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Fig. 1. An example of streaming graph-based hierarchical video segmentation obtained by our proposed method.

Abstract—In this paper, we present an approach to streaming
graph-based hierarchical video segmentation by simple label
propagation. Here, we transform the streaming video segmen-
tation into a graph partitioning problem in which each part
corresponds to one region of the video; furthermore, we apply a
simple method for merging the segmentations of two consecutive
blocks to achieve the temporal coherence. The spatial-temporal
coherence is given, only, by color information instead of more
complex features. We provide an extensive comparative analysis
among our method and methods in the literature showing
efficiency, ease of use, and temporal coherence of ours. According
to the experiments, our method produces good results when
applied to video segmentation besides presenting a low space
and time cost, compared to other methods.
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I. INTRODUCTION

The interpretation of the data in a video is a complex
activity, so a step of video segmentation may be necessary to
partition the data set into structures with relevant semantic con-
tent to aid in the analysis process. We can find in the literature
several algorithms of video segmentation, which mostly are
extensions of image segmentation techniques. Some of these
algorithms simply apply image techniques segmentation to the
video frames without considering temporal coherence [1], [2],
others can preserve the temporal information as supervoxels,

which is a set of spatially contiguous voxels (a voxel has
three coordinates (x; y; t), in which time is represented as
the third dimension) that have similar appearance (intensity,
color, texture, etc.) [3], [4], [5], [6], [7], [8], [9].

The methods based on Nystrom [4] and segmentation
by weighted aggregation (so-called SWA, Segmentation by
Weighted Aggregation) [5], both optimize the same normalized
cut criterion. In [4], the Nystrom approximation was applied
to short videos with low-resolution, while the approach based
on SWA proposed by [5] computes iteratively the hierarchy.
In [3], the authors introduced the Morse theory to interpret
mean shift as a topological decomposition of the feature space,
the algorithm is applied to temporal sequences (so-called
MeanShift). For video segmentation, the method proposed by
[10] (so-called GBH, Graph-Based Hierarchical) taking into
account the same criterion of [11] (so-called GB, Graph-
Based) iteratively computes different hierarchical levels, using
an adjacency region graph. Even though this method presents
high quality segmentations with a good temporal coherence
and with stable region boundaries, for computing a video
segmentation according to a specified level, it is necessary
to compute all lower (finer) segmentations.

In [8], [9], the authors proposed another hierarchical seg-
mentation method – HOScale (Hierarchical video segmenta-
tion using an Observation Scale) – based on the same criterion



of [11] that removes the need for parameter tuning and for
the computation of video segmentation at finer levels. In their
proposal, the video segmentation is not dependent on the
hierarchical level, and consequently, it is possible to compute
any level without computing the previous ones, thus the time
for computing a segmentation is almost the same for any
specified level. Moreover, according to experimental results
presented in [9], HOScale produces good quantitative and
qualitative results when compared to other methods.

Although these methods have presented good results for
segmenting videos, as shown in [9], [12], there are still
some factors that prevent their use in real applications, i.e.,
memory consumption and processing time make unfeasible
to apply those methods to medium and large videos. In [7],
the authors proposed the first streaming hierarchical video
segmentation method – StreamGBH. The experimental results
indicate that StreamGBH outperforms other streaming video
segmentation methods and performs nearly as well as the
full-video hierarchical graph-based method GBH. But, since
it adopts GBH [10] as a component, it also has the same
limitations, i.e., it is necessary to compute all lower (finer)
segmentations.

This paper presents a new graph-based streaming segmen-
tation method, that represents an evolution of the method
presented in [8], [9] – StreamHOScale – in which the original
video is divided in frame blocks and the streaming video
segmentation is transformed into a graph partitioning prob-
lem for each frame block. Furthermore, a simple method
is adopted to merge the segmentations generated for each
block propagating the spatio-temporal information simply and
efficiently in order to achieve the temporal coherence. The
great advantage of StreamHOScale method is the ability to
run a video stream without the need of having all the video in
memory, achieving to segment of consecutive frames blocks
considering the temporal information present throughout the
video. Experimental results have shown the effectiveness of
our method.

This work is organized as follows. In Section II, our
approach for streaming video segmentation is presented along
with simple examples to better explain how it really works.
Then, experimental results are presented in Section III. Finally,
Section IV presents final remarks and discusses possible
research lines for future works.

II. STREAMING VIDEO SEGMENTATION

Although some video segmentation methods have presented
good results for segmenting videos, as shown in [9], [12],
the memory consumption and processing time are prohibitive
issues for their use in real applications, mainly due to huge
quantity of video information to be processed. Thus, instead of
considering all video information, we divide the video into k-
sized frame blocks in order to cope with those problems with-
out losing the qualitative performance for the segmentations.
So, in this work, we propose a graph-based streaming video
segmentation, so called StreamHOScale in which we apply
the method proposed in [9] to segment each k-sized frame

block, followed by a new and simple strategy for merging the
segmentations of two consecutive blocks.

As can be seen in Fig. 2, our method can be outlined in
some steps: (1) creation of a video graph for each k-sized
frame block; (2) computation of hierarchical scales for each
video graph; (3) identification of video segments for each
block; (4) computation of temporal coherence between video
segments belonging to consecutive blocks; and (5) creation of
a segmented video.

For each k-sized frame block, the underlying graph com-
posed by both the 26-adjacency pixel relationship and the 10
nearest neighbors in RGBXY Z space is created. The edges
are weighted by a simple color gradient computed by the
Euclidean distance in the RGB space. For each video graph,
we compute (hierarchical) observation scales between any
two adjacent regions using the same graph-based hierarchical
method proposed in [9], i.e., instead of computing these scales
directly from the k-sized frame block, our approach computes
them on a graph generated from this block. Note that the
modeling used to transform the video into an edge-weighted
graph may influence the calculation of the scales (Step 1 in
Fig. 2), and, consequently, it may modify the results that
will be obtained by our method. In this section, we focus
the discussion over the process for calculating the hierarchical
scales from video graph (Step 2 in Fig. 2) and for computing
temporal coherence (Step 4 in Fig. 2).

Thanks to the method proposed in [9], we compute the
hierarchical observation scales using the method called cp-
HOScale (or simply HOScale), in which the adjacent regions
that are evaluated depend on the order of the merging in
the fusion tree (or simply, the order of the merging between
connected components on the minimum spanning tree – MST
– of the original graph). Generally speaking, a new edge-
weighted tree is created from this MST in which each edge
weight corresponds to the scale from which two adjacent
regions connected by this edge are correctly merged, i.e.,
there are no two sub-regions of these regions that might be
merged before these regions. For computing the new weight
map, we consider the criterion for region-merging proposed in
[11] which measures the evidence for a boundary between two
regions by comparing two quantities: one based on intensity
differences across the boundary, and the other based on
intensity differences between neighboring pixels within each
region. More precisely, in order to know whether two regions
must be merged, two measures are considered. The internal
difference Int(X) of a region X is the highest edge weight
among all the edges linking two vertices of X in the MST.
The difference Diff (X,Y ) between two neighboring regions
X and Y is the smallest edge weight among all the edges that
link X to Y . Then, two regions X and Y are merged when:

Diff (X,Y ) ≤ min{Int(X) +
λ

|X|
, Int(Y ) +

λ

|Y |
} (1)

where λ is a parameter used to prevent the merging of large
regions (i.e., larger λ forces smaller regions to be merged).

The merging criterion defined by Eq. (1) depends on the
scale λ at which the regions X and Y are observed. More
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Fig. 2. Outline of our method. The method can be divided in five main steps: in step 1, the video is transformed into a video graph; in step 2, the hierarchy
is computed from the video graph; in step 3, the identification of video segments is made from hierarchy; in step 4, the supervoxels output is calculated based
on previously processed frames; and finally, in step 5, the video graph is transformed in the video segmented.

precisely, let us consider the (observation) scale SY (X) of X
relative to Y as a measure based on the difference between
X and Y , on the internal difference of X and on the size of
X:

SY (X) = (Diff (X,Y )− Int(X))× |X|. (2)

Then, the scale S(X,Y ) is simply defined as:

S(X,Y ) = max(SY (X), SX(Y )). (3)

Thanks to this notion of a scale, Eq. (1) can be written as:

λ ≥ S(X,Y ). (4)

The core of HOScale [9] is the identification of the smaller
scale value that can be used to merge the largest region to
another region while guaranteeing that the internal differences
of these merged regions are larger than the value calculated for
the smaller scale. In fact, instead of computing the hierarchy
of partitions, a weight map constructed using the notion of
scale presented in Eq. (1) is produced from which the desired
hierarchy can be inferred (Step 3 in Fig. 2), e.g., by removing
from those edges whose weight is greater than the desired
scale.

The main challenge here is to compute video segmenta-
tion as well as the method proposed in [9] preserving the
performance measures. Thus, after computing segments for
two consecutive k-sized frame blocks, a temporal coherence
must be computed for producing consistent video segments.
Regarding the temporal coherence, in this work, we use a new
and simple strategy for merging two consecutive segmented
blocks for identifying continuous supervoxels in the time. In
order to do that, starting on the second block, the last frame of
the previous block is incorporated at the begining of following
block. Therefore a block consists of one “old” (processed)
frame and k “new” (unprocessed), i.e., two consecutive frame
blocks are overlapped by one frame for providing the temporal
coherence. The main idea for performing temporal coherence

is to identify, in the overlapped frame, the supervoxels that
contain voxels of both consecutive k-sized blocks. After this
identification, we propagate the labels of previous block to new
one. Thus, we identify the supervoxels which are continuous
in the time.

III. EXPERIMENTAL ANALYSIS

In order to provide a comparative analysis, we take into
account the benchmark and library LIBSVX proposed in [12],
since the implemented methods are the state of the art for video
segmentation, including streaming video segmentation. The
benchmark is composed, among others, by: (i) two datasets
with groundtruth - Chen Xiph.org [13], SegTrack [14]; (ii)
one dataset without groundtruth - GaTech dataset [10]; and
(iii) implementations of the methods GB [11], GBH [10] and
StreamGBH [7] applied to video segmentation.

A. Implementation issues

To efficiently implement our method, we use some data
structures similar to the ones proposed in [15]; in particular,
the management of the collection of partitions is made using
Tarjan’s union-find. Furthermore, we made some algorithmic
optimizations to speed up the computations of the hierarchical
observation scales. So, in order to create the video graphs, and
when it is necessary, we employ a KD-tree for identifying
the nearest neighbors in RGBXY Z space. Our method is
implemented in C++ and all experiments were made in a
Quad-Core Intel Xeon E5620 2.4 Ghz 24GB RAM with
Ubuntu 12.04.1 LTS.

B. Quantitative analysis

Using the library LIBSVX, developed by [12], it is pos-
sible to compute, among others, the following metrics: (i)
3D boundary recall; (ii) 3D undersegmentation errors; (iii)
explained variation; and (iv) mean duration. For computing the
first two metrics, a groundtruth is needed. The 3D boundary
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Fig. 3. A comparison between our method, StreamHOScale, and the methods GB, GBH, and StreamGBH when applied to Chen’s, SegTrack
and GaTech datasets (a) 3D Undersegmentation Error (b) 3D Boundary Recall (c) Explained Variation (d) Mean Duration.
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Fig. 4. A comparison between our method StreamHOScale and the method StreamGBH when applied to (from left to right) Chen’s (i),
SegTrack (ii) and GaTech (iii) datasets. The comparison is based on the following metrics: (top) total time; (down) space cost for all methods.

recall assesses the quality of the spatiotemporal boundary
detection, while the 3D undersegmentation error measures
what fraction of supervoxels exceeds the volume boundary of
the groundtruth and the explained variation is a human inde-
pendent measure assessing spatiotemporal uniformity. Finally,
the mean duration quantifies the average duration, in terms of
number of frames, of the video segments (or supervoxels).

Fig. 3 illustrates the average values of computed metrics for
Chen’s, SegTrack and GaTech datasets varying the number
of desired supervoxels between 200 and 700, in which the
parameters for our method are tuned per dataset, like in GBH
and StreamGBH. For GB, the parameters are tuned per video.
The strategy for filtering out small regions is the same adopted
in [12], in which the size of the regions to be filtered out
increases when the number of supervoxels decreases. In order
to compare StreamGBH and StreamHOScale, we consider
the size of each frame block equal to 10. Furthermore, for
better understanding the behavior of StreamHOScale, we also
consider k = 1. Without loss of generality, StreamHOScale
can be considered as HOScale when k =∞. As can be seen
in Fig. 3 and as expected, the performance measures increase
when the block size increases. However, it is worth to mention
the behavior of StreamHOScale (k = 10) when compared to
GBH since the former presents better results than latter, but
GBH uses the full video information.

Concerning memory consumption and processing time cost,
the proposed method StreamHOScale (k = 10) uses less
memory than StreamGBH (k = 10), and it is much faster when
we consider the processing time. Moreover, both memory con-
sumption and time cost are quite constant for StreamHOScale
(k = 10), independently of the number of supervoxels, as can
be seen in Fig. 4.

Finally, Fig. 5 illustrates some results for StreamHOScale
(k = 10) and StreamGBH (k = 10) when applied to videos
from Chen and GaTech dataset, where we noted that the
StreamHoscale method presents a better spatial coherence in
the generated supervoxels. The StreamHOScale demonstrates
to be a good method for large video segmentation, where the

limite of memory and running time can be a problem.

IV. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a method for streaming video
segmentation based on computation of hierarchical observation
scales – StreamHOScale. It can be divided into 4 (four)
main steps: (i) graph creation for k-sized frame block; (ii)
calculation of hierarchical scales for each graph; (iii) inference
of video segmentation using thresholding for each graph;
and (iv) computation of temporal coherence video segments
belonging to consecutive blocks.

To compute the hierarchical scales for each k-sized frame
block, we apply the hierarchical graph-based video segmen-
tation proposed in [9]. This methodology reweights the min-
imum spanning tree computed from the video graph, based
on a criterion that measures the evidence for a boundary
between two regions, by comparing the intensity differences
across the boundary and the intensity difference between
neighboring voxels within each region. Finally, the partitioning
of the graph, after the reweighting, is based on removing the
edges whose weights (which represent the scales) are greater
than or equal to a specified scale. According to experiments
presented in [9], the hierarchies infered by cp-HOScale (or
simply HOScale), produce good quantitative and qualitative
results when applied to video segmentation. However, even
though the method is quite fast, we propose in this paper
a strategy for speed-up the computation of video segmen-
tation without losing much quality. Thanks to the new and
simple strategy for merging the results of two consecutive
k-sized frame blocks, we produce good results preserving
as much as possible the same quality measure of original
one. Moreover, we outperform the compared methods for all
performance measures, including memory consumption and
processing time. For further works, we will study different
ways for computing the video graph, mainly, in order to
decrease the time for its creation and assess its impact on
video segmentation results. Moreover, we will study how to
compute streaming video segmentation in real time.



(a) 50 segments - soccer video from Chen dataset

(b) 100 segments - soccer video from Chen dataset

(c) 50 segments - yunakim_long2 video from GaTech dataset

(d) 100 segments - yunakim_long2 video from GaTech dataset

Fig. 5. Examples for videos from Chen and GaTech dataset. The original frames are illustrated in the first row. The following rows, from top to bottom,
illustrate the results obtained by StreamGBH (k = 10) and StreamHOScale (k = 10). The parameters were tunned to obtain thereabout: (a) 50 and (b) 100
video segments to soccer video from Chen dataset and (c) 50 and (d) 100 video segments to yunakim_long2 video from GaTech dataset.
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