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Fig. 1. Curvilinear reformatting in native space: (a) the first region is selected and the mesh is built, (b) then the second region is selected and another mesh
is built, (c) the meshes are zippered and (d) the curvilinear reformatting is performed.

Abstract—Most curvilinear reformatting algorithms are not
processed on native space, which makes them inappropriate to
be used for neuronavigation purposes. In this work, we present an
interactive curvilinear reformatting algorithm that is performed
in native space. The user selects the desired regions. Then, they
are sampled in order to build their corresponding meshes, which
are representations of the selected regions. A single complete
mesh is formed by zippering the meshes that overlap each
other. After that, we use an offset algorithm to crop the region
corresponding to the complete mesh. In this work we present
two algorithms: the zippering and the offset algorithms, which
allow us to do larger crops in the brain in interactive time.

Keywords-zippering; depth-map; curvilinear reformatting; fo-
cal cortical dysplasia (FCD)

I. INTRODUCTION

Curvilinear reformatting is a noninvasive computational
exploration technique, that computes a series of equidistant
curvilinear slices on 3D neuroimaging data without physically
entering the brain. Once it improves the anatomical display
of the gyral structure of the hemispheric convexities [1], it
is useful for finding lesions of focal cortical dysplasia, a
common cause of refractory epilepsy. This is because that
this kind of dysplasia is often associated with a blurring
of the gray-white matter junction, spread along curvilinear
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layers of the brain parallel to the brain surface in the areas
directly below the skull, and small dysplastic lesions are often
missed by conventional MRI methods, such as multiplanar
reformatting [1], [2].

Bastos et al. [1] have performed curvilinear reformatting on
3D neuroimaging data using an in-house developed software
(Brainsight). In order to do it, manual delineation on 2D
slices of the brain is needed to obtain the interpolation among
them for extracting the curvilinear surface of the brain. This
procedure demands much time for routine clinical use. Bergo
and Falcão [3] and Huppertz et al. [2] overcame this limitation
by proposing an automatic curvilinear reformatting method.
Bergo and Falcão [3] have applied the Image Foresting Trans-
form (IFT) to segment the envelope of the brain. Then, the
euclidean distance transform is used to extract its isosurfaces.
Huppertz et al. [2] have applied predefined masks to segment
the brain in order to remove the skull and outer regions in
different depths. Thus the outer brain regions are peeled by
layers parallel to the brain surface. Differently from previous
works, Wu et al. [4] presented a way to make the curvilinear
reformatting in the native space, i.e. in the patient-centered
reference system. Its implementation is based on the algorithm
of visibility and mesh offsetting. The user selects a region on
the visible part on which the curvilinear reformatting is carried
out. Because the native space is preserved, the procedure
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can be used directly for neuronavigation purposes. However,
only one visible region can be selected. For this reason a
comparative diagnosis is not possible when the region to be
analyzed is not in a visible region.

Contributions: This work proposes an approach to over-
come the limitation of the curvilinear reformatting presented
in [4] using a zippering algorithm based on depth-maps and
also introducing a new way to avoid local self-intersections.
Fig. 1 shows the reformatting curvilinear result after zippering
the meshes.

A. Related work

In order to make the curvilinear reformatting, we need
first to zipper the meshes and then compute the offset. The
basic ideia for zippering meshes is: 1) to remove the overlap
area and 2) to remesh. Turk and Levoy [5] have presented
a method for combining a collection of range images into
a single polygonal mesh. The overlapping portions of the
meshes are removed, only triangles with all vertices on the
overlap area are removed. Then, for an edge of a triangle
on a mesh that intersects the boundary of another mesh,
a new vertex is created and the triangulation is performed.
Shostko et al. [6] have presented a method based on an
algorithm that automatically generates a surface mesh from
intersecting surfaces by means of Boolean intersection/union
operations. Figueiredo et al. [7] have presented an algorithm
for intersecting finite-element meshes defined on parametric
surface patches. The algorithm proposed has three main steps:
1) determination of the intersection points, 2) determination of
the trimming curves and 3) remeshing. The mesh intersections
are computed using numerical methods and the trimming
curves are used to join the meshes. The previous works suit
well to our problem; however our meshes geometries are
simple and almost coplanar, therefore to take advantage of
these features, we decided to propose another approach.

The main problem we face in triangular mesh offsetting is
local self-intersection. Some local self-intersections can appear
during the mesh offset due to the degenerated triangles. The
global self-intersections are not treated in this work, because
our geometries are open and convex. The basic idea for sel-
intersection free mesh offsetting in most work is: 1) to check at
each iteration whether it occurs, and 2) to discard it colliding
triangles. Jung et al. [8] presented an algorithm to remove
self-intersections from the triangular offset mesh. It can be
summarized in 4 steps: 1) using topological operators, edge
collapse and flip edge, remove the degenerated triangles 2)
compute the self-intersections (local and global), 3) find a
valid seed triangle, and 4) the valid region grows from the
seed triangle to neighboring triangles and invalid triangles are
removed. A valid seed triangle is a triangle which belongs
to a set of triangles that defines the outer boundary of the
offset volume from the raw triangular mesh. However, their
method works only if the mesh geometry is closed. They use
a numerical method to compute the intersections.

Yi et al. [9] have presented a mitered offsetting method
of a triangular mesh. A modified version of quadric error

metrics (QEM) is used to compute the offset vertex position.
The offset vertex position computation can be formulated as a
least square problem. If the vertex position which minimizes
the sum of squared distance error from the triangles around
the original mesh vertex is within tolerance, the offset vertex is
accepted. Otherwise, the offset vertex is split repeatedly until
the error is acceptable. Vertex split occurs at the sharp features.
As a post-processing step, self-intersections can be removed by
the method in [8]. Liu et al. [10] presented an offset surface
generation to construct intersection-free offset surfaces. The
idea of the algorithm is to sample the offset surface into a
uniform grid and then employ a contouring algorithm to build
the resultant offset mesh surface from the signed distance-field.
The cost to compute the signed distance-field is not feasible for
interactive time. Wu et al. [4] developed a way to avoid the
local self-intersections by removing the degenerate triangles
in a preventive way. For each displacement, each triangle of
the mesh is checked whether some triangles have their area
smaller than a predefined threshold. All triangles with area
smaller than a predefined threshold are removed. However,
these local operations can create problems in the geometry of
the mesh, since they are dependent of the sequence they are
performed.

II. ALGORITHM OVERVIEW

In order to understand why the method proposed in [4]
does not allow comparative diagnosis, we provide a brief
description of the algorithm in this section. Initially, a user
selects a ROI by brushing with the cursor on the head’s
surface. When the interaction is finished, the region is sampled
and a mesh is built. A mesh is a collection of vertices, edges
and faces that approximate the scalp’s geometry. It plays
an important role in the curvilinear reformatting, because it
allows us to apply known mesh oriented geometric procedures
for computing intersection-free laminar layers. The mesh is
displaced in the direction of the vertices’ normal vector until
a previously specified depth is reached. For each displacement,
the mesh is voxelized in the same resolution of the raw brain
volume.

The voxelization is used to find the voxels which the mesh
intersects, and these voxels are tagged with their depth relative
to the scalp. The voxelization algorithm is an adaptation of the
depth map based algorithm proposed in [11]. As the user can
select only what he can see, for selecting another region it
is necessary to rotate the head. Nevertheless every time that
the user makes a selection, a mesh is built, then if s/he turns
the head to select another region a new mesh is built. Now to
ensure that the transitions between the meshes are smooth we
need to zipper these meshes.

III. PROBLEMS

Based on the scalp geometry, we assume that: the meshes
used to approximate the surfaces of the scalp are convex and
open. Then, we can formulate two questions: 1) How to join
two almost coplanar meshes? and 2) How can we avoid the
local self-intersection in the mesh offsetting?



We propose to apply the zippering algorithm to join the
meshes. It is important to mention that the union is made
pairwise and only on overlapped meshes. After a user selects
an area to be explored, we join it immediately with the existing
mesh. Then, to explore the fact that our surfaces are almost
coplanar, we decided to use depth-maps to replace the costly
computations needed to find the mesh intersection. The depth-
maps are used to identify which triangles are in the regions that
overlap. If a triangle belongs to both depth-maps, the triangle
is in an overlap region. After the overlapping triangles are
identified, the overlapping triangles of one of the meshes are
removed. After that the meshes are zippered.

For avoiding the local self-intersection, we propose to use
a simplification algorithm to remove the degenerated triangles
and, consequently, the local self-intersections. This is because
that using a simplification algorithm we increase the area of
the triangles.

IV. ZIPPERING BASED IN DEPTH-MAP

We divided the zippering algorithm into 4 steps: 1) identi-
fying the overlap area, 2) finding transition vertices, 3) getting
new fronts, and 4) joining the meshes.

A. Identifying the Overlap Area

To identify the regions that overlap, the depth-maps are
acquired for both meshes. The procedure to acquire the depth-
maps are: the meshes are rendered individually, and their
depth-maps are saved in an offscreen buffer. As the meshes
are almost coplanar, their depth-maps projected on the screen
should overlap. To discover which triangles are in the overlap
area, it is necessary to find which triangles are in the area
where the depth-maps are overlapping. It is the common area
between the depth-maps, (DM1

∩ DM2
). Without loss of

generality, choose one mesh, M1, and for each edge, ei, of the
triangle, ti, it is sampled and applied to a map that takes it
from the world coordinates to the screen coordinates, T :R3 →
R2. Then for each sampled point x, we apply the coordinate
transformation T to find its screen coordinate. Thus if T (x)
∈ (DM1

∩ DM2
), then the triangle belongs to the overlap

area. This process is made for both meshes. Fig. 2 shows the

(a) M1. (b) M2. (c) M1 and M2 overlapped.

Fig. 2. Meshes: M1 and M2.

meshes individually (Fig. 2(a) and Fig. 2(b)) and when they are
overlapped (Fig. 2(c)). Their respective depth-maps are shown
in Fig. 3. The overlapped area (DM1

∩ DM2
) is colored in

black in Fig. 3(c).

(a) Depth-map
DM1

.
(b) Depth-map
DM2

.
(c) DM1

and DM2
overlapped.

Fig. 3. Depth-maps: DM1
and DM2

.

B. Finding the Transition Vertices

There are two kinds of transition vertices: external and
internal. These vertices help to define the new fronts of the
meshes with the overlap area removed, as explained in IV-C.
Fronts are the boundaries made for the vertices between the
transition vertices. Let B be the set of vertices that belong to
the boundary of the mesh M1. Let A be the set of vertices
that belong to the overlap area of the meshes M1 and M2. The
external vertex is a vertex v ∈ (B \ A) and has one vertex
adjacent w ∈ (B ∩ A). Fig. 6 shows the external vertices of
the mesh M1. The internal vertex is a vertex v ∈ A and has

v w

(a) First external vertex.

v w

(b) Second external vertex.

Fig. 4. External transition vertices.

one vertex adjacent w ∈ (B \ A). Fig. 5 shows the internal
vertices of the mesh M2. Fig. 6 shows the external and internal
vertices on the meshes M1 and M2. After getting the transition

vw

(a) First internal vertex.
vw

(b) Second internal vertex.

Fig. 5. Internal transition vertices.

vertices we remove all triangles of one mesh which are in the
overlap region.

C. Getting the New Fronts

A front is a part of the boundary used to join the meshes.
The new fronts are created by the sequence of vertices that
connects the transition vertices, after removing triangles in the
overlap area. For one mesh, we obtain the external transition
vertices and for the other the internal transition vertices. The
external front is the front made of the vertices connecting the
external transition vertices, and the internal front is the front
made of the vertices that connect internal transition vertices.
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(b) Internal transition vertices.

Fig. 6. Transition vertices are shown on the meshes.

D. Joining the meshes

Due to the overlap area of the meshes being almost coplanar,
the fronts that are at a distance less than or equal to one voxel,
are used to join the meshes. The first and the last vertices
of the internal front are merged with the closest vertices of
the external front. The other vertices of the internal front
are merged with other vertices of external front, only if the
minimal distance is smaller than a pre-specified threshold.
Fig. 7 shows this process. The first and the last vertices of the

Fig. 7. Merging the closest vertices: (a) the first and the last are contracted,
(b) the minimal distance is computed and (c) if the minimal distance is smaller
than threshold fixed the vertex is contracted.

internal front are merged with the closest vertex of the external
front (Fig. 7(a)), then for the other vertices the distances
are computed (Fig. 7(b)), and the closest distance is chosen
(Fig. 7(c)). If this distance was smaller than the threshold fixed,
then the vertices are merged. There are three configurations
after merging: 1) holes (Fig. 8(a)), 2) edge fusion (Fig. 8(b)),
and 3) triangle collapse (Fig. 8(c)). Only in the case of holes

(a) Holes. (b) Edge fusion. (c) Triangle collapse.

Fig. 8. As result of merging two vertices we have the following cases: holes,
edge fusion and triangle collapse.

further processing is necessary to fill them. We project the
vertices of the hole on a plane and then we triangulate these
vertices based on their internal angles.

V. INTERSECTION-FREE MESH OFFSETTING

In this work we used the simplification algorithm proposed
in [12]. The algorithm computes the cost to contract a pair of
vertices using quadric error metrics (QEM). After the costs
have been computed, the contractions are made from the
lowest to the highest cost. In addition, we introduce penalties
to avoid illegal contractions. In our work, illegal contractions
are: 1) contractions that lead to two faces with the same set
of vertices, such as the contraction of the edge (A,D) to the
vertex D in Fig. 9(a) and results in the situation presented
in Fig. 9(b), and 2) contractions of edges with at least one
vertex on the boundary that may alter the boundary shape, as
illustrated in Fig. 9(c) Fig. 9(d). The contraction of the edge
(B,F) to the vertex F in Fig. 9(c) deforms the mesh’s contour
as depicted in Fig. 9(d).

A

BC

D

(a) Collapse the edge
(A,D) = D.

BC

D

(b) Two triangles with
the same vertices.

AA

B

C

DE

F

(c) Collapse the
edge (B,F) = F.

AA
C

DE

F

(d) The boundary
is damaged.

Fig. 9. Illegal contractions.

To prevent degenerate triangles, triangles whose vertices are
tending to be colinear, we use the same heuristic that was used
in [14], called measure of triangle compactness

λ =
4
√
3w

l21 + l22 + l23
, (1)

where the li are the lengths of the edges and w is the area of
the triangle. It is assigned 1 to an equilateral triangle and 0 to
a triangle whose vertices are colinear. For each displacement,
it is checked if a triangle is a candidate to turn degenerate,
in case of any candidate is found, the simplification algorithm
is used. To avoid that the simplification algorithm remove too
many triangles, we set a maximum number of triangle that can
be removed.

VI. RESULTS

The experiment images were acquired by Philips Achieva
3T Hospital of University of Campinas. The dimension of
the volumes were 180 × 240 × 240. We performed the
experiments on a desktop Intel R©Core i7 2.8 GHz with 8GB
of RAM and graphic card NVIDIA GeForce GTX 650 Ti with
2GB of VRAM. The operating systems used were: Windows
7 and Ubuntu 14.02. The language used was C++ and the



TABLE I
TIME PERFORMANCES OF ZIPPERING SHOWN IN FIG. 11.

Mesh #1 Mesh #2 Mesh #3 Time(s)
372 361 665 (Fig. 11(a)) 0.472
665 352 940 (Fig. 11(b)) 0.384
940 167 1054 (Fig. 11(c)) 0.170
1054 244 1204 (Fig. 11(d)) 0.211
1204 126 1302 (Fig. 11(e)) 0.092
1302 125 1361 (Fig. 11(f)) 0.116

libraries were wxWidgets and OpenGL. The data structures
used to represent the mesh was half-edge.

The first experiment validates the zippering algorithm. We
built a mesh as result of a sequence of zippering. Fig. 10
depicts the final mesh created on the head of a patient and
Fig. 11, the meshes that were zippered. Table I shows the total

Fig. 10. Final mesh as the result of the zippering algorithm:(a) mesh on the
head of the patient and (b) mesh being seen individually.

time in seconds needed to make the zippering of the meshes
showed in Fig. 11.

(a) (b) (c)

(d) (e) (f)

Fig. 11. Mesh zippering process.

The second experiment assesses the offset algorithm using
the simplification algorithm to remove the degenerate meshes.
Fig. 12 shows three meshes in different depths. The first mesh
(depth = 0.0mm) begins to be displaced until some degenerate
face is detected. When it occurs, the simplification algorithm
is used and then the displacement continues. In our work we
defined a maximum depth = 64.5mm. This depth is sufficient
to our application. Fig. 13 shows the mesh on the patient’s
head and the local curvilinear reformatting.

The last experiment tests our curvilinear reformatting using
the zippering algorithm and the algorithm of mesh offsetting.
Fig. 14 shows the result of the curvilinear reformatting made
over the top of the head. Fig. 15 shows another view of

Fig. 12. Meshes in different depths: 0.0mm, 32.0mm and 64.5mm. The
simplification algorithm was used to prevent degenerate triangles.

Fig. 13. The result of the curvilinear reformatting: (a) the mesh displacements
(the same meshes shown in Fig. 12), (b) and (c) show the final result of the
curvilinear reformatting.

the curvilinear reformatting and Fig. 16 shows the curvilinear
reformatting being performed only in the back region of the
head. Table II shows the total time in seconds needed to make
the curvilinear reformatting presented in Fig. 14, Fig. 15 and
Fig. 16.

(a) 16mm (b) 23mm (c) 33mm

Fig. 14. Curvilinear reformatting in different depths: top view.

(a) 0mm (b) 25mm (c) 35mm

Fig. 15. Curvilinear reformatting in different depths: side view.



(a) 15mm (b) 23mm (c) 31mm

Fig. 16. Curvilinear reformatting in different depths: only in the back of the
head.

TABLE II
TIME PERFORMANCE OF CURVILINEAR REFORMATTING.

No. of triangles Time(s)
Fig. 14 1335 34
Fig. 15 1070 27
Fig. 16 806 22

VII. CONCLUSION

The average time to perform the curvilinear is less than 1
minute and the zippering algorithm less than 1 second. These
results are appropriate for an interactive environment. From
the videos available in the project site http://www.dca.fee.
unicamp.br/∼wloos/video.html, one can appreciate the perfor-
mance of our algorithm. Thus we present some advantages
of our algorithm: 1) few interactions are needed to make the
curvilinear reformatting, 2) it works in interactive time, 3)
space native is maintained and 4) the reformatting is made
only in the region that is selected. However our algorithm still
has some limitations. As our zippering algorithm is based on a
visibility algorithm, the area to be zippered needs to be visible,
otherwise it is not possible to use it. We also assume that only
two transitions vertices for each mesh are found, otherwise the
zippering is not performed. In other words, the mesh cannot
have more than two intersecting points. When we are merging
the vertices, some edges can cross each other as presented in
Fig. 17. When the vertices w and v are merged (Fig. 17(b)),
the edge ev may cross ew. A way to handle this problem is
to split the edges in two edges.

Another limitation of our proposal is that we created new
triangles based on their internal angles formed by their vertices
to fill the holes. This methodology only works for convex
holes. The small distance between the meshes guarantees the
smoothness of the zippered mesh, however this can yield some
degenerate triangles. One alternative is using the simplification
algorithm to remove them immediately after zippering.

w

v ev

ew w

ew

ev

Fig. 17. The edges, ew and ev , cross each other after the vertices w and v
are merged.
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