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Abstract—Image segmentation, such as to extract an object of boundary regularization constraints. Moreover, theligua

from a background, is very useful for medical and biological
image analysis. In this work, we propose new methods for
interactive segmentation of multidimensional images, basl on
the Image Foresting Transform (IFT), by exploiting for the first
time non-smooth connectivity functions (NSCF) with a stromy
theoretical background. The new algorithms provide global
optimum solutions according to an energy function of graph at,
subject to high-level boundary constraints (polarity and $iape),
or consist in a sequence of paths’ optimization in residual igphs.
Our experimental results indicate substantial improvemets in
accuracy in relation to other state-of-the-art methods, byallowing
the customization of the segmentation to a given target obg.
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of their segmentation results with minimal user interventi
strongly depends on an adequate estimate of the weights
assigned to the graph’s ar¢s [15].

The main contribution of this work is a theoretical de-
velopment to support the usage wén-smooth connectivity
functions (NSCF) in the IFT, opening new perspectives in the
research of image processing using graphs, since NSCF were,
until now, avoided in the literature. More specifically, wepe
that some NSCF can lead to optimum results according to
a graph-cut measure on a digraphl/[16],/[17] or consist in a
sequence of paths’ optimization in residual graphs. We have

image foresting transform; non-smooth connectivity funcion;

geodesic star convexity; 1)

I. INTRODUCTION

Image segmentation is one of the most fundamental and
challenging problems in image processing and computer vi-
sion [2]. In medical image analysis, accurate segmentation
results commonly require the user intervention because of
the presence of structures with ill-defined borders, intgns
non-standardness among images, field inhomogeneity, ,noise
artifacts, partial volume effects, and their interplay.[3he 2)
high-level, application-domain-specific knowledge of thser
is also often required in the digital matting of natural sE®n
because of their heterogeneous natlire [4]. These problems
motivated the development of several methods for semi-
automatic segmentationl![5][.1[6].][7], aiming to minimizeeth 3)
user involvement and time required without compromising
accuracy and precision.

One important class of interactive image segmentation

as main results:

The customization of the segmentation by IFT to match
the global and local features of a target obje@)
The design of more adaptive and flexible connectivity
functions, which allow better handling of images with
strong inhomogeneity by using dynamic weighs)
The orientation of the object’s intensity transitions,,i.e
bright to dark or the opposite (boundary polarity), and
(c) shape constraints to regularize the segmentation
boundary (geodesic star convexity constraint).

The development of an interactive segmentation tool
within the software, calle@rain Image Analyze(BIA),

to support research in neurology involving volumetric
magnetic resonance images of a 3T scanner from the
FAPESP-CInApCe.

Four conference papers were published in international
events of high regard [17]/[18][[19][_[20], and one
journal paper was published in thHEEE Transactions

on Image Processingimpact factor: 3.111)[16].

comprises seed-based methods, which have been developdebr the sake of completeness in presentation, Se€fion I
based on different theories, supposedly not related, ngadincludes the relevant previous work of image segmentation

to different frameworks, such agatershed from marker#],
random walks[8], fuzzy connectedneg$8], graph cuts[g],

by IFT. In Sectiong TII[TV,[N and_MI, we present the main
contributions covered in the master’s dissertatibh [1]eTh

distance cut[d], image foresting transfornfIFT) [10], and classification of NSCF, the use of adaptive weights via NSCF,
grow cut [11]. The study of the relations among differenthe boundary polarity through digraphs, and the elimimatio
frameworks, including theoretical and empirical compamss of false delineations by shape constraints. Our conclssioa
has a vast literaturé [12], [13],_[14]. However, these mdthostated in Sectioh VII.

in most studies are restricted to undirected graphs, and the
most time-efficient methods, including the IFT, presentck la

Il. IMAGE FORESTINGTRANSFORM(IFT)

An image 2D/3D can be interpreted as a weighted digraph

* This work relates to the M.Sc. dissertatidn [1].

G =(V =T,¢,w) whose noded’ are the image pixels in its


mailto:lucyacm@vision.ime.usp.br
mailto:pmiranda@vision.ime.usp.br

image domairZ ¢ Z”, and whose arcs are the ordered pixelll. IFT WiTH NON-SMOOTH CONNECTIVITY FUNCTIONS
pairs (s, 1) € & (e.9., 4-neighborhood, or 8-neighborhood, in cjearly, from Definition[l, we have that a connectivity
case of 2D images, and 6-neighbors in 3D). The digr@pk  fynction is not smooth if it doesn't satisfy at least one of

symmetric if for any of its arcgs, ¢), the pair(z,s) is also an  the conditions C1, C2 or C3. For example- |4 violates
arc of G. We have an undirected graph whe(s, t) = w(t,5) c2 and C3:

in a symmetric graphz. We use(s,t) € £ ort € £(s) to 0 fics

indicate thatt is adjacent tos. Each arc(s,t) € &€ may have Isian((t) = { —|:oo otherwiée 1)

a weightw(s,t) > 0, such as a dissimilarity measure between ’ '

pixelss andt (e.g.,w(s, t) = |I(t)—I(s)| for a single channel /% an(Tres - (s,8) = fjan(Trws) + () = 1(r)]
image with values given by(t)). In [20], we formally classified several non-smooth funcgion

For a given image graply, a pathr; = (t;,ta, ..., t, =t) (Figure[1) according to the conditions C1, C2 and C3 (Defi-
is a sequence of adjacent pixels with terminus at a pixel nition[d), and C4 (Definitio]2).

A path is trivial whenr, = (t). A pathm = 75 - (s,)  pefinition 2 (Condition C4) A path-value functiorf satisfies

indicates the extension of a path by an arc(s,?). The the condition C4, if for any node € Z the following condition
notation ms..+ = (t; = s,t2,...,t, =t) may also be used, is verifiedvt e £(s):

where s stands for the origin and for the destination node.
A predecessor majs a functionP that assigns to each pixel
t in VY either some other adjacent pixel W, or a distinctive
markernil not in ¥V — in which caset is said to be aoot
of the map. Aspanning forests a predecessor map which
contains no cycles — i.e., one which takes every pixebib
in a finite number of iterations. For any pixe€ V, a spanning IS max
forest P defines a pathr recursively as(t) if P(t) = nil,
andrl - (s, t) if P(t) = s # nil.

A connectivity functioncomputes a valug/(m;) for any
pathr;, usually based on arc weights. A pathis optimum
if f(m) < f(m) for any other pathr; in G. By taking to
each pixelt € V one optimum path with terminus we
obtain the optimum-path valué(t), which is uniquely defined
by V() = minys, inc{f(m)}. A pathm, = (t1,ta,...,tn)

» For any pathsr, and , ending ats, if f(rs) = f(x),
then we havef (rs - (s, t)) = f(7 - (s,t)).

“Smooth functions” \

'fmax\AI\

is complete optimunif all paths 7, = (t1,ta,...,t;), i = Fig. 1. Schematic representation of the relations betweesoth and non-
1.2.. .. .n are optimum paths. The IET takes an imaae gragheoth connectivity functionsZy, C2, Cs, andCy are sets of connectivity
T P P 9€ g rfl';‘r:ctions that satisfy these respective conditions for mega graph.

G, and a path-cost functiofi; and assigns one optimum path
7 t0 every pixelt € V such that aroptimum-path foresP is
obtained — i.e., a spanning forest where all paths are optimu IV. ADAPTIVE WEIGHTS VIA NSCF
However,f must besmooth(Definition[d), otherwise, the paths Methods based on IFT[10] have been successfully used in
may not be optimunm([10]. the segmentation of 1.5 Tesla MR datasets [21], [22]. Howeve
o ) . inhomogeneity effects are stronger in higher magnetic ield
Definition 1 (Smooth path-cost functionp path-costfunction g4 it js extremely important to define the optimal solution
[ is smoothif for any pixelt € Z, there is an optimum path ¢, these images. NSCFs are more adaptive to cope with the
7, which either is trivial, or has the form, - (s, ) where  ,oniems of field inhomogeneity, which are common in MR
(C1) f(rs) < f(m), images of 3 Teslld:[ZB]. . .
(C2) . is optimum, and In order to give a theoreycal foundation to support t_he
(C3) for any optimum pathr, ending ats, (. - (s,t)) = usage of NSCF, we theoretlcally proved that_ th(_e IFT with
F(me). any non-smooth functiorf € (Cy N Cy) \ Cs is, in fact,
equivalent to the result of a sequence of optimizationsh eac
of them involving a maximal set of elements, in a well-
(ftructured way/[20]. This proof was supported by the follogvi
proposition:

We consider image segmentation from two seed s8is,
and S, (S, N Sp = 0), containing pixels selected inside an
outside the object, respectively. The search for optimuthgpa
is constrained to start i§ = S,US,. The image is partitioned Proposition 1. Consider a functionf € (C1 N Cy) \ Co.
into two optimum-path forests — one rooted at the intern&br a given image grapltz = (V, £, w), and set of seeds§,
seeds, defining the object, and the other rooted at the extedet O be the set of all pixels$ € V, such that there exists
seeds, representing the background. A lafi¢l) = 1 for all a complete-optimum path; for f. In any spanning foresP
t € S, and L(t) = 0 for all t € Sy, is propagated to all computed inG' by the IFT algorithm forf, all the pathsr/”
unlabeled pixels during the computation][10]. with ¢ € O are optimum paths.
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Fig. 2. Results using a robot user for segmenting the 3D ltataset.

(d)

In our experiments, we used 10 T1-weighted 3D images gfy. 3. Brain segmentation results for the same user-selentarkers by
male and female adults with normal brains. The image dataget) fmax, and (d-f) {7, ;.
included the head and, at least, a small portion of the negk. O
experimental result, using a robot ugkfor segmenting the
brain dataset, indicates that substantial improvemenisbea Ci(L)={(s,t) €& | L(s) =0, L(t) =1}, and an outer-
obtained by NSCFs in the 3D segmentation of MR images gfit boundary with arcs from object to background
3 Tesla, with strong inhomogeneity effects, when compaved gixels Co(L)={(s,t) €& | L(s) =1, L(t) = 0}. Conse-
smooth connectivity functions. That is because NSCFs germuently, we consider two different types of energy,(Eq.[2)

a more adaptive configuration of the arc weights. and E, (Eq3).
Figure[2 shows the experimental curves, wher"C' [9]
and PW,—, [14] represent different algorithms related to the E/(L,G) = min  w(s,?) 2
smooth functionfax, and we usedv(s,t) = G(s) + G(t), (s:8) G.C"(L)
where G(s) is the magnitude of Sobel gradient at a voxel Eo(L,G) = (Syt)nemclo@)w(s’t) ®)

s. Clearly, flfﬁM‘ presented the best accuracy. Figlile 3
shows one ‘example for user-selected markers. These reWe use a digraph, where(s,t) is a combination of a
sults emphasize the importance of non-smooth connectiviggular undirected dissimilarity measutgs, ¢), multiplied
functions. The non-smooth connectivity functig<’ ., is by an orientation factor (i.ew(s,t) = ¥(s,t) x (1 + a)

a variation of fs~ a7 (EqQ.[), in order to guarantee thatif (s) > I(t) andw(s,t) = (s,t) x (1 — a) otherwise).
flf:IIAI\ € (C1NCy)\ Cs [20]. The functionflimmﬂ gives Several different procedures can be adoptedyfor, ¢), such
pairs of values that should be compared according to thethe absolute value of the difference of image intengities
lexicographical order. The first component is the non-simoot'(s,t) = |I(t) — I(s)|). Note that we havev(s,t) # w(t, s)
function fs~a7 (Eq.[3), and the second is the priority level ofvhena > 0.

the seed/root for that path. The lower its value the highé@sis The OIFT is build upon the IFT framework by considering
priority. In interactive segmentation, we give lower piipfor one of the following path functions in a symmetric digraph:
new inserted seeds, since they are used mainly for coreectiv

actions, so that we can keep their effects more locally. The ffl;;(s?«t)) = { -1 ifte 8_1 US2
same process was done fgf> ., € (C1 N Ca)\ C2 +00 otherW|se
and fée””_ € (C1NCy) )\ Cy, in relation to fu.x a7 and fy, PSS (n (s ) = { Exprl !f re sy @)
respectively[[20]. Expr2 if r € Sz
Exprl = S1.82(5 ), 2 t, 1
V. BOUNDARY POLARITY VIA NSCF wr max{ffgaxs (Mrs) 2 X @ty 5) + 1}
.. Exp7’2 - maX{fmé,} 2(71'7‘“"’5)3 2 X w(s,t)}
In order to resolve between very similar nearby bound- FSLSa()) = pSuSa()

ary segments, in[[16],[[17] we successfully incorporated
the boundary polarity constraint in the IFT using NSCF igffl-,Sz(WMS (s, 1)) = {
digraphs, resulting in a novel method call@diented | mage

Foresting Transform (OIFT). . . S S5..58 i
In the case of digraphs, there are two different typ sThe segmentation usinz;>® or /: favors transitions

H H Sb,So Sb7SO
of cut for each object boundary: an inner-cut boun fom dark to bright pixels, and;z;™ or f; favors the

ary composed by arcs that point toward object pixePs?loOSIt.e or|entat_|on, according t_o Thepr@n L. In the case
of multiple candidate segmentations with the same energy,

81,8 . .
IMethod introduced in[[24], to simulate user interaction oferactive f5+°2 produces a better handling of the tie zones than
segmentation. fS1,Sz _

max

w(t,s) ifred;
wis,t) if reSs ®)



Theorem 1 (Inner/outer-cut boundary optimality)For two 008
given sets of seedS, and Sy, any spanning forest computed
by the IFT algorithm for functiorfSe;Se or fSe:So defines an
optimum cut that maximizes, among all possible segmenta-
tion results satisfying the hard constraints. Any spanrfiorgst
computed by the IFT algorithm for functigife;Se or fSo-Se T, s 4 s 6 7
defines an optimum cut that maximizésamong all possible Erosion radius (in voxels)

segmentation results satisfying the hard constraintsdsge

Dice coefficient
o
©

In our experiments, we used 20 real volumetric MR im-
ages of the foot in 3D. We computed the mean perfor- 1
mance curve (Dice coefficient) for the methods: Iterative

Relative Fuzzy Connectedness (IRFC), IFT with.,. [10]
(IFTR{%o), Power Watershed {W,—»), and OIFT us-
ing oSt (OIFTHeY), fande (OIFTREY), f5o°°

(OIFT?, ) and fSv:Se (OIFTY,.,) [L7]. We used differ-

ent seed sets obtained by eroding and dilating the grouttd tru
(Figure[d). The experimental accuracy curves with the Sobel
gradient (Figurd15) show that whenever the object presents

transitions from dark to bright pixels, as it is the case tiita
bones talus and calcaneys;>S» and fS2,5¢ give the best
accuracy results. Note also théfs;Se and f5»S- present the

worst accuracy values, by specifying the wrong orientation

(b)

" © ()

Fig. 4. (a) Ground truth of the talus in an MR image of a foo}. $eed sets
obtained by eroding and dilating the ground truth. (c) Segat®n by IRFC.

(d) An improved result by exploiting the boundary polaritying fﬁ;’;{sb.

V1. SHAPE CONSTRAINTS VIANSCF
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Fig. 5. The mean accuracy curves (Dice) using the Sobel gmador the
3D segmentation of: (a) talus, and (b) calcaneus.
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Fig. 6. For any poinp within the object and the star centerwe have: (a)
a star-convex object and (b) a non-star-convex object.

internal seeds&,), and the line segments are the paths that
form a spanning forest rooted at the internal seeds. Thetfore
topology is controlled by a parametgr For lower values of
B (B =~ 0.0), the method imposes more star regularization to
the boundary of the object (Figures 7 ddd 8), and for higher
values off3, it allows a better fit to the curved protrusions and
indentations of the boundary.

Thereafter, in[[1I9] we proposed the novel method called

Shape constraints, such as the star-convexity prior intt®tFT with Geodesic Star Convexity (GSC-OIFT), which
duced by Veksler [25], can limit the search space of possiklecorporate Gulshan’s geodesic star convexity prior in the

delineations to a smaller subset, thus eliminating falselica
date boundaries. In this context, a paginis said to be visible
to ¢ via a setQ if the line segment joining to ¢ lies in the

set @. An object O is star-convex with respect to center
if every pointp € O is visible toc via O (Figure[®). In the
case of multiple stars, a computationally tractable dedinjt
was proposed ir [24], using@eodesic Star Convexif(SC)

constraint in the segmentation Inyin-cut/max-flow

OIFT approach for interactive image segmentation, in order
to simultaneously handle boundary polarity and shape con-
straints (Theoreril2). This method permits the customiratio
of the segmentation by IFT to better match the features of
a particular target object (Figufé 9). We constrain the cear
for optimum result, that maximize the graph-cut measuggs
(Eq.2) orE, (Eq.[3), only to segmentations that satisfy the
geodesic star convexity constraint. We compute a geodesic

In [18], we proposed an IFT extension that incorporatderest Ps,,, for f... [10] by the regular IFT algorithm,
the GSC constraint, favoring the segmentation of objects wiusing only S, as seeds, for the given digragh obtaining

more regular shape, resulting in a novel method called
with Geodesic Star Convexity Constraints (GSC—IFT). In

two sets of arcgh, = {(s.t) € £ | s = Poum(t)} and
€2 ={(s,t) € £ | t = Psum(s)}. The GSC constraint is

this method, the set of star centers is taken as the setvaflated whenC;(L) N sjpwm #DorCo(L)NEp ~#0



Fig. 7. Example of 3D skull stripping from user-selected kees. (a-b) o )

Segmentation result by IFT Witlfimax. (c-d) An improved result is obtained Fig- 9. (8) Synthetic image with selected marké&s and Sy. The target

by exploiting the Geodesic Star Convexity (GSC—IFT with= 0.1). object has a regular shape with transitions from bright tk da its border.
Segmentation results by: (b) IFT obtains a non-regular eshapd wrong
orientation, (CYOIF'T}L4% . obtains a non-regular shape, (d) GSC-IFT obtains
a wrong orientation and (e) GSOF F'T™a*  (simultaneously considering

outer

boundary polarity and shape constraints) obtains a cometthing with the
characteristics of the target object.

Cll([‘)mrg;?sumiﬂ
Fig. 8. (a) Input image with user-selected markers. (b) S=gation result \

by IFT with fmax. (C) Segmentation result by GSC-IFE & 0.1). constraint violation

e

CID(L)OE‘I,’SIUHiﬂ

(Figure[10).

Theorem 2 (Inner/outer-cut boundary optimality}or a given
image graphG = (V,&,w), consider a modified weighted
graph G’ = (V,&,w’), with weightsw’(s,t) = —oo for all
(s,t) € &, , andw'(s,t) = w(s,t) otherwise. For two
given sets of seedS, and S;, the segmentation computed
over G’ by the IFT algorithm for functionfSt;5> defines
an optimum cut in the original grapl, that maximizes
E,(L,G) among all possible segmentation results satisfying (b)

the shape constraints by the geodesic star convexity, angl 1o. ‘The GSC constraint is violated when: (a) there isran(a t) €
the seed constraints. Similarly, the segmentation congput& (L) N&p_ . or (b) there is an ar¢s,t) € Co(L) N €2
by the IFT algorithm for functionf3e;5», over a modified

graph G’ = (V,&,w'); with weightsw’(s,t) = —oo for all

(s,t) € €5, andw/(s,t) = w(s,t) otherwise; defines an to a GSC-OIFT computation. As a result of the theoretical
optimum cut in the original graply, that maximized’; (L, G)  foundation proposed in this work, four conference papergwe
among all possible segmentation results satisfying the@ehgublished in international events of high regard][17].][18]
constraints by the geodesic star convexity. [19], [20], and one journal paper was published in tBEE

In our experiments, we used 40 image slices of 10 thoragifAnsactions on image Processitigmpact factor: 3.111)[16].

CT studies to segment the liver. Figire 11a shows the me is work has also allowed new achievements that were
accuracy curves for all the images assuming different seesd €cently published, such &s [26] and[27].

obtained by eroding and dilating the ground truth. Note that AS future work, we intend to combine the proposed meth-
for higher values of3, GSC—OIFT imposes less shape corRds with statistical models to automatically define seeds fo
straints, so that the accuracy tends to decrease (Fifukes 1Automatic segmentation.

d). Figure[12 shows some results in the case of user-selected

markers. ACKNOWLEDGMENT
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adaptive functions presented in Sectiod IV can’'t be reducédIPG-UPENN) for the images.
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Fig. 11. The mean accuracy curves of all methods for the fegmentation
for various values of3: (@) 8 = 0.0, (b) 8 = 0.2, (c) 8 = 0.5, and (d)
B8 =0.7.

Fig. 12. Results for user-selected markers: (a) IRFC, (B)TQn5:

Sb:So with

a = 0.5), (¢) GSC-IFT 8 = 0.7), and (d) GSC-OIFTA = 0.7, o = 0.5).
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