

LeNet 25.45% 40.00% 43.64% 36.36%

OPF 79.87% 76.62% 84.42% 81.82%

TABLE I
AVERAGE OVERALL ACCURACY OVER THE TEST SET CONSIDERING

MEANDER DATASET.

5http://caffe.berkeleyvision.org

One can observe CNN-based features obtained the most

accurate results for all experiments, except for the 75%−25%
experiment with 64× 64 images. Probably, images with such

resolution may not represent the whole time series well enough

to be discriminated by CNNs. Also, the best results were

obtained by ImageNet architecture with 128×128 images and

using 75% of the dataset for training purposes. Since LeNet

is shallower than ImageNet and CIFAR-10 architectures, it

obtained the lowest accuracy recognition rates.

Table II presents the results per class. Since our dataset

is not balanced, it is quite useful to provide the recognition

rates considering both healthy and patients group. In general,

the recognition rates are quite good, being the bottleneck

of the proposed approach the recognition rates over control

individuals. Although we have more control people than PD

patients, a considerable number of healthy individuals were

classified as patients, since the dataset comprises PD patients

with exams quite close to the ones performed by healthy

individuals. As aforementioned, one the of greatest challenges

in PD identification concerns the early stage of the disease,

where both patients and healthy individuals have similar

handwritten skills.

50% / 50% (Train / Test) 75% / 25% (Train / Test)
64× 64 128× 128 64× 64 128 × 128

Control PD Control PD Control PD Control PD

ImageNet 74.29% 90.58% 76.31% 87.90% 72.86% 89.55% 76.19% 91.25%

CIFAR-10 15.71% 71.92% 10.00% 65.00% 33.33% 82.14% 10.95% 84.20%

LeNet 00.00% 35.00% 00.00% 55.00% 00.00% 60.00% 00.00% 50.00%

OPF 61.91% 86.61% 52.38% 85.71% 61.91% 92.86% 52.38% 92.86%

TABLE II
AVERAGE CONTROL AND PD PATIENTS ACCURACIES OVER THE TEST SET

CONSIDERING MEANDER DATASET.

Tables III and IV present the results concerning spirals

dataset. In this case, OPF over the raw data obtained better

results than the ones achieved over meanders. The most

accurate result of 83.77% was obtained by OPF with 64× 64
images using 50% of the dataset for training purposes. The

best results concerning CNNs were obtained using 75% for

the training set, which is somehow expected, since the main

shortcoming of deep learning techniques is related to the

dataset size for training. Once again, the shallower architecture

(LeNet) obtained the lowest recognition rates.

50% / 50% (Train / Test) 75% / 25% (Train / Test)
64× 64 128 × 128 64× 64 128 × 128

ImageNet 78.41% 77.69% 80.19% 77.53%

CIFAR-10 75.58% 73.38% 78.31% 70.78%

LeNet 54.55% 40.00% 43.64% 40.00%

OPF 83.77% 80.52% 79.22% 77.92%

TABLE III
AVERAGE OVERALL ACCURACY OVER THE TEST SET CONSIDERING

SPIRAL DATASET.

Table IV presents the accuracy results per class. Once

again, the recognition rates for each group are considerably

good, with CNNs obtaining around 98% of classification rate

concerning PD patients, and OPF achieving around 71% of

recognition rate for the control group. In this case, smaller



training sets seemed to be fruitful for CNNs, since spirals pose

a greater challenge than meanders. In this case, it is possible

to distinguish PD patients from healthy individual with less

images. Notice the results over spirals are considerably more

accurate then the ones obtained over meanders, as well as a

shallower architecture (CIFAR-10) obtained the best results in

some situations.

50% / 50% (Train / Test) 75% / 25% (Train / Test)
64× 64 128 × 128 64 × 64 128× 128

Control PD Control PD Control PD Control PD

ImageNet 58.10% 86.03% 56.19% 85.76% 59.52% 87.95% 55.48% 85.80%

CIFAR-10 29.76% 92.77% 06.31% 98.53% 57.38% 86.16% 14.76% 91.79%

LeNet 00.00% 75.00% 00.00% 55.00% 00.00% 60.00% 00.00% 55.00%

OPF 66.67% 90.18% 61.91% 87.50% 71.43% 87.50% 66.67% 82.14%

TABLE IV
AVERAGE CONTROL AND PD PATIENTS ACCURACIES OVER THE TEST SET

CONSIDERING SPIRAL DATASET.

Also, one interest result that can be observed refers to how

OPF performed better on a smaller training set. As we are

working with signals converted into images, some of the PD

patients are still not impaired, resulting in similar signals to

a control group patient. Furthermore, there are more training

samples from parkinson’s group than that of control group

ones. Thus, the raw data considering PD patients and healthy

individuals may look similar at certain points.

V. CONCLUSIONS

In this paper, we cope with the problem of PD identification

by means of Convolutional Neural Networks. Basically, the

idea is to model the handwritten dynamics as a time series,

and to use it as an input to a CNN, which will be able to

learn features that are used to distinguish healthy individuals

from PD patients. The main contributions of this paper rely

on two main aspects: (i) to employ a deep learning-oriented

approach to aid Parkinson’s Disease diagnosis, (ii) as well as

to design a signal-based dataset composed of features related

to handwritten dynamics.

The experimental section comprised different CNN archi-

tectures, as well as images with different resolutions and

distinct training set sizes. The results obtained by CNNs were

compared against the raw data classified by means of the

OPF, and showed to be very promising, since CNNs were able

to learn important features to differentiate PD patients from

healthy individuals, thus obtaining very good results over the

datasets.

In regard to future works, we aim at extending the dataset

with more exams (circles and diadochokinese test), as well as

to increase the number of individuals. Also, our next idea is to

learn a fusion schema that considers all exams when making

decisions about an individual. Also, we aim at employing

different approaches to transform temporal series into 2D

images, such as the visual rhythms proposed by Almeida et

al. [28].
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