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Fig. 1. Watershed segmentation of regions with similar number of dwellers using the municipalities with more than 0.5% of total households as markers.

Abstract—The framework of Mathematical Morphology was
recently extended to graphs and other digital structures. How-
ever, its operators are almost exclusively used for image process-
ing applications. Our main research objective is to explore the
operators from mathematical morphology for Visual Analysis.
The main objective of this work is to explore mathematical mor-
phology as a tool for visualization of graph-based georeferenced
data, through visual programming.
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I. INTRODUCTION

The framework of mathematical morphology is widely used
in image processing, providing powerful non-linear operators.
While originally limited to regular images, recent develop-
ments have extended this framework to more general digital
structures, such as graphs [1], [2], hypergraphs [3], [4] and
simplicial complexes [5], [6]. However, they are used mostly
for image processing, for instance by transforming a regular
image into a graph before applying the operators.

Our research objective is to expand the applications of the
framework of mathematical morphology to a more general
context. In this work, we start by exploring some operators on
graphs to explore georeferenced data. In particular, we explore
granulometry-based operators and the watershed algorithm.

II. RELATED WORK

There are many approaches aiming to filter data associ-
ated with a graph, including the use of spectral theory [7],

wavelets [8], random walks [9] or linear equation systems [10].
Some of these approaches have similar operators in the frame-
work of mathematical morphology. For instance, granulome-
tries, e.g. [11], are able to identify regions of high or low
frequencies. Despite the popularity of morphological filtering,
its operators are not often considered in other domains, which
usually adopt methods based on frequency or eigenvalues.

The watershed operator, e.g. [11], is not usually considered
to cluster data associated with a graph that is not derived from
an image, with the possible exception of ten Caat et. al [12],
where a variation of the watershed algorithm is used to detect
cliques for dense EEG visualization. There are several methods
for graph clustering in the literature [13], such as adaptations
of the classic k-means [14], [15], flow based cuts [16], spectral
approaches [17] and edge-betweenness [18]. One interesting
feature of the watershed operator, in contrast to many of such
operators, is that it does not require previous knowledge of
the considered data, but it is capable of considering it, when
available. However, it is well known for usually providing
oversegmented results, requiring additional processing.

Morse theory: The algebraic definition of mathematical mor-
phology on digital structures heavily relies on topological
concepts, therefore we can identify similarities between its
definitions and other topologically inspired theories. In par-
ticular, the Morse theory [19], [20] provides tools that are
similar to the operators considered here. Such tool have been
explored for visual analysis by Gerber et al. [21], where the
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link between the watershed operator and the Morse-Smale
(MS) complexes is mentioned. The watershed transform is
indeed related to the construction of MS complexes, as each
segmented region corresponds to an ascending morse complex.

Similarly to the granulometry based operators, the Morse
theory also provides operators that can remove peaks and
valleys from the considered data. However, while the gran-
ulometries consider the area of the peak, removing peaks with
progressively more elements, the operators from Morse theory
usually consider the persistence of each peak, which is based
on the height of the peak. This subtle difference leads to very
different operators and results.

In this work, we consider granulometry based operators,
openings and closings, to filter the data and the watershed al-
gorithm to segment the input into similar regions, considering
both the structure of the graph and the associated values. Our
approach also allows for the composition of different types of
values, when applicable, as Fig. 1 illustrates, where we identify
regions with similar number of dwellers using the number of
households to define the markers.

III. PROPOSED METHOD

To offer the full flexibility of the framework to the user,
we provide the operators through visual programming [22],
allowing the user to combine the available operators. While
the use of visual programming for data exploration is not
new, e.g. [23], [24], its use with operators from mathematical
morphology for visual analysis of graph data is yet unexplored,
to the best of our knowledge. This approach is particularly
interesting because several operators of the framework of
mathematical morphology are defined by combining existing
operators, therefore, by offering a basic set of operators, we
can indeed offer most of the existing operators to the user.

We provide dilation, erosion, opening and closing operators,
following the definition of integer operators from Cousty et.
al [1], along with the watershed operator [25] and some
additional tools such as absolute value, minimum, maximum,
difference, normalization, percentage and threshold.

We considered two approaches for the watershed operator,
the watershed cuts [25], used when markers are not provided,
and a variation of the classic watershed algorithm, e.g. [11],
used when markers are provided. Without markers, each local
minima will lead to a new segmented region.

In our variation, the priority of a node is not given by the
value of the node, but from a composition of the distance
of the node to the original marker and the difference in value
from the previous node to the current in that path. The balance
between these two values can be controlled using a parameter
called distance divisor. A small value, such as one, gives
priority to the distance over the difference between nodes,
leading to a segmentation that disregards the values of the
nodes. Conversely, a higher value decreases the contribution
of the distance, allowing large regions. Therefore, this is a
convenience parameter, motivated by the geographical context
of the data, allowing the user to directly balance the expected
format of the regions and the values of the nodes.

Due to space constraints, we will not review the definitions
from mathematical morphology. We refer the readers to the
book by Najman and Talbot [11] for a general overview, to
the article by Najman and Cousty [2] for a light reader on
recent developments of mathematical morphology in graphs,
and to the article by Cousty et. al [25] for a fast watershed
algorithm defined specifically for graphs.

IV. CASE STUDY

We consider the census information from the Brazilian In-
stitute of Geography and Statistics [26], that provides both the
geographical regions and indicators from the 2010 Brazilian
census. Using the geographical data, we created a graph, where
each municipality is represented as a node, and two nodes are
linked by an edge if they share borders. The resulting graph
has 5, 565 nodes and 15, 960 edges. Two different portions of
the resulting graph are illustrated in Fig. 2, also illustrating
the difference in the areas of the municipalities.

(a) Portion of the north region. (b) Portion of the northeast region.

Fig. 2. Two portions of the resulting graph.

We associated a subset of the census information with each
node, considering the total number of permanent and private
households, total number of dwellers in permanent and private
households, the average income for heads of family and the
average income of all people that are older than 10 years. The
indicators for income are further divided to represent all people
or only the ones that actually have an income. Therefore, we
have a total of six indicators.

A. Data filtering

One of the most common uses of granulometry based op-
erators is to remove progressively larger features in the space.
Usually opening operators remove peaks while the closing
operators close valleys. In our context, those operators can be
used to extract a general behaviour of the data, in a progressive
manner, as illustrated on Fig. 3, where different filtering results
are displayed considering the average income of people older
than 10 years that have an income. The left panel shows the
result of a closing followed by an opening, both with size one,
while the right panel shows the result considering a size four.
The transparency value is normalized considering the current
data, so there is no numeric correspondence between the
transparency in the two panels. However, the visual difference



Fig. 3. Example of data smoothing. Left: the result of a closing operator
followed by an opening operator, both with size one. Right: same operators,
with size four. [see text] Bottom: respective visual programs.

Fig. 4. Example of local peak highlight. Top left: graphical representation of
the average income of heads of family per municipality. Bottom: Considered
visual program. Top right: corresponding result, highlighting regions that have
higher value than its neighbors.

is clear, with the left image still containing peaks and valleys
while the right image presents only the coarse behaviour of
the information. From both images, we can conclude that there
is a clear pattern regarding the income distribution, with the
southern regions having clearly more average income than the
regions in the northeast. In the left image, we also observe a
clear axis of higher income in the state of São Paulo, from the
city of São Paulo to the middle of the state.

By subtracting this result from the original information,
we can highlight the regions that have higher value than its
neighbors. This operator is illustrated in Fig. 4. The resulting
image has different transparency values than the original im-
age, corresponding to the difference between the value of each
region and the broad pattern of the information, that is shown
on the left panel of Fig. 5. A very similar operator, illustrated
on the right panel of Fig. 5, along with the corresponding
visual program, can be used to highlight valleys in the data.
By subtracting the original information from this result, only
the filled valleys are displayed.

Fig. 5. Example of local valley highlight. Left: broad pattern of information
resulting from an opening of size one. Top: corresponding visual program.
Right: valley highlight by subtracting the original information from the result
of a closing of size one. Bottom: Corresponding visual program.

Fig. 6. Example of watershed segmentation without markers. Left: Regions
of similar value for the average income for people older than 10 years that
have an income. Right: Same result with opening and closing operators as
pre-processing steps. Bottom: Corresponding visual programs.

B. Watershed segmentation

The result of the segmentation, without markers, for the
average income for people older than 10 years that have
an income is illustrated on Fig. 6, using random colours.
Since each local minimum leads to a new region, we have an
oversegmented result. We can reduce the number of regions
by filtering the image to remove local minima, as illustrated
by the right image, using openings and closings. The Fig. 7
illustrates a zoomed section of these results, around Porto
Alegre, along with the corresponding graph. The size of the
nodes is related to the normalized value of the indicator.
Since the pre-processing steps remove abrupt variations, the
associated values are more similar, resulting in greater circles.

Another approach to reduce the number of resulting regions
is to provide a set of markers. The Fig. 8 illustrates one
possible set of markers, defined by all municipalities with
more than 0.5% of the total of households, along with the



(a) Watershed result. (b) Watershed result after pre-
processing.

Fig. 7. Two portions of the results depicted in Fig. 6.

corresponding result, using a distance divisor of 15. Each
marker on the left image corresponds to a region on the right
image. Interestingly, the region corresponding to Manaus, on
the north region, contains almost half of the country. While the
corresponding values are indeed similar, this effect is partly
due to the fact that the municipalities in this region are large.
Since the algorithm considers the distance in the graph, not
the geographical distance, most of the regions have nearly the
same size, with the exception of the region corresponding to
São Paulo which is limited by other nearby markers.

The effect of the distance divisor is illustrated on Fig. 9. On
the left image, the watershed was computed using the same
markers present in Fig. 8 and a distance divisor value of one,
therefore giving priority to the distance between the nodes and
the markers. By contrast, the right image was computed using
a distance divisor of 100, drastically reducing the priority of
the distance, leading to a segmentation guided primarily by
the difference in the considered values. Two portions of these
results are illustrated, along with the corresponding graph,
in Fig. 10. These portions include two markers that are in
close proximity: Goiânia and Brası́lia, both geographically and
in the graph. As expected, the results illustrated in the left
figure are more influenced by the distance between the markers
than by the value of the indicators, dividing the regions of the
graph almost equally between the two nearby markers. By
considering a divisor value of 100, as illustrated in the figure
on the right, the method associates each node with the marker
that produces a path with the least variation, even if this path
is long. The municipalities that are close to these markers,
as identified on this last result, indeed have more population
than its neighbours. These low population neighbours are then
associated with the marker for São Gonçalo, which is near
the city of Rio de Janeiro and considerably far from the
depicted regions. This city has around 170, 000 households,
which is the lowest value associated with a marker, leading
to paths with smallest change. Indeed, even municipalities on
the opposite end of the country are associated with this city,
while metropolitan areas are usually isolated.

Fig. 8. Example of watershed segmentation. Left: municipalities with more
than 0.5% of total households, used as markers. Right: Watershed result
considering the markers, illustrating regions with similar number of dwellers.

Fig. 9. Effect of the distance divisor on the result, using the markers
from Fig. 8. Left: distance divisor 1. Right: distance divisor 100.

V. DISCUSSION AND LIMITATIONS

The objective of this work was to explore the use of
mathematical morphology in a context different from image
processing. While we considered primarily operators based on
the usual behaviour observed in image processing applications,
they lead to interesting results, allowing the highlight of
specific parts of the information or the illustration of general
patterns, removing small elements. This simplification can also
be done in a multiscale manner. However, such operators alter
the associated values, therefore, while the resulting illustration
can reinforce details in the considered information, the values
differ from the actual values, which can be inadequate for
some applications, when the information is already accurate.

The segmentation of the information into similar regions,
considering both the geographic information and the asso-
ciated values can be an interesting tool to discover regions
of influence of specific regions, expliciting the borders of
macroscopic regions. The variation of the watershed algorithm
we introduced allows the user to control the general format
of the resulting regions, to fit specific objectives. However,



(a) Distance divisor 1. (b) Distance divisor 100.

Fig. 10. Two portions of the results depicted in Fig. 9.

the algorithm has a clear bias towards oversegmentation and
the definition of markers can be challenging, therefore the
extraction of information from these regions might need extra
post-processing steps or more information.

While we explored these operators, we did not compare
them with any existing operators for such problems. These
simple operators will possibly be outperformed by specialized
algorithms, but we consider this work as an initial step towards
interesting new developments.

VI. CONCLUSIONS

In this work we explored the framework of mathematical
morphology for visual analysis of graph-based, georeferenced
information. While our objective was to illustrate that the tools
provided by this framework are suitable to such applications,
we do believe that new and interesting developments can be
made by further research in this topic.
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