
Real Time Pixel Art Remasterization on GPUs
Marco A. G. Silva, Anselmo Montenegro, Esteban Clua, Cristina Vasconcelos, Marcos Lage

Instituto de Computação, Universidade Federal Fluminense (UFF)
CEP 24210-240 Niterói, RJ, Brazil

Email: {marcogs, anselmo, esteban, crisnv, mlage}@ic.uff.br

Fig. 1: Example of the stages of our method applied to a pixel art based game. The first image shows the input image scaled
16x with nearest neighbor. The second image represents the similarity graph for the image. The third image shows how pixels
are reshaped into cells and the last image is the final result with the smoother triangulated cells (Original image c©Sega
Corporation).

Abstract—Several methods have been proposed to overcome
the pixel art scaling problem through the years. In this article
we describe a novel approach to be applied through a massively
parallel architecture that can address this issue in real time. To
achieve this we design a local and context independent algorithm
that enables an efficient parallel implementation on the GPU,
delivering full frames output at response time for the user
interaction. Our main goal is to apply the method on full frames
of old games, which were based on pixel art graphics until the
half of the 1990’s, and keep the output frame rate good enough
for playing.

Keywords-pixel art; upscaling; vectorization; retro;

I. INTRODUCTION

For years games were designed in a pixel art graphical
style due to the hardware constraints of the time. Back in
the late 70’s through the first half of the 90’s the video output
of video games and PCs in general were limited to a few
lines of pixels that were projected in the analogical video
outputs, like CRT monitors and TVs. Until the early 90’s,
consoles and arcade machines hardly had more than 224 lines
of resolution. Another restriction was that artists had to deal
with limited number of colors simultaneously available on the
color palette. At the same time Operational Systems also used
pixel art graphics style to represent features like icons and
cursors.

Although these games can look outdated if compared to
modern consoles titles, mainly in terms of graphics, there
is still a large demand for them, thanks to the nostalgia of
older gamers and the discovery of young gamers. This is

clearly evidenced by the digital media delivery service of
today’s consoles, like the PSN (Playstation Network), Xbox
Live and Nintendo Network, which offers a lot of these old
titles in their library. This movement towards the past is called
“Retro” and is a cyclical and natural movement that comes as
opposition to changes in different societies. In [1] Bernardo
Mendes discusses the retro phenomenon for video games and
analyse the reasons that led to this phenomenon.

While remixed versions of old classics have been released
in the last years, just a limited number of games are receiving
this remaster process and, in those cases, too much time and
resources are spent to accomplish a high resolution result.

Directly scaling these pixel art with modern video devices
results in blocky images, with visual disconnections, an issue
that was not supposed to appear in the original representation.
The existing vectorization algorithms are supposed to be
applied on natural images but its usage for pixel art input
is not appropriate. A straightforward use of such algorithms
causes the loss of small features of the original input. Thus,
important details end up being lost, since in the design of pixel
art every pixel matters as, they were placed hand by hand by
the artist. The existing methods designed specially for pixel
art upscaling, briefly described in the next section, produce
reasonable results, but are fixed to the magnification factor of
two, three or four times.

Contributions: In this article we present a novel approach
capable of achieving real time results. Our algorithm can
deliver full frame output vectorized from pixel art input. The
final result is smoother and free of disconnections as we can

mailto:marcogs@ic.uff.br
mailto:anselmo@ic.uff.br
mailto:esteban@ic.uff.br
mailto:crisnv@ic.uff.br
mailto:mlage@ic.uff.br


Fig. 2: Pipeline Diagram. The Similarity Graph stage extracts a node for each input pixel. The Cell Diagram stage computes
the cell shape for each graph node. In the following the cell border edges are subdivided to give the polygon a smoother
aspect. Afterwards, cells are split into triangles that feed the rendering process.

see in Figure 1. The algorithm response time enables the player
to play pixel art designed games at any scale factor without the
inherent problems of scaling this type of input. To achieve this
we propose a new algorithm that is able to use the power of
a massively parallel architecture, more specifically, the GPU.

II. RELATED WORK

Many methods have been proposed by the emulation com-
munity in order to make the old games graphics be better
displayed on modern video devices. Some emulators started
implementing naive approaches like interlaced black lines
(usually called scanlines) and linear interpolation. These al-
gorithms are far from yielding good results because they do
not take into account substantial information of pixel art data,
like the pixel neighborhood.

In 1992, LucasArts created the algorithm called EPX to
port its games to a higher resolution platform [2]. Later, some
versions of this algorithm appeared on emulators like Scale2x,
which produces an output with double of the input resolution.
Scale4x is just Scale2x applied twice [3].

In another approach, the 2xSaI algorithm generates a scale
of two times where the additional pixels are generated by
detecting patterns such as lines and edges and interpolating
additional pixels on that basis using techniques such as anti-
aliasing. There is also the Eagle algorithm that creates blocks
of 2x2 pixels by comparing the neighbors of a pixel in a 3x3
block. Super2xSaI and SuperEagle do more blending [2].

The hqx family of algorithms [4] is known to yield the best
results among such methods used in emulation. Developed by
Maxim Stepin the hqx exists in three versions: hq2x, hq3x
and hq4x for two, three and four times scale, respectively.
The algorithm compares each pixel with the eight neighbors
using a threshold in the YUV color space and queries a pattern
in a table to replace that pixel. The lookup table of the hq4x

version has 256 entries and returns a pixel block pattern that
aims to smooth the final image.

These approaches can produce reasonable results, but they
are resolution dependent, and present poor results when dis-
played on larger resolution such as Full HD (1080p) devices.
On the other hand, the vectorization algorithms were created
to deal with general image input. Thus, they rely on techniques
like segmentation and edge detection that do not perform well
on pixel art input. A method to extract polygonal surfaces from
volumetric models based on voxels is described by Muniz on
[5]. This is a similar problem, although applied to 3D models.

The most recent and solid addition to this field was the
Depixelizing Pixel Art algorithm [6]. This method produces
a vectorized image formed by B-spline curves and color
diffusion. Although it produces great results, the global nature
of the algorithm makes it very time consuming. On [7] Loos
reproduces Kopf and Lischinski’s work and gives a detailed
explanation of the implementation, which includes some steps
that are not described in details in the based work. Our method
takes the best of Depixilizing Pixel Art algorithm and proposes
a novel parallel method for a full GPU solution.

III. METHOD

The method proposed in this work is inspired by the Kopf
and Lischinski work [6], named Depixelizing Pixel Art. Their
approach was proposed to extract features at the pixel level,
making every pixel relevant. While the authors can achieve
good results, because of its global nature, the extraction
and, mainly, the optimization of the spline curves are very
expensive and thus because of the high processing time it is
impossible to use it to achieve interactive frame rates as it is
now.

With the purpose of processing a pixel art game input in real
time, this method was adapted and modified to fit a massively
parallel architecture, more specifically, the GPU. Much of the



steps can be solved locally or adapted to a local approach and
they can be interpreted as a pipeline, whose stages will be
explained in the next subsections.

Figure 2 shows the pipeline as a diagram. The parallel
computing platform used in this work was CUDA, created by
NVIDIA. Each stage was implemented separately in a specific
GPU CUDA kernel. In the first stage (subsection III-A) we
extract the similarity graph which gives us information about
pixel neighborhood. Each node of the graph has a specific
pattern that will be used to shape a cell in the next stage
(subsection III-B). These cells represent the reshaped pixels
and already present a solution to the problem of diagonal
discontinuity of the original pixel upscaling. The following
stage (subsection III-C) takes these cells and subdivides their
borders using a curve subdivision scheme returning a smoother
polygon. On the final stage (subsection III-D) the cells are split
into triangles and finally rendered.

(a) (b)

Fig. 3: Similarity Graph extraction. (a) Input Image. (b)
Similarity Graph (the black line represents the node’s edges).

A. Similarity Graph

As in Depixelizing Pixel Art, our method relies on the
notion of a Similarity Graph. The Similarity Graph is a graph
induced by pixels structured according to a similarity measure.
Let the similarity graph SG = (V,E) be a graph where V
is a set of nodes n0, n1, . . . , nn induced by each pixel from
the input image and E a set of edges. An edge e connects
two nodes ni and nj associated to the pixels u and v if
those pixels are considered similar according to a similarity
threshold. The threshold used is a variation used in the hqx
algorithm to get a more sensible distinction of colors. In fact,
the chosen threshold was 5

255 , 7
255 , 6

255 for the YUV channels
respectively. If the difference between two pixels is greater
than the threshold, then they are considered to be dissimilar
and will appear disconnected on the graph. An example of a
similarity graph can be seen on Figure 3.

In our implementation, each edge e associated to two nodes
ni and nj is represented by two links, one for ni and another
for nj . Each node can store at most 8 links corresponding to
similarity relations to its eight neighbors. The set of links is
codified by a binary number of eight bits, one for each possible
link in the eight directions.

Our method creates one node per pixel of the input image.
The connectivity relation based on similarity can be computed
in parallel using several threads run independently. The inde-
pendence of threads happens because their actions are limited
to comparisons between the eight neighbors of the pixel and
to the storage of the links related with the current node. The
link data is made to be redundant, so the information about the
connectivity of two nodes is stored in both nodes. Each node
saves its link to a memory space which can be accessed by the
index of the pixel corresponding to the node. This guarantees
the independence of each thread.

After the first step we have a graph with crossing edges
that must be removed in order to solve ambiguities. Nodes
belonging to 2x2 fully connected block are the trivial case
and its crossing edges can be directly removed. A 2x2 fully
connected block is the consequence of a 2x2 pixel block of
the same color.

As crossing edges can only be yielded by four nodes, a
natural solution is to treat groups of nodes in blocks of 2x2
in an integrated way. However, care must be taken if one
considers an approach based on many threads. A single thread
cannot be in charge of modifying the connectivity of these
four nodes because the neighbor nodes of each link will be
processed at the same time. To guarantee the independence
of the node modification process we need to evaluate the
heuristics using a node by node processing. The thread will
process the current node by reading its neighborhood data and
change only the current node links status. Figure 5 shows how
this happens in the trivial case.

Fig. 5: Removing trivial crossing edges from the graph. In this
case we are processing the center node (green dot). We look
for each of the four blocks of 2x2 nodes in its neighborhood,
including it. If neighbor nodes are connected by the red edges
this means we can unassign the links represented by the blue
half edge.

There are others cases of crossing edges that need to
be treated by heuristics to make sure that the final results
represent the right connectivity. Here, we use the curve and
island heuristics pointed by Kopf and Lischinski at [6].

The heuristic execution is based on traversing the nodes
of the graph. We need to measure the length of the paths
composed of valence-2 nodes to solve possible ambiguities
and finally decide which edge to remove in a ambiguous



(0,0) (1,0)

(1,1)
(0,1)

y

x

(a)

(0, 0) (1, 0)

(1, 1)
(0, 1)

y

x

(0.25, 1.25)

(0.75, -0.25)

(b)

(0, 0) (1, 0)

(1, 1)
(0, 1)

y

x

(c)

(0, 0) (1, 0)

(1, 1)
(0, 1)

y

x

(d)

Fig. 4: Cell building. (a) Node pattern. In this case we have only one link to the upper-left node. (b) For each one of the eight
possible directions that have a link we add two points for the polygon that will form the cell. (c) For each direction that does
not have a link we add one point half way distant from the center. Except for the upper-left direction, all the others do not
have a link. (d) Given all this points we now take the convex hull that will give us the the cell shape.

crossing edges configuration. However, this is a process that
is not straightforward translated into a code for the GPU’s
parallel architecture. Our solution is to restrain the area around
which the heuristic will be evaluated, that is, considering
a node’s local neighborhood. In other words, the execution
of the traversal of the valence-2 nodes is distance limited.
Although this seems to be limiting, in practical cases the
heuristic evaluation rarely needs to traverse long distances and
the results produced are quite satisfactory.

The parallel algorithm for the removal of crossing edges in
the ambiguous case, when we have to decide which curve
to preserve, is made similarly to the trivial case of fully
connected 2x2 blocks of nodes. We analyze blocks of 2x2
neighbor nodes and modify the connectivity of only one node
per thread. But in this case we need an entire copy of the
similarity graph after the previous step (the one that solves
the trivial case). This is necessary because in this heuristic we
need to walk through nodes to find the longest curve and if we
find a node already processed during the traversal, this may
be the result of topological changes previously done. In such
cases the topological combinatorial graph information would
be inconsistent justifying the necessity of maintaining a copy
of the previous configuration.

B. Cell Building

In order to reshape the pixels, we use the graph nodes
to build cells corresponding to the deformation of the pixels
according to the node pattern in a way inspired by the Voronoi
Diagram [8]. The exact Voronoi Diagram would be very
costly to compute, affecting the method performance. An
approximated solution, which we propose here produces quite
good results and is general except for few number of special
cases. Moreover, it can be implemented in a full parallel way
due to its locality and independence among nodes.

The cell shape is defined by rules that assign vertex po-
sitions for each of the eight directions relative to the graph
links. The vertex positions are quantized to a quarter of the
pixel dimension, such as proposed in [6]. These points will
define the shape of the cell as a polygon. This is a simple

(0, 0) (1, 0)

(1, 1)
(0, 1)

y

x

Fig. 6: Node with two adjacent links. The link to the upper-left
node adds just one point to the control polygon that shapes
the cell and not two points, like in Figure 4.

way to build the cells that can easily be implemented in a
parallel solution and greatly enhances the performance of the
overall method.

At the end of the new vertex assignment we calculate the
convex hull of these points and the result is the cell that
reshapes the original pixel. Figure 4 shows how the cells are
built. An exception exists when there are two adjacent links.
In this case we add just one point to the control polygon. This
can be seen in figure 6, where the upper-left connected link
adds just one point to the final control polygon.

However, the steps shown in Figure 4 will fail in cases
where the neighboring nodes are not connected together (ex-
cept the upper-left node). The neighboring nodes need to be
evaluated in order to make sure that no gaps will be left
between the cells. To deal with this exception we propose
to check the up-right and down-right links for the left node
and the up-left and down-left links for the right node. If these
links exist we know that there is an edge connecting these
nodes with the top and bottom node. Figure 7 shows how
the final control polygon sticks to the square borders when



the neighboring nodes are not connected together. Figure 8
shows how the same node pattern form a different shape of
cell for different configuration of neighbor nodes. The entire
cell diagram for the part of Alex Kidd input can be seen on
Figure 9

(0, 1)

(1, 0)(0, 0)

(1, 1)

(a)

(1, 0)(0, 0)

(1, 1)

(0, 1)

(b)

Fig. 7: Cell building with neighborhood check. (a) Neighbors
connected. (b) Neighbors not connected. Note the cell expan-
sion to the square border. The red edges form the polygon
shape. The black solid edges are graph edges.

C. Smoothing
After the execution of the cells construction stage there is

a much better representation of the original image that solves
the discontinuity problem related to diagonal neighbor nodes.
At this stage the appearance of the image is not blocky like
the initial input obtained by nearest neighbor scale, but the
shape of the cells still appears not so smooth, and for greater
scales the result keeps getting worse.

Kopf and Lischinski proposes on [6] to make these cells
look smoother building splines using the cells points as control
points. Again, this solution is not local, thus do not have a well
suitable implementation in a parallel architecture. To solve
this problem in a parallel friendly solution we use a local
solution based on the Chaikin’s Method of curve subdivision.
The Chaikin’s Method has been shown to be equivalent to
a quadratic B-spline curve [9]. This algorithm is applied on
most cells by a GPU thread and we just need data from the
neighbors cells and to know the cell edges that are not borders,
which are the ones that are not crossed by a graph edge. The
only cells that do not need to be treated are the ones formed
by internal nodes, because they do not represents borders.

The Chaikin’s algorithm will be applied on some border
edges of the cells by inserting new control points that will
guide the cutting of the corners. Consider one cell to be
defined as a set of points {P0, P1, ..., Pn}. We refine this
control polygon by generating a new sequence of control
points {Q0, R0, Q1, R1, ..., Qn−1, Rn−1} where the positions
of Qi, Ri are defined by the subdivision rule in Equation 1.

Qi =
3
4Pi +

1
4Pi+1

Ri =
1
4Pi +

3
4Pi+1

(1)

Such subdivision results in a new control polygon that has
two times the number of points of the original. However, for

Fig. 8: Same node pattern as the Figure 7, but in this case the
right neighbor node is connected to the top node. This make
the up-right point to be displaced half-way to the center. The
red edges form the polygon shape.

(a) (b)

Fig. 9: Cell diagram result. (a) Input image. (b) Cell diagram.
Each cell represented by its relative pixel color.

this application, we do not want to refine the edges that are
adjacent to a neighbor cell of a similar color. Hence, this
exception makes the number of points in the new control
polygon vary. If the edge Pi, Pi+1 is adjacent to a similar color
cell, the Pi−1, Pi and Pi+1, Pi+2 edges will have to connect
its new control point with an edge of this neighbor cell, more
specifically the one that would be considered adjacent by
walking on the border edges. Figure 10 shows the new edges
as a red line.

To proceed to the next stage we need an entire copy of
the cell diagram as the neighborhood information is needed
to subdivide each cell. This happens because one thread could
take a neighbor cell already processed by other thread and the
result would be inconsistent.

A small number of types of cells, those that have long
diagonal edges, need to be treated as a special case because
such edges are adjacent to two neighbor cell edges. In such
cases the weights used in Equation 1 are changed to 1/8 and
7/8. This is equivalent to dividing these edges in two halves
and applying the same original subdivision rule. Otherwise it
would lead to an inconsistent result caused by the overlapping
of pieces of the neighbor cells. This case can be seen in Figure
11

To prevent holes among the cells, another special case has
to be considered when we have T-junctions, which consists in



Fig. 10: Cells subdivision. The red edges are the new ones
generated by Chaikin method in one iteration. Note that the
cell edges that are adjacent to a similar color cell are not
processed.

(a) (b)

Fig. 11: Diagonal edge exception (a) The diagonal cell has two
of its edges adjacent to other two edges of neighboring cells.
(b) The subdivision of those diagonal edges will be done using
a similar rule to Equation 1 changing the original weights to
1/8 instead of 1/4 and 7/8 instead of 3/4.

three or four dissimilar colors in a 2x2 pixel block. Internal
points of the T-junctions must not be displaced. In such cases
we hinder the subdivision of edges incident to the internal
point in the T-junction. The T-junction detection is shown in
Figure 12.

A few iterations of the Chaikin’s Method is enough to
yield a better result and the number of subdivisions can be
set according to the scale given to the image. For the results
presented this work we used just one iteration in order to
maintain performance.

D. Triangulation and Rendering

As the entire method is based on the building of the cells,
the rendering of the output can be entirely based on the
triangulation of these polygons. This fact leads to a high per-
formance rendering, since triangles are the basic primitive of
rendering graphic systems. Again, each cell will be processed

(a) (b)

Fig. 12: T-junction detection in part of the Alex Kidd sprite.
(a) Subdivision without T-junction detection. The blocks of
2x2 cells with three or four dissimilar colors create a blank
hole. (b) Subdivision with T-junction detection.

Fig. 13: Triangulated Cells

by a GPU thread and the triangulation process guarantees that
the polygons will be rendered with the proper shape.

As a consequence of the subdivision stage, the smoother
cells are represented by more triangles. More triangles result
in a greater amount of memory usage and less rendering per-
formance. Figure 13 shows a cell diagram already processed
by the subdivision stage. The triangle points are written back
to the same memory space used by the diagram cell and
subdivision stages. The triangle array is directly rendered as
a OpenGL VBO with multisample anti-aliasing of 4x.

IV. RESULTS

Our method can be applied in full video game frames based
on pixel art and keeps a frame rate good enough to achieve a
real time response. Using a computer with a 3.0GHz CPU and
a GPU GTX 580 Geforce with 512 CUDA cores a full frame of
a SNES game (256x224 pixels) can achieve an average of 49
fps with every frame being totally recomputed from the start
to the end of the method’s pipeline. A table with an average
result for 10 inputs of each console is shown in Table I

The difference between each input instance does not affect
significantly the computation time of each frame, but the image
size does affect. A single sprite of 24x24 pixels such as the
one used for Alex Kidd character can be computed in 0.58ms,
but the entire frame, which has 256x192 pixels, takes approxi-
mately 9.7ms for the machine cited previously. In comparison,



TABLE I: Average frame per second for each console input.
Resolution are expressed in pixels.

Console Resolution FPS
Game Boy 160 x 144 104.3
NES 256 x 224 48.6
Master System 256 x 192 56.9
SNES 256 x 224 47.1
Genesis 320 x 224 39.1

the average results of [6] for small sprites, not full frames,
take 0.08s without the spline optimization. A comparison with
real time methods can be seen on 14 and another comparison
with a result example from the Depixelizing Pixel Art article
can be seen on Figure 15. When tested to produce a video
output using consecutive frames dumped from a emulator the
method presented temporal consistency, allowing coherence on
the game animation. Figures 16, 17, 18 and 19 shows more
full frame results.

A important detail is that all the stages of the implementa-
tion benefits from memory coalescence because neighboring
threads access neighboring cells in memory. This occurs
because of the way image data is stored in memory and the
consequent use of the same arrangement for the rest of the
data results.

V. CONCLUSION

As demonstrated, with the power of a massively parallel
architecture, such as the GPU, and a local and independent
well modelled approach we can create a vector representation
of a pixel art image in a efficient way that can lead to a real
time response for the player, in case of old games input. The
visual output will look much smoother than the original when
scaled several times.

Our approach based on treating every element of each stage
in a parallel solution results in a better performance when
compared to [6]. One of the biggest performance boost is
obtained thanks to the subdivision method used instead of a
B-spline extraction.

Given the parallel nature of the approach, our method do
not extract regions’ borders. The cells are just rendered by the
conventional graphical pipeline. This raises a limitation such
as the impossibility of using colorization algorithms which
depend on contour knowledge. An example of this type of
algorithm is given in [10].

The future additions to the presented proposal could be an
approach to optimize border curves generated by the curve
subdivision method. To do this it would be necessary a reduc-
tion of the problem to a local scope in hope to maintain the
efficient flow of the parallel process. Another addition would
be the use a different threshold to detect smooth variance of
colors and apply a different method of rendering the cells with
a Gaussian blur or diffusion colors [11].

ACKNOWLEDGMENT

The authors would like to thank the Foundation for Research
Support of Rio de Janeiro State (FAPERJ) for the support.

Fig. 16: Alex Kidd in Miracle World (Master System) full
processed frame with average 55 fps (Original image c©Sega
Corporation)

Fig. 18: The Legend of Zelda: A Link to the Past (SNES) pro-
cessed frame with average 49 fps (Original image c©Nintendo
Co., Ltd)

REFERENCES

[1] B. Mendes, “Estilo retro em video games - a relação com o jogador,”
Master’s thesis, PUC-Rio, Rio de Janeiro, Brazil, march 2013.

[2] Wikipedia, “Pixel art,” april 2013. [Online]. Available: http://en.
wikipedia.org/wiki/Pixel art scaling algorithms

[3] A. Mazzoleni, “Scale2x/about,” 2001. [Online]. Available: http:
//scale2x.sourceforge.net/index.html

[4] M. Stepin, “Hiend3d/demos & docs - hq4x,” 2007.
[Online]. Available: http://web.archive.org/web/20070717064839/http:
//www.hiend3d.com/hq4x.html

[5] C. E. V. Muniz, “Extração de malhas poligonais a partir de modelos
volumétricos criado por artistas,” Master’s thesis, UFF, Niterói, Brazil,
september 2012.

[6] J. Kopf and D. Lischinski, “Depixelizing pixel art,” ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2011), vol. 30, no. 4, pp. 99:1
– 99:8, 2011.

[7] C. Loos, “Vectorization of pixel art,” Master’s thesis, Universität Augs-
burg Fakult at fur Angewandte Informatik, Augsburg, Germany, january
2011.

[8] F. Aurenhammer, “Voronoi diagrams - a survey of a fundamental
geometric data structure,” ACM Comput. Surv., vol. 23, no. 3, pp. 345–
405, september 1991.

[9] R. Riesenfeld, “On chaikins algorithm,” IEEE Computer Graphics and
Applications, vol. 4, pp. 304–310, september 1975.

[10] M. K. Lessa, “Construção e modificação de imagens 2d iluminadas
por mapas de nor mais reconstruı́dos em tempo de interação,” Master’s
thesis, UFF, Niterói, Brazil, 2011.

[11] S. Jeschke, D. Cline, and P. Wonka, “A gpu laplacian solver for diffusion
curves and poisson image editing,” ACM Trans. Graph., vol. 28, no. 5,
pp. 116:1–116:8, Dec. 2009.

http://en.wikipedia.org/wiki/Pixel_art_scaling_algorithms
http://en.wikipedia.org/wiki/Pixel_art_scaling_algorithms
http://scale2x.sourceforge.net/index.html
http://scale2x.sourceforge.net/index.html
http://web.archive.org/web/20070717064839/http://www.hiend3d.com/hq4x.html
http://web.archive.org/web/20070717064839/http://www.hiend3d.com/hq4x.html


(a) (b) (c) (d) (e) (f)

Fig. 14: Super Mario World partial frame scaled 4 times (a) Nearest Neighbor (b) Super2xSaI (c) SuperEagle (d) Scale4x (e)
hq4x (f) our method c©Nintendo Co., Ltd)

(a) (b) (c)

Fig. 15: Super Mario World partial frame scaled 4 times (a) nearest neighbor (b) Depixelizing Pixel Art [6] (c) our method
(Original image c©Nintendo Co., Ltd)

(a) (b)

Fig. 17: Alex Kidd in Miracle World frame (Master System) scaled 16 times (a) nearest neighbor (b) our method (Original
image c©Sega Corporation)

(a) (b)

Fig. 19: The Legend of Zelda: A Link to the Past (SNES) frame scaled 16 times (a) nearest neighbor (b) our method (Original
image c©Nintendo Co., Ltd)


	Introduction
	Related work
	Method
	Similarity Graph
	Cell Building
	Smoothing
	Triangulation and Rendering

	Results
	Conclusion
	References

