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Abstract—Detection of rolling and adhered leukocytes in in-
travital microscopy image sequences is an important task in stud-
ies of leukocyte-endothelial interactions in the microcirculation
of living small animals under different inflammatory conditions.
This procedure is usually performed by visual assessment of
the image sequences. However, despite being tedious and time
consuming, this procedure is prone to the inter- and intra-
observer variability. In this work, we developed an automated
computer system for the detection of leukocytes in intravital
video microscopy. First, the video frames were processed by
the bilateral filter to reduce noise while preserving sharp edges.
Then, a demons-based image registration technique was applied
to minimize animal motion. Finally, the detection of leukocytes
was performed by local analysis of Hessian matrix eigenvalues.
Quantitative and qualitative evaluation of the proposed method
were conducted by using 220 video frames obtained from an
experimental study performed on the brain microvasculature of
mice. The proposed method was compared with the template
matching technique using precision, recall and F1-Score mea-
sures. For the Hessian-based method, the results of precision,
recall and F1-Score were, respectively, equal to 0.81, 0.86, and
0.83. For direct comparison, the results obtained for the template
matching technique were 0.86, 0.73 and 0.79.

Keywords—detection of leukocytes; intravital video mi-
croscopy; temporal image registration

I. INTRODUCTION

Analysis of rolling and adhered leukocytes is an important
task to study the mechanisms underlying leukocyte-endothelial
interactions in the microcirculation of living small animals
under different inflammatory conditions [1]. Such studies may
have important implications on the design of new therapeu-
tic strategies to fight inflammation. Intravital microscopy is
currently the gold standard technique for the study of the in
vivo microcirculation because it allows direct observation of
leukocyte movement in microvessels of small animals under
both normal and pathological conditions [2]. In laboratory
experiments, the microscopic images are usually recorded
on a digital media during the experiment for further visual
analysis. However, visual assessment is a time-consuming,
tedious, and an error-prone task. Automatic dynamic analysis
of the behavior of rolling and adhered leukocytes is a difficult
task in computer vision due to severe image noise and clutter,

high variability in contrast between cells and background (due
to differences in focal depth) and the unavoidable presence of
motion blur in the images, caused by heart beat and respiratory
movements of the animal.

A number of methods have been described in the literature
for the detection and tracking of leukocytes in intravital
video microscopy (IVM). Sato et al. [3] have detected only
leukocytes rolling along the vessel walls. For that, they have
processed the spatial path parallel and near to the vessel
contour in the images. Bandpass filtering operation was used
to generate spatio-temporal images in which leukocyte traces
are enhanced while other components are suppressed.

Acton et al. [4] have also proposed a method to auto-
matically track leukocytes in IVM. Their tracker first per-
forms registration of each pair of consecutive frames. Then,
the authors time-average the registered frames to obtain an
estimate of the background and proceed by subtracting the
background from all frames, leaving only the moving objects
in the foreground. An open-close morphological filter was used
to eliminate both bright and dark features that are smaller
than a structuring element. Finally, adaptive template matching
and Kalman filter were applied for cell tracking. By using
over 2500 observations of leukocyte positions, the authors
demonstrated that automated tracking of rolling leukocytes in
vivo can be achieved.

Ray et al. [5] proposed an active contour model for tracking
leukocytes. In their work, model adaptation was constrained
by using shape and size of cells. Detection of leukocytes
was then converted into a minimization problem, where the
energy functional was composed of three energy components
(internal, external and constraint). Despite the good results,
the method can track only one leukocyte at a time and it is
based on user initialization of the leukocyte center positions,
which may not be feasible for analysis of hundreds of cells
in an image sequence. Furthermore, their proposed model
is sensitive to the proximity of the cell to the vessel wall.
Modifications of these previous methods by incorporating the
Gradient Vector Flow (GVF) technique [6] and an extension of
the GVF for image sequences [7] were published by the same



research group. Level set was also used to detect and track
multiple cells in IVM by searching for candidate cells in the
image level lines (boundaries of connected components within
level sets) [8]. The authors also proposed stochastic methods
for the detection and tracking of leukocytes [9], [10].

In this work we present a new method for the detection
of leukocytes in intravital image sequences that presents
two main contributions: first, we have developed a video
motion stabilization method that uses two stages of image
registration (affine and deformable) embedded in a multiscale
framework to allows for a high-accurate alignment of the video
frames; second, we propose a new method for the detection
of leukocytes that is based on the eigenvalue analysis of
Hessian matrix. The paper is organized as follows: Section
II describes the methodology and the image dataset used in
this work, followed by results and discussions in Section III
and conclusions in Section IV.

II. METHODOLOGY

The detection of leukocytes in intravital microscopy image
sequences is a challenge problem due to the high noise
level present in the images, the wide ranging appearance of
leukocytes (in intensity and shape), and mainly to motion blur
and artifacts caused by respiratory and cardiac motion. In
this work all images were preprocessed using an automated
pipeline, as indicated in Figure 1. In the first stage, all frames
strongly affected by the animal movement were detected
and removed by a technique previously developed for this
purpose [11]. Although image restoration techniques can be
used to recover the motion-blurred frames, in this work we
have only extracted them from further analysis. In the next
stage, bilateral filtering [12], which has the ability to reduce
noise without introducing noticeable blurring, was applied to
improve image quality. The parameters of the filter (d = 9,
σr = 10 and σd = 10 corresponding, respectively, to the
diameter of filter neighborhood and to the range and spatial
parameters of Gaussian kernels) were experimentally adjusted
to provide the best trade-off between noise reduction and
low blurring effect. In order to diminish the photobleaching
effect [13], commonly observed in fluorescence microscopy,
and to improve our frame-to-frame image registration method
(described in details in Section II-A), the histogram matching
technique proposed in [14] was applied to each pair of
consecutive frames in the video. After registration, the vessel
region was extracted by assessing the temporal variance of
each pixel, as proposed in [3]. The rationale in this case is that
the gray level of each pixel in a vessel region, where blood
cells are flowing continuously, will greatly vary within frames
while the gray level in other regions will be almost constant
— i.e., the gray level variance tends to be large in the vessel
region and small in other regions. After that, a binary vessel
image was created and used in further analysis to reduce the
number of false-positive cells automatically detected in the
images. Finally, all frames were processed for the detection
of the leukocytes, as described in Section II-B.

Fig. 1. Flow diagram of the proposed method to detect leukocytes in intravital
microscopy image sequences.

A. Temporal image registration

The temporal image registration framework developed in
this work to correct for small specimen movements is com-
prised of four modules: metric, optimizer, interpolator and
transformation. The method, as shown in Figure 2, consists
of finding a transformation T (p) to correct the misalignment
between consecutive pair of frames (images) in the video. The
set of parameters p of the transformation T is obtained in
an iterative manner by mapping all pixels from the moving
frame M(x, y) to their corresponding pixels in the fixed
frame F (x, y) so that the similarity metric S(p|F,M, T ) is
minimized.

1) Metric: The metric chosen in this work was the mutual
information (MI) [15], which measures the statistical depen-
dency between two data sets (fixed and moving images) by
taking into account the amount of information that one random
variable has over another. MI is defined in terms of entropy
in the following way [15]:

S(p|F,M, T ) = MI (F, T ) (1)
= H (F ) +H (M |T )−H (F,M |T ) ,

where H (·) is the entropy of a random variable (in this
case, images F or M ), which can be calculated from the
marginal probability (normalized intensity histogram), P (·),
of the images as:

H (F ) = −
∑
m∈F

P (m) logP (m) , (2)

H (M |T ) = −
∑
n∈M

P (n|T ) logP (n|T ) . (3)

In Equations (2) and (3), m and n represent, respectively,
pixel intensities in the images F and M . The joint entropy
of images F and M , which is the last term in Equation (1),



Fig. 2. Temporal image registration framework developed to stabilize video motion due to small animal movements.

is calculated from their joint probability distribution (joint
normalized intensity histogram), P (m,n|T ), as:

H (F,M |T ) = −
∑

m∈F,n∈M
P (m,n) logP (m,n|T ) . (4)

2) Optimizer: An optimizer based on the gradient descent
method [16] was used to search for the best set of parameters
p that minimizes the similarity function S between images F
and M . The method uses a multiresolution Gaussian pyramid
approach in which the levels contain images with different res-
olutions, as illustrated in Figure 2. The parameters estimation
starts with the lowest resolution images ((692× 520) ÷ 2n,
where n = 4 is the number of decomposition levels used
in this work) in the top level of the pyramids, and the
parameters estimated at this level are used as an initial start
to the algorithm on the next lower level of the pyramids
(higher resolution images). This procedure is then repeated
until the pyramid bases (full resolution images) are reached.
This approach results in a reduction of processing time of the
algorithm as well as in an increase in the method’s stability,
since the coarse details from the top levels of the pyramids
increase the chance of the gradient descent method to converge
to a point of global minimum, providing, therefore, good
parameters estimation in each iteration.

The choice of using the gradient-descent algorithm as an
optimizer in our registration framework was made because
it is a low computational complexity technique, which is
an important feature when processing very large amounts of
data. Also, as mentioned previously, the optimization of the
parameters is performed using a multiresolution framework,
which minimizes the chances of the gradient-descent algo-
rithm getting trapped in a local minimum and increases the
convergence speed.

3) Interpolator: Similarly to the optimizer, a linear interpo-
lator was used in our image registration framework because of
its low computational complexity with respect to the number

of image pixels. This module is necessary because the mapping
of the points from one image into another is performed in the
physical coordinate system and, therefore, an interpolator is
required to put these points back in their corresponding places
in the image pixel grid.

4) Transformation: Mathematically, geometrical transfor-
mations represent mappings of points from a space X of one
view (moving image) to a space Y of a second view (fixed
image). As indicated in Figure 2, our proposed method uses
two types of geometrical transformation to correct for undesir-
able frames misalignment caused by the animal movements.
First, an affine transformation T , which represents a linear
combination of rotations, translations, scaling and shearing
operations, was applied to each position x of the moving
image (herein, a point in X is represented by the column
vector x) to produces a transformed point x′,

x′ = T (x). (5)

This transformation results in a coarse alignment between the
moving and fixed images.

After the affine registration, the deformable transformation
technique proposed in [17] was applied to the moving image
to refine the previous computed alignment. A deformable
transformation consists of finding a mapping of an image
M(x) to an image F (x) using a deformation field u(x) [18].
The deformation is defined in the physical image space and
provides the positional difference between two given images.
In this way, if a feature defined in F (x) has its equivalent in
M(y), the deformation field u in x is computed as

u(x) = y − x, (6)

and, therefore, it can be applied to deform an image M into
an image F by

Mdeformed =M(x+ u(x)). (7)

The idea of the deformable transformation technique [17] to
compute the deformation field is that a regular grid of forces



deforms an image by pushing the contours in the normal
directions. The orientation and magnitude of the displace-
ment vectors are derived from the instantaneous optical flow
equation [19]. In this case, the conservation of gray level
intensity of the moving points is assumed to be constant, i.e.,
I(x(t), t) = const, with x(t) representing the coordinates of
the point at time t.

In our case, two consecutive pair of frames (the fixed frame
denoted by F (x) and the moving frame M(x)) are compared
to allow the computation of displacement vector u(x) that let
M(x) closer to F (x). Then, by considering that F (x) and
M(x) are separated by one time unit, ∂I/∂t =M(x)− F (x)
and u(x) = dx/dt is the instantaneous velocity of F (x) to
M(x), thus

u(x) · ∇F (x) = − (M(x)− F (x)) . (8)

In this case, u(x) is considered to be velocity because
the images are two successive time frames, i.e., u(x) is the
displacement during the time interval between the two image
frames [17]. It is well known in optical flow literature that
Equation 8 is not sufficient to define the velocity u(x) locally
and, in this case, it is usually determined using some form of
regularization. For registration, the projection of the vector on
the direction of the intensity gradient is used as:

u(x) = − (M(x)− F (x))∇F (x)
‖∇F‖2+(M(x)−F (x))2/K

, (9)

where K is a normalization factor that accounts for the units
imbalance between intensities and gradients. This factor is
computed as the mean squared value of the pixel spacings.
Inclusion of K makes the force computation to be invariant
to pixel scaling in the images. In order to provide a level of
symmetry in the force calculation, a variation of the equation
9 was used. In this case, the gradient of the deformed moving
image is also involved, so that

u(x) = −2 · (M(x)− F (x)) (∇F (x) +∇M(x))
‖∇F+∇M‖2+(M(x)−F (x))2/K

. (10)

An elastic-like behavior, smoothing the deformation field
with a Gaussian filter between iterations, was included into
the implemented algorithm in order to make it realer.

B. Detection of leukocytes

Although leukocytes slightly change from circular to an oval
shape before transmigrating through the endothelium, in this
work our assumption is that these cells can be visualized as
blob-like structures in IVM. Therefore, our proposed method
for the automatic detection of leukocytes is based on a salient
blob detector approach that uses information of Hessian matrix
eigenvalues for the representation of local geometric structures
[20] (blob-like structures, in our case) in an image.

Since microscopic images are two-dimensional projections
of three-dimensional structures (microvessels and cells), leuko-
cytes may be positioned above and below the microscope focal
plane and, therefore, their size appearance may be distorted,
showing cells in a different range of scales. For this reason,

our proposed method was developed based on the analysis of
local structures in a multiscale framework [20]. The initial
idea of our approach is to generate a family of smoothed
images I(x, y;σ), computed by convolving the original image
I0(x, y) with Gaussian kernels G(x, y;σ) of different standard
deviation (σ) values, as

I(x, y;σ) = I0(x, y) ∗G(x, y;σ), (11)

where

G(x, y;σ) =
1

σ
√
2π

exp

(
−1

2

(
x+ y

σ

)2
)
, (12)

and use a strategy to proper select the local scale parameter
to build the Hessian matrix. For that, the response function
R(x, y;σ), computed as

R(x, y;σ) =
∂m+nI(x, y;σ)

∂xm∂yn
(13)

= I0(x, y) ∗
∂m+nG(x, y;σ)

∂xm∂yn
, (14)

where m and n are orders of derivatives, was used. The local
scale was defined as the value of σ (over a range of values)
corresponding to the maximum value of function R(x, y;σ)
for each pixel, which indicates the proper Gaussian scale
probe (Gaussian observation kernel) with the width value
corresponding to object feature size. Because of the amplitude
of Gaussian derivative operators in (14) tends to decrease
with increasing scale (due to the fact that with increasing
scale, the response is increasingly smoothed), the so-called
γ-parameterized normalized derivatives [21],

∂m+n

∂um∂vn
= σ(m+n)γ ∂m+n

∂xm∂yn
, (15)

with γ = 1.25, was used in this work to overcome this prob-
lem. The choice of γ = 1.25 was experimentally determined
to work well on a variety of intensity structure profiles [22].

Based on the intensity responses of the γ-parameterized nor-
malized derivative filters, a local measure of image structure
is devised from the analysis of Hessian matrix eigenvalues of
image intensity. For a given scale σ, the Hessian matrix Hσ(I)
of an image I is a square and symmetric matrix composed of
second-order partial derivatives,

Hσ(I) =

[
Iσxx

Iσxy

Iσyx
Iσyy

]
, (16)

where

Iσxx
= I0(x, y) ∗

(
σ2γ ∂

2

∂x2
G(x, y;σ)

)
, (17)

Iσyy = I0(x, y) ∗
(
σ2γ ∂

2

∂y2
G(x, y;σ)

)
, and (18)

Iσxy
= Iσyx

= I0(x, y) ∗
(
σ2γ ∂2

∂x∂y
G(x, y;σ)

)
. (19)



Mutual magnitude of eigenvalues from Hessian matrix is an in-
dicative of the underlying object shape. Under the assumption
that eigenvalues are sorted in order of increasing absolute value
(|λ1| ≤ |λ2|), the relations that must hold between the Hessian
matrix eigenvalues for the detection of different structures are
summarized in Table I.

TABLE I
POSSIBLE PATTERNS IN 2D, DEPENDING ON THE VALUE OF THE

EIGENVALUES λk (H=HIGH, L=LOW, N=NOISY, USUALLY SMALL, +/-
INDICATE THE SIGN OF THE EIGENVALUE) [23]. THE EIGENVALUES ARE

ORDERED: |λ1| ≤ |λ2|.

λ1 λ2 orientation pattern
N N noisy, no preferred direction
L H- tubular structure (bright)
L H+ tubular structure (dark)
H- H- blob-like structure (bright)
H+ H+ blob-like structure (dark)

In the intravital microscopy images used in this work,
leukocytes emerge as bright blob-like structures embedded in a
dark background. Because of the images are affected by noise,
we need to address the problem of effective enhance the cells
contrast without increasing the image noise level.

By treating the problem of leukocyte detection as a Hessian
eigenvalue analysis, we can easily incorporate the cell shape
information into the solution. In this way, prior information
can be used as a consistency check to discard structures present
in the dataset with different polarity than the one sought.
Isotropic structures, for instance, are associated to eigenvalues
having a similar non-zero magnitude. Accordingly, we shall
look for structures whose λ1 and λ2 are both, simultaneously,
high and negative. By taking this into consideration, a blobness
measure function Bσ(λ), defined as

Bσ(λ) =


(
1− exp

(
− R2

A

2α2

))
×(

1− exp
(
− S2

2β2

))
if λ1 < 0 and λ2 < 0,

0 otherwise,
(20)

was created by using the ratio and magnitude strength of
the eigenvalues and used to enhance blob-like structures
representing the leukocytes in the images. In Equation (20),
RA = |λ1|/|λ2| helps distinguishing between plate-like and
line-like patterns. In addition, the measure S =

√
λ21 + λ22

helps to reduce the influence of background noisy pixels in
the blobness measure function, since noisy pixels present low
eigenvalues and, therefore, the second term in Equation (20)
will considerably reduce the blobness value. Parameters α
and β can be adjusted to control the sensitivity of the filter
components and, in this work, they were set, respectively, to
0.5 and one tenth of the maximum value of the Laplacian of
the image, as suggested in [20]. The σ footer in Bσ indicates
that the blobness measure is computed on a smoothed version
of the image and, therefore, it is representative of the variations
of image intensity at the spatial scale σ. The function was
evaluated at range of spatial scales (σ), varying between 2 and

3. This range was based on the size of the observed leukocytes
in the images. The maximum response at every pixel was taken
as

B(λ) = max
σ∈[σmin,σmax]

Bσ(λ). (21)

As result, we have an image sequence containing all
possible blob-like structures detected by the algorithm. As
mentioned previously, as the leukocytes may be positioned
above and below the microscope focal plane, their apparent
size and, specially their contrast, can significantly change in
the images. For this reason, the multiscale blob detector will
produce real-valued responses. Therefore, to improve cells
detection, an adaptive thresholding technique was applied to
the blob detector output image. In this case, the local threshold
value was calculated as a weighted sum (cross-correlation with
a Gaussian window) of an M ×M neighborhood of position
(x, y) in the image. The default standard deviation of the
Gaussian window is defined by the specified neighborhood
size M . In this approach we set M = 17 by considering the
radius of the largest leukocyte.

After binarization by the local threshold technique, pixels
corresponding to candidates cells were extracted from the
original frames. Finally, with these pixel values, we refined the
output images choosing only the regions that have an average
value larger than a threshold. This process was conducted to
prune low blob responses, probably due to noisy pixels. This
threshold value was varied from 1 to 255 at step of 1 and the
results of this stage are analyzed in Section (III).

C. Intravital microscopy dataset

For this work, female C57BL/6 mice between 9 and 10
weeks of age were obtained from Animal Care Facilities
of the Federal University of Minas Gerais (UFMG, Brazil).
The Animal Ethics Committee of UFMG approved all exper-
imental procedures used in this study. Intravital microscopy
was performed on the mouse brain microvasculature as pre-
viously described [24]. Each mouse was anesthetized using
an intraperitoneal injection of ketamine/xylazine and its tail
vein was cannulated for the i.v. administration of 200 µL of
rhodamine 6G dye (0.5 mg/mL). The animal was restrained
in a stereotactic rodent head holder and craniotomy was
performed using a high-speed drill. The dura matter was
removed to expose the underlying pial vasculature. After the
surgeries, each animal was transferred to the microscope stage
and was maintained at 37°C using a heating pad (Fine Science
Tools Inc., Canada). The exposed brain window was super-
fused continuously with artificial cerebrospinal fluid buffer
at 37°C. To assess the leukocyte-endothelial interactions, the
fluorescent leukocytes were visualized under a Zeiss Imager
M.2 (x20 long-distance objective lens; Göttingen, Germany)
equipped with a fluorescent light source (epi-illumination at
510–560 nm, using a 590 nm emission filter). A video camera
(Optronics) was mounted on the microscope in order to record
images with a sampling rate of 16 frames/s, 8 bits depth
and spatial resolution of 1.89 pixels/µm with a matrix size
of 692 × 520 pixels. Microvessels were analyzed in sections



(a) (b)

Fig. 3. Line projection results. (a) Line projection image before and (b) after registration technique.

Frames

(a)

Frames

(b)

Fig. 4. PSNR metric processed over all the residual images from all consecutive video frames. (a) PSNR values before and (b) after registration.

of 100 µm in length, and the diameters of the vessels ranged
from 40 to 115µm in the brain.

D. Ground-truth image dataset

A total of 220 frames of an IVM containing 5851 leuko-
cytes (obtained from the experiment described in Section
II-C) was used to quantitatively assess the results of the
proposed method. For this purpose, all leukocyte centroids
were manually annotated frame-by-frame with help of a com-
puter program. All annotations, containing an average of 26.6
leukocytes per frame, were checked by an expert biologist
(JCT), co-author of this paper.

III. RESULTS AND DISCUSSIONS

The temporal image registration algorithm, as described in
Section II-A, was visually assessed by using the line projection
technique. This technique works by stacking the central line
of each video frame to create a new image, where the intensity
profile of each frame line is arranged horizontally while the
time sequence is assessed vertically. The result of applying
this technique to our image dataset is shown in Figure 3.

By comparing both projections in Figure 3, a noticeable
sawtooth pattern can be seen in (a). This pattern indicates

a strong misalignment of the frames throughout the image
sequence before registration. On the other hand, in image
(b) the sawtooth pattern is less noticeable, indicating more
continuous lines and consequently a greater alignment of the
frames after the registration process.

Quantitative analysis of the temporal image registration
algorithm was conducted by calculating the peak signal-to-
noise ratio (PSNR) metric for residual images resulting from
subtraction of consecutive pair of frames, before and after
registration. This measure defines the ratio between the max-
imum possible power of a signal and the power of corrupting
noise that affects the fidelity of its representation on the video
frames. In case of good alignment, the residue will be small
and PSNR value (dB) will be large. Otherwise, if residue is
large, then PSNR value will be small. PSNR values calculated,
before and after registration, for all consecutive pairs of frames
from the same IVM are presented in Figure 4. The mean
and standard deviation values of the original frames (before
registration - left panel of Figure 4) were, respectively, 35.28
dB and 3.13 dB, whereas for registered frames (right panel)
they were 37.79 dB and 1.62 dB, respectively. These responses
show a considerable reduction in image motion despite the



TABLE II
VALUES ASSESSED FOR THE DETECTION OF THE LEUKOCYTES. THE TOTAL NUMBER OF LEUKOCYTES IN THE VIDEO IS 5851.

Methods
Counting Precision Recall F1-Score

AUCPRdetected false missing TP/(TP+FP) TP/(TP+FN) 2TP/(2TP+FP+FN)leukocytes (TP) alarms (FP) leukocytes (FN)
Hessian-based 5010 1160 841 0.81 0.86 0.83 0.82

Template Matching 4285 720 1566 0.86 0.73 0.79 0.72

relatively small values of PSNR (less than 40dB), which is
caused by an increasing in the residual image intensities due
to the inherent movement of leukocytes in the images.

To assess the performance of our proposed method, cen-
troids of the detected leukocytes were compared with those
obtained by Template Matching (TM) technique [25] and with
the ones manually annotated and saved in the ground-truth
dataset. In this work, a leukocyte was considered correctly
detected if the position of its centroid was less than 5 pixels
away from the closest leukocyte in the ground-truth dataset.
The distance of 5 pixels was chosen according to the average
radius of the leukocytes manually annotated in the images.

The overall performance of our proposed method for the
detection of leukocytes in IVM was evaluated by the classical
measures precision, recall and F1-Score [26], which are com-
monly used in the content-based retrieval community. This
technique (refer to Figure 5) plots precision (the number
of leukocytes correctly detected (TP) divided by the total
number of detected leukocytes (TP+FP)) versus recall (TP
divided by the total number of leukocytes manually annotated
(TP+FN)). FP and FN correspond, respectively, to the number
of false-positive and false-negative leukocytes. Each operating
point in the precision-recall plots was obtained by fixing a
threshold value and comparing it with the average intensity
of each region where a candidate leukocyte was detected.
If the average intensity of the region is smaller than the
threshold, then the candidate leukocyte is removed, otherwise
it is considered for computing the precision and recall values.

1

Recall
1

Fig. 5. Precision recall curves obtained for the proposed method (Hessian-
based) and the TM.

As it can be seen in Figure 5, the proposed Hessian-based
method presents a better performance than the TM if we

consider the area under both precision-recall curves (AUCPR),
which are 0.82 and 0.72, respectively. For recall values smaller
than 0.73, the precision of both methods is very similar.
However, if we consider recall values greater than 0.73, then
the precision of the Hessian-based method is considerably
higher than the TM.

In addition to the plots in Figure 5, we have also determined
the best F1-Score values for both the Hessian and TM meth-
ods. This score, which is a measure of a test’s accuracy, can
also be interpreted as a harmonic mean of the precision and
recall, where a F1-score reaches its best value at 1 and worst
score at 0. The results, summarized in Table II, indicate that,
for this specific operating point, the proposed Hessian-based
method achieved better accuracy than the TM.

Our proposed method was also assessed by means of the
average AUCPR measure (AUCPR, computed from AUCPR
measures estimated for all individual video frames) and its
95% confidence interval. In this case, the results obtained for
proposed method and the TM were, respectively, 0.79 [CI:
0.78 - 0.80] and 0.68 [CI: 0.67 - 0.69].

Figure 6 depicts a resulting image of a video frame pro-
cessed in this work by the Hessian-based and TM meth-
ods. The original frame is shown in Figure 6(a), while the
leukocytes manually annotated can be seen as blue circles
in Figure 6(b). Figures 6(c) and (d) illustrate using small
green circles the detected leukocytes. White squares and blue
circles indicate, respectively, the FP and FN leukocytes. In
this specific image, we can notice that the Hessian-based
method have correctly detected a larger number of leukocytes
compared with the TM. The numbers of FP and FN are also
smaller for the Hessian method.

IV. CONCLUSIONS

In this work we have presented a fully automatic method
for video stabilization and detection of leukocytes in intravital
video microscopy. Detecting rolling and adhered leukocytes
in video sequences of in vivo animal brain studies is a very
challenging task. The major problems are the severe image
noise and clutter, the unavoidable presence of motion blur
in the images, caused mainly by heart beat and respiratory
movements of the animal, and the high variability in contrast
between cells and background. To address these problems we
have developed a video motion stabilization algorithm based
on a temporal image registration technique. This approach,
which involves affine and deformable transformations to cor-
rect for image motion, was qualitatively and quantitatively
assessed and its results have shown a considerably improve-
ment in IVM stabilization. To handle high variability in image



(a) (b)

(c) (d)

Fig. 6. Example of a processed video frame. (a) Original frame, (b) leukocytes
manually annotated - ground-truth, and (c) and (d) are, respectively, the output
of the Hessian-based and TM methods. White squares in images (c) and
(d) indicate the FP leukocytes, whereas the blue circles represents the FN.
Leukocytes detected by both methods are shown as green circles.

contrast, we have developed a method based on analysis
of Hessian matrix eigenvalues to detect leukocytes in the
images. By using an IVM composed of 220 frames (with 5851
leukocytes manually annotated), the method was quantitatively
evaluated (in comparison with the ground-truth) and its results
have demonstrated their effectiveness for the detection of
leukocytes. Besides, our proposed method has shown better
performance when compared with the TM technique (AUCPR
of 0.82 versus 0.72).
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