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Fig. 1.
Data visualization using Linear Discriminant Analysis (LDA) (c).

Abstract—High-dimensional data are typically handled as
laying in a single subspace of the original high-dimensional space.
However, data involved in real applications are usually spread
around in distinct subspaces which may even have different
dimensions. An interesting aspect, that has not been properly
exploited so far, is to understand whether information about the
subspaces can be used to improve visualization tasks. In this
work, we present a study where subspace clustering techniques
are employed to detect data subspaces, and the information about
such subspaces is used to assist visualizations based on multi-
dimensional projection. Our results show that the information
about subspaces can improve projection layouts, giving rise to
more reliable visualizations.
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I. INTRODUCTION

High-dimensional data can be collected from a variety of
sources, including field research, physical experiments, and
image collections. This kind of data are usually described in
terms of coordinates in a high-dimensional space. As we lack
the ability of directly visualizing this data to understand their
structure and arrangement, we resort to mathematical and com-
putational methods such as multidimensional projection which
are capable of processing and presenting high-dimensional
data in a meaningful manner.

Conventional multidimensional projection techniques as-
sume that the data are drawn from a single low-dimensional
subspace of a high-dimensional space [1]]. However, since the
data are potentially drawn from multiple subspaces, we wish
to take advantage of this fact. Subspace clustering techniques
are capable of finding this subspace structure even when the
number of subspaces and their dimensions are unknown.

LDA
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Our pipeline: high-dimensional data without labels (a). Subspace clustering discovered the subspace structure within the data and segmented it (b).

In this work, we provide an initial study on how the label
information given by subspace clustering techniques, such as
the Low-Rank Representation (LRR) [2], can be used to aid
multidimensional projection. We use the label information
as input to Linear Discriminant Analysis (LDA) [3], [4],
and compare the quality of these projections with previous
techniques such as Local Affine Multidimensional Projection
(LAMP) [3]] and t-SNE [6]]. We also propose a straightforward
modification to LAMP to make use of the label information.

Contributions:

o« We use subspace clustering techniques combined with
visualization techniques for dimensionality reduction;

o We study the effectiveness of the labeling on the visual-
ization by comparing previous multidimensional projec-
tion techniques with techniques that may take advantage
of the label information;

o A rather straightforward modification of LAMP to make
use of the label information.

A. Related work

In many problems data are represented as instances in a
high-dimensional space, although they often lie in the neigh-
borhood of subspaces with much lower dimension. Motivated
by this fact, a variety of techniques has been developed to
detect subspace structure. For example, Principal Component
Analysis (PCA) [1] assumes that the data are drawn from a
single linear space with dimension smaller than the original
space. However, this assumption can be very restrictive. Sub-
space clustering techniques assume that the data are drawn
from multiple independent linear subspaces, but the number
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and the dimension of the subspaces, as well as the data
membership, are unknown. When the number of subspaces
is equal to one, the problem reduces to PCA. The goal of
subspace clustering techniques is to find the number and
the dimension of each subspace and then to segment the
data according to the subspaces. These techniques can be
divided into algebraic [7], [8l, [9ll, iterative [10l, [11], [12],
statistical [13]], [14], and spectral methods [2]], [15]. A good
tutorial on subspace clustering can be found in the work by
Vidal [16]. LRR [2] aims to find a low-rank representation
of the data by solving for a matrix with minimum rank,
subject to some restrictions. We use this technique in our
implementation.

The work by Liu et al. [17] uses LRR to compute the
subspace clustering. The basis and dimension of each subspace
are estimated involving the Grassmannian distance, allowing
for an interactive visual exploration of the data trough dynamic
projections. We, on the other hand, use the clustering given
by LRR as input to LDA, wich produces a static projection.
Other work related to subspace clustering in visualization use
different approaches [18], [[19], [20]. The work by Miiller et
al. [21]] provides an overview on the employed techniques.

B. Technique Overview

Given a high-dimensional data set, we wish to visualize
patterns and intrinsic structures of the data. Suppose the data
are drawn from multiple independent linear subspaces. We use
LRR to compute the subspaces and find the data membership.
The next step is to use the subspace membership information
found by LRR as labels for LDA, which projects data to a
visual space based on the labels. LDA performs the projection
using a linear mapping that separates data with distinct labels.

II. TECHNICAL BACKGROUND

Here, we detail our visualization pipeline, comprising two
main steps: subspace clustering [2] and LDA projection [4].

A. Subspace Clustering

Given a data set X = {7, 22,...,2,}, z; € R?, with n
instances in a d-dimensional space, suppose the data can be
decomposed as X = X + Ey, where X, are the data drawn
from the independent linear subspaces and Ej is the “error”
of the data, due to corruptions such as noise or outliers. The
method aims to find a low-rank matrix Xy from the given
data set X corrupted by errors Ey. The solution is given by
the following minimization problem:

rélibgrank(Z) + M| B, st. X =AZ + E, (1)

where A is a “basis” for the space where the data lie, and
I - 1] is a matrix norm that may vary depending on what kind
of error we wish to filter.

As the problem (I) may not have a unique solution, the
following problem is solved instead:

win | Z]l, + AIEll, st X = AZ + E,

where || - ||« is the nuclear norm (sum of singular values).

When the data are affected by sample-specific cor-
ruptions or outliers, we can use the norm |FEl|z; =
> =1V 2oiz1 |1 Eij||?, which is sensible to this kind of error.

The minimizer Z is a matrix with information about the
data membership, and the non-zero entries of the matrix F
represent data corruption. Let Z = UDV' T be the singular
value decomposition of Z. To perform the segmentation, we
compute the affinity matrix ¥ defined by

Wi; = (UUT"),;, 2)

where U is formed by U Dz with normalized rows, and then
apply the Normalized Cuts [22] clustering algorithm.

B. LDA Projection

Given data {x1,z2,...,z,} with labels {y1,92,...,Yn}s
let C; denote the set of instances with label ¢, n; the cardinality
of Cy, and z; = ni ij cc, %5 be the centroid of label 7. From
this, we can compute the “between classes scatter matrix” Sp
and the “within classes scatter matrix” Sy, defined by
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where k£ is the number of classes, and Z is the centroid (mean)
of the entire data.
Maximization of the objective function
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gives us a projection matrix such that the data projection
has small variance in each class, and large variance between
class centroids. This problem is solved by the generalized
eigenvalue problem SpP = Sy PI'. Where the columns of
P are the eigenvectors associated to the eigenvalues that form
the diagonal matrix I'.

We then use the first p columns of P (which are associated
to the p absolutely largest eigenvalues) as the projection matrix
to reduce the dimension of the data, mapping them to a p-
dimensional space. For visualization, we usually use p = 2.

III. EXPERIMENTS

Artificial Data Set: We generated an artificial data set
consisting of 50 instances of data drawn from R3, 50 instances
drawn from R7, and 50 instances drawn from R!°, and
embedded all 150 instances in R3°. The result of LRR, with
A = 0.5, is shown in Fig. [2| Notice that matrix E is empty,
once the data set does have any instance with error.

Fig. |3| shows the projection of the data using LDA with
labels given by LRR segmentation. Notice that as LRR per-
formed the segmentation very well, the projections using the
colors from the real class are identical to the segmentation.



(a) Z matrix (b) E' matrix

Fig. 2. LRR minimizer on Artificial data set.
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(a) Color given by segmentation (b) Real classes color

Fig. 3. LDA projection of Artificial data set.

Iris Data Set: For our second test, we use the well-known
Iris data set [23]]. It consists of 150 instances of dimension 4
divided in 3 classes, each one of the species of the flower iris.
The results of LRR, with A = 0.5, are shown in Fig. E} Notice
that one of the classes is well identified in the block diagonal
matrix Z, while the other two classes are more difficult to
distinguish. The matrix F is empty due to the nature of the
data set and because we are using the norm || - ||2,1, which is
sensible to sample-specific corruptions.

As in the previous experiment, we projected the data using
LDA with labels given by the LRR segmentation (Fig. [5a) and
the real data set labels (Fig. [5b).

Using the Fisher classifier [4], we are also able to determine
a linear (Fig. [6a) and quadratic (Fig. [6b) classifier that divide
the space, allowing us to easily classify any new instance based
on its position relative to the pink lines.

IV. RESULTS, DISCUSSION, AND LIMITATIONS

We evaluate the method by comparing the projections
generated by LDA with three other techniques: LAMP [3], t-
SNE [6], and a modified version of LAMP. The modification
we applied to LAMP is to add the label information for the
computation of weights. Originally, we had o; = m,
where x is the instance to be projected, and x; is a control
point. In the modified version, we have:

|

The quality of the projections generated by our approach is
evaluated using four metrics: stress, neighborhood preserva-
tion, and two silhouettes. The stress function we use is given

W, if x and x; have the same label

0, otherwise.

(a) Z matrix (b) E matrix

Fig. 4. LRR minimizer on Iris data set.
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(a) Color given by segmentation (b) Real classes color

Fig. 5. LDA projection of the Iris data set.
'uo R °© o : .:
g:::. ° :i‘é . ....' ° °
eols ol e’ LK
B o
o o

(a) Fisher linear classification (b) Fisher quadratic classifier

Fig. 6. Fisher classification of the Iris data set.

by ﬁ > (dij — gij)z/dfj, where d;; is the distance in
the original space and d;; is the distance in the visual space.
For each instance of data, the neighborhood preservation
measures how many k-nearest neighbors in the original space
are among the k-nearest neighbors in the visual space. The
silhouette measures cohesion and separation between clusters.
It is given by %Zz m where a; (the cohesion) is
calculated as the average of the distances between a projected
instance y; (projection of z;) and all other projected instances
belonging to the same cluster as y;, and b; (the separation) is
the minimum distance between y; and all other projected in-
stances belonging to other clusters. To compute the silhouette,
we need to know the labels of the data. We use both, the real
labels (silh1) and the labels given by LRR (silh2) to compute
the silhouettes.

We use the data sets described in the Table I Table
summarizes the results. Compared to LAMP, the modified



TABLE I
DATA SETS USED IN THE RESULTS, FROM LEFT TO RIGHT THE COLUMNS
CORRESPOND TO THE DATA SET NAME, SIZE, DIMENSION (NUMBER OF
ATTRIBUTES), AND SOURCE.

Name Size Dim  Source
Iris 150 4 [23]
Synthetic 150 4 [24]
Artificial 150 30 *
Wine 178 13 [23]
Mammals 1000 72 [23]

version of LAMP performs better in terms of silh2 (with
labels given by LRR), with a small difference in terms of
stress. While the stress of LDA is bigger than LAMP and
modified LAMP (which is expected, because the objective of
LDA is to find the subspace with better separability between
classes), it gives a good result in terms of silh2. The results of
LDA indicate that the combination of LRR and LDA can be
a good choice for dimensionality reduction and unsupervised
classification problems where the true label is unknown.

A. Limitations

Subspace clustering techniques assume that the data are
drawn from independent subspaces, but this may not be always
true in real world data sets. We have extensively tested some
examples for many parameters, with no success in finding any
reasonable subspace structure. In these cases, we assume that
such a subspace structure does not exist and thus that the
method cannot be applied properly.

V. CONCLUSION

In this paper, we started the study of visualization aided
by subspace clustering. Subspace clustering techniques have
been shown to be a promising way to account for the possible
intrinsic subspace structure of data. On the other hand, for data
with no subspace structure, they cannot be applied properly.
The use of subspace clustering allows us to use LDA to
perform dimension reduction and classification tasks with
good quality in terms of the metrics we have tested.

As future work, we plan to study the estimation of the
dimension and basis for each subspace, and how it can be
applied to aid multidimensional projection.

ACKNOWLEDGMENT

The authors acknowledge financial support from CAPES.

REFERENCES

[11 K. Fukunaga, Introduction to Statistical Pattern Recognition, ser. Com-
puter science and scientific computing. Elsevier Science, 2013.

[2] H. Zhang, Z. Lin, C. Zhang, and J. Gao, “Robust latent low rank
representation for subspace clustering,” Neurocomputing, vol. 145, pp.
369-373, 2014.

[3] R. Fisher, “The use of multiple measurements in taxonomic problems,”
Annals of Eugenics, vol. 7, pp. 179-188, 1936.

[4] G. Seber, Multivariate Observations, ser. Wiley Series in Probability and
Statistics. Wiley, 2009.

TABLE I
RESULTS, FROM LEFT TO RIGHT THE COLUMNS CORRESPOND TO THE
DATA SET NAME, TECHNIQUE AND METRICS: STRESS, NEIGHBORHOOD
PRESERVATION, AND SILHOUETTES. BOLD VALUES ARE THE BEST FOR
EACH DATA SET AND METRIC.

Data set Technique Stress NP (%) Silh1 Silh2
LAMP 0.0418 81.8 0.6371  0.3437

Iris LAMP (M)  0.0791 77.8 0.6032  0.4221
’ LDA 0.3095 63.6 0.6889  0.6758
t-SNE 1.71e+6 86.9 0.7633  0.3392

LAMP 0.0597 80.9 0.8584  0.8584

Synthetic LAMP (M)  0.0521 82.0 0.9045  0.9045
y LDA 0.0862 85.7 0.9299  0.9299
t-SNE 6.2266 89.4 0.9956  0.9956

LAMP 0.0539 85.4 0.6770  0.6770

Artificial LAMP (M)  0.0749 86.0 0.7787  0.7787
LDA 0.3749 81.2 0.9492  0.9492

t-SNE 0.2962 90.9 0.8961  0.8961

LAMP 0.0383 90.7 0.2174  0.3629

Wine LAMP M) 0.1371 86.9 0.2269  0.4491
LDA 0.9802 533 0.2694  0.5314

t-SNE 0.9312 94.3 0.3139  0.4262

LAMP 0.0112 87.9 0.9825  0.9825

Mammals LAMP (M) 0.0172 85.5 0.9924  0.9924
LDA 1.0000 81.4 0.9311  0.9311

t-SNE 0.3829 87.7 0.9653  0.9653

[5] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G.
Nonato, “Local affine multidimensional projection,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2563—
2571, 2011.

[6] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579-2605, 2008.

[71 T. E. Boult and L. G. Brown, “Factorization-based segmentation of
motions,” in Proceedings of the IEEE Workshop on Visual Motion, 1991,
pp. 179-186.

[8] J. Costeira, T. Kanade, and M. A. Invariants, “A multi-body factorization
method for independently moving objects,” International Journal of
Computer Vision, vol. 29, pp. 159-179, 1997.

[9] C. W. Gear, “Multibody grouping from motion images,” International
Journal of Computer Vision, vol. 29, no. 2, pp. 133-150, Aug. 1998.

[10] P. K. Agarwal and N. H. Mustafa, “K-means projective clustering,”
in Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, ser. PODS *04. New
York, NY, USA: ACM, 2004, pp. 155-165.

[11] P. S. Bradley, O. L. Mangasarian, and P. Pardalos, “k-plane clustering,”
Journal of Global Optimization, vol. 16, no. 1, pp. 249-252, 2000.

[12] P. Tseng, “Nearest g-flat to m points,” Journal of Optimization Theory
and Applications, vol. 105, no. 1, pp. 249-252, 2000.

[13] M. E. Tipping and C. M. Bishop, “Mixtures of probabilistic principal
component analysers,” Neural Computation, vol. 11, no. 2, pp. 443482,
1999.

[14] H. Derksen, Y. Ma, W. Hong, and J. Wright, “Segmentation of multivari-
ate mixed data via lossy coding and compression,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 3, pp. 1546-1562,
2007.

[15] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in Proceedings
of the Conference on Computer Vision and Pattern Recognition, 2009,
pp- 2790-2797.

[16] R. Vidal, “A tutorial on subspace clustering,” IEEE Signal Processing
Magazine, vol. 28, no. 2, pp. 52-68, 2010.

[17] S.Liu, B. Wang, J. J. Thiagarajan, P.-T. Bremer, and V. Pascucci, “Visual
Exploration of High-Dimensional Data through Subspace Analysis and
Dynamic Projections,” Computer Graphics Forum, pp. 271-280, 2015.

[18] A. Tatu, F. Maas, 1. Farber, E. Bertini, T. Schreck, T. Seidl, and
D. Keim, “Subspace search and visualization to make sense of alternative



[19]

[20]

[21]

[22]

[23]

[24]

clusterings in high-dimensional data,” in IEEE Conference on Visual
Analytics Science and Technology, 2012, pp. 63-72.

J. Heinrich, R. Seifert, M. Burch, and D. Weiskopf, “Bicluster viewer:
a visualization tool for analyzing gene expression data,” in Advances in
Visual Computing. Springer, 2011, pp. 641-652.

M. Sedlmair, A. Tatu, T. Munzner, and M. Tory, “A taxonomy of visual
cluster separation factors,” Computer Graphics Forum, vol. 31, no. 3,
pp. 1335-1344, 2012.

E. Miiller, S. Giinnemann, 1. Assent, and T. Seidl, “Evaluating clustering
in subspace projections of high dimensional data,” vol. 2, no. 1. VLDB
Endowment, 2009, pp. 1270-1281.

J. Shi and J. Malik, “Normalized cuts and image segmentation,” /[EEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp.
888-905, 2000.

A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

I. Guyon, “Design of experiments of the NIPS 2003 variable selection
benchmark,” in NIPS 2003 workshop on feature extraction and feature
selection, 2003. [Online]. Available: http://www.nipsfsc.ecs.soton.ac.uk/
datasets/


http://archive.ics.uci.edu/ml
http://www.nipsfsc.ecs.soton.ac.uk/datasets/
http://www.nipsfsc.ecs.soton.ac.uk/datasets/

	Introduction
	Related work
	Technique Overview

	Technical Background
	Subspace Clustering
	LDA Projection

	Experiments
	Results, Discussion, and Limitations
	Limitations

	Conclusion
	References

