Real-time Estimation of Object Trajectories in Image Sequences
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Abstract. This paper presents a new motion estimation architecture for large displacements. An
efficient differential block recursive algorithm is used to orient searching for a match and save
computation power. Multiresolution and multiprediction approaches accelerate the algorithm
convergence. Data multiplexing and pipeline allow real-time processing for standard video frequencies

such as CCIR 601.

1 Introduction

Motion compensation is well known to be useful
to increase performance in image sequence processing
as video data compression, TV standard conversion,
temporal interpolation, filtering, etc [Limb-Murphy
(1975)], [Barros (1993)]. Differential, transform and
block matching based algorithms have been proposed
and compared [Bergmann (1983), Bouthémy (1988)].
There are two important problems in motion
estimation: computation power and I/O rate
requirements. Because of the inherent complexity and
the computation power requirements of the algorithms,
only translation movements are generally considered.

Almost all the proposed motion estimation
circuits are based on the block-matching algorithms
[Komarek (1989)], [Kim-Maeng (1994)]. Full search
for block-matching algorithms requires a power
computation proportional to the square of the maximal
displacement. Moreover, full search implies a very
high I/O rate. Therefore, the architectures are limited to
estimate small displacements.

In this paper, a new motion estimation
architecture is presented. A significant feature of the
proposed scheme is to estimate large displacements. A
differential block recursive algorithm have been used
[Sanson (1991)]. Unlike in the block-matching
algorithms, searching for a match is not systematical,
but oriented by local image gradient. The number of
matches to be made is reduced and a circuit with
moderate I/O rate is obtained. Then, access to an
external memory may be performed directly, without
restriction for displacement lengths. Data multiplexing
and pipeline allow real-time processing for standard
video frequencies such as CCIR 601. This architecture
is suitable for image temporal interpolation and

implements a half pixel precision vector estimation
according to MPEG recommendation for image coding.

The text is organized as following: in section 2
motion estimation algorithms are briefly reviewed. The
implemented motion estimation algorithm is explicited
in section 3. Section 4 presents the proposed
architecture. Discussion of this architecture and
comparison with other approaches are seen in section
5. Finally, conclusions of this work are drawn in
section 6.

2 Motion Estimation Algorithms

The principal idea of the motion estimation is that the
movement in image sequence generates luminance
changes in regions concerned by this movement. Then,
this change of the luminance can be used to estimate
the movement. It supposes that luminance of objets in
the scene is invariant between two consecutive images.

Motion estimation may be described as a
parameter estimation process. This process starts by
the construction of motion models which describe the
motion involved. The motion models are usually
specified by a set of parameters called motion
parameters. Many approaches are reported in the
literature [Limb-Murphy (1975)], (Bergmann (1983),
Bouthémy (1988)].

There are direct and indirect approaches. For the
direct approach, the 2-D motion parameters are
estimated directly from an image sequence. Differently,
in the indirect approach, a first determination of an
optical flow is carried out. The model parameters are
extracted from this flow.

With respect of the models, the movements are
classified in translational and complex. Most often,
only translation movements are considered [Musmann
et al (1985)]. The motion estimators may be
differential, block matching or transform based.
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Transform based algorithms estimate a movement
of an object in front of an uniform background by
using the following property of the Fourier transform:
a change in the space domain causes a change in the
phase in the transform domain. The phase difference
evaluated in two fields gives the motion vector. The
disavantage of this approach is that only one
movement by field is evaluated.

Block-matching algorithms consist to find the
best block estimator in the previous frame (t-1)
according to a matching criterion. The image is splitted
in blocks and, for each block in the image at time ¢, it
is tried to find the best match small enough to satisfy
the assumption of translational motion. The intensity
level of pixels in the block is being matched (Figure
1).

The differential methods include any method
which makes use of the spatial and temporal
differentials of an image. It usually depends on the
Taylor series expansion of an image, which is not
necessarily restricted to the first order. This is the
chosen method for the implementation proposed in this
paper and it will be discussed in the next section.

3 The algorithm description

The architecture for the motion estimator in this paper
is based on the algorithm proposed in [Sanson (1991)].
This is a block recursive differential algorithm based
on multiprediction and hierarchical multiresolution
approaches. These concepts are discussed below.

3.1 Recursive differential method

Differential method includes are based on the Taylor
series expansion of the spatio-temporal differences. The
Taylor series and the motion model define a constraint
which relates the locally available information
luminance of pixels and the local motion.

It is assumed that the change in luminance of a
pixel is only due to motion and that the luminance
funtion is linear. So, only small displacements may be
measured. To overcome this problem, recursive
approaches have been developed [Boroczky et al
(1990)]. In recursive algorithms, it is assumed that an
initial estimate dX for the real displacement d is
available. This prediction dX is used to produce a new
estimate K+ That is, the Taylor series expansion is
iteratively used to update a motion displacement
prediction. In the pixel-recursive method, an initial
estimate, usually obtained from the neighbouring
pixels, is updated by the information available from
the local constraint. The estimate can only be updated
in the direction of the image gradient.
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The only information available from a single
pixel is the velocity component in the direction of the
image gradient at that point. So, information from
different pixels have to be combined in order to obtain
the total velocity. It can be done by applying the
constraint to a block of pixels. This carries to a
measure of weighted average motion of the block. This
is the block-recursive method (Figure 2). Note that, as
in the block-matching methods, in differential
methods, the intensity level of individual pixels or a
collection of pixels is what is being matched.
However, searching for a match is directed by local
image gradient. For the implemented algorithm, the
updating of the displacement vector d = (dj, dy) is
carried out by calculating:

FL N DFD(x,y, d*) G(x,y, d¥)
T [Gly, d¥)P
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where:

eDFD(x,y,d) is the image temporal differential and
corresponds to the difference between luminances in
current image and previous image displaced by d

*G(x,y,d) is the spatial differential evaluated in the
reference image displaced by d

K exponent indicates the Kt jteration

X indicates that temporal and spatial differentials are
evaluated for all the pixels in the block

espatial and temporal differentials are approximated by
spatial and frame differences, respectively.

3.2 Hierarchical multiresolution approach

Hierarchical motion estimation is a technique which
allows acceleration for algorithm convergence. The idea
is to split the image in large regions (large blocks
called “father blocks”) and to perform the motion
estimation over these regions. After this processing,
the image is splitted again in smaller regions (smaller
blocks called “son blocks”). The motion estimator is
applied again, enhancing the estimation. The
previously obtained results are used as initial
predictions (Figure 3).

To improve the convergence speed,
multiresolution may be associated to a hierarchical
approach. This is shown in Figure 4. The image is
subsampled and a pyramid is generated. Motion
estimation begins at the top level of the pyramid. The
results obtained at a level [ are used as initial
predictions for the -/ level. This allows to quickly
estimate large displacements. The number of resolution
levels is a parameter which may be adapted to a
specific application. Vectors from level / need to be
multiplied by two before to be used in level /-7 to
compensate the subsampling of the image.
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3.3 Multipredictions approach

Problems may occur because of the image
segmentation in blocks and multiresolution. For
example, prediction obtained at level / may include the
motion of more than one object. Also, bad predictions
should be obtained if the object have been splitted
through the segmentation.

These problems are minimized by using a
multiprediction scheme. For each block at level /, five
initial predictions are used: four predictions are those
corresponding to the neighbour blocks in the uplevel
I+1 (Figure 5).

Note that the split of the image is considered in a
quadtree with overlap. A fifth prediction corresponding
to zero value for motion vector allows a reset of the
algorithm.

3.4 Temporal continuity

In the original version of the algorithm, processing at
the pyramid toplevel supposes only one initial
prediction. This prediction corresponds to a zero
displacement vector. Nevertheless, other predictions
should be easily added. Taken into account values for
displacements in other frames enhances the
performance of the algorithm and accelerate the
convergence.

In the version implemented with the proposed
architecture, the initial predictions for a block at the
toplevel at time ¢ are (Figure 6): the equivalent block
in the same position at the time ¢-1, the up neighbour
of this block, the up-right neighbour of this block, and
the right neighbour of this block.or the four vectors
obtained at the time r-/ in a level with more
resolution.

SR

Figure 1: Block matching algorithm: SR is the search region and dm is the maximal displacement.

block position in frame at t
l

block position in frame att-1

initial prediction (no motion)
i

< |
algorithm convergence

Figure 2: Block recursive motion estimation.
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Figure 3: Hierarchical motion estimation: initial predictions for level /-1 are the obtained vectors at level /.
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Figure 4: Multiresolution pyramid of the image.
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: ::'1 father block at level / . son block at level /-/

Figure 5: Quadtree with overlap. A “son block” at level I-] has 4 “father blocks” at level 1. A “father block” at
level [ has 16 “son blocks” at level I-].

frame at t-1 (level 3)

= B
C D
' C
vectors for frame at t-1(level 3) vectors for frame at t-1(level 2)

Figure 6: Initial predictions for a block at time t at level 3 (toplevel ) take into account vectors obtained at time z-
1 at level 3 or level 2.
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4 The proposed architecture

Figure 7 gives the general scheme of the motion
estimator system. It supposes four levels in the
pyramid and two iterations per prediction. The
simulations performed have shown that it carries to the
algorithm convergence. The full resolution image
corresponds to the level 0. The processing is completly
carried out at level 3 before to begin the processing on
level 2 and so on. There are five initial predictions for
each block. This processing is carried out Ni times for
each initial prediction, where Ni is the number of
iterations.

In the proposed architecture, concurrence and
parallelism of the algorithm are exploited. Pipeline of
operating in ARITHMETIC UNIT enables a real time
work for standard video frequencies. Because this is a
recursive algorithm, the pipeline between PRODUCTS
and UPDATING units is performed by multiplexing
initial predictions. During the processing of a
prediction by UPDATING, PRODUCTS realizes the
processing reporting to another initial prediction.

4.1 PIXELS CONTROL

This unit receives the pixels from the external
memories containing the blocks in the frames ¢ and -/
for several resolutions and gives them to the
ARITHMETIC UNIT. PIXELS CONTROL contains
three block memories to allow multiplexing and saving
for 1/0 rate. Therefore, this unit provides parallel
format for the pixels (8 pixels/cycle) to the
ARITHMETIC UNIT and those neighbours useful for
interpolating.

4.2 ARITHMETIC UNIT

The ARITHMETIC UNIT computes the equation (1).
That is, it evaluates a new motion vector dX*+! for a
given prediction dX. It is subdivided in two blocks:
PRODUCTS and UPDATING units.

4.2.1 PRODUCTS UNIT

This unit receives the prediction vector displacement
dK and evaluates

Gx(x,y,d)DFD(x,y,d)

Gy(x,y,d)DFD(x,y,d)

o [Gxxyd)P

[Gy(x.y.d)]?

DFD(x,y,d )
for all pixels in the block. For non integer
displacement values, an interpolation is performed by
using a bilinear filter. As shown in Figure 8, the
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processing in PRODUCTS UNIT is carried out for
eight pixels by cycle. These values are accumulated.
So, after processing for all pixels in the block, the

values contained in the registers are delivered to the
UPDATING UNIT.

4.2.2 UPDATING UNIT

UPDATING receives the accumulated values of
PRODUCTS and, once per block, carries out the
division and the addition in equation (1), giving the
value dk+1 of the vector displacement.

4.3 CONTROL UNIT

CONTROL UNIT is the estimator manager. It selects
the best vector to associate to a given block by holding
the vector corresponding to the smallest accumulated
DFD. For that, CONTROL UNIT contains registers to
stock intermediate values of displacement vectors,
multiplexers and comparators.

5 Architecture considerations and discuss

Nevertheless the evaluation of equation (1) represents
more complex operations when compared to those for
one vector test for block-matching based estimators, the
gradient approach is globally less expensive. An overall
reduction of the power computation and I/O rate
because less vectors are tested (Table 1).

In fact, simulations have shown that using a four
levels pyramid and two iterations per prediction the
algorithm convergence is obtained. For these conditions
and usual maximal displacements (bigger than 5 pixels)
the power computation and the I/O requierements for
the processor presented in this work are less expensive
as seen in Table 2.

For TV video type applications, the frequency
requirements are:

Fp (the source pixel rate) = 13.5 Mpixels/s,

Fi (the vector iteration rate) = 180 x 106
evaluations of products and accumulations for equation
(1) per second.

Because of the value of Fi, a parallelisation
approach has been used. In the proposed architecture,
operators are multiplied to carry out eight DFD and
gradient operations simultaneously in PRODUCTS.
This allows real-time operation with a chip frequency
Fc =22 MHz, moderating by the way power
consumption. On the other hand, in the UPDATING
unit no parallelism is necessary. Furthermore, the
motion vectors may be delivered in bit serial format,
saving I/O number of pads. Table 3 summarizes some
comparisons with other implementations for motion
estimation.
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Figure. 7. (a) General scheme of the estimator. (b) Detail for ARITTHMETIC UNIT: processing is pipelined.
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Figure 8. Internal scheme for PRODUCTS.
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Algorithms Number of | Operations for each Match | Total Number of
Complexity Matches Operations
block-matching (2dm+1)? 1 interpolation + 1 DFD 4 (2dm + 1)2

differential Nix 5 x4/3 1 interpolation + 1 DFD + 2 254 Ni
gradients + 4 multiplications

Table 1: Power computation for full-search block-matching and differential based algorithms. The results are given

in 8 bits addition per pixel.
Differential Block-Matching
Vdm,Ni=2 dm =38 dm=16 dm =32
508 1156 4346 16900
Table 2: Total number of 8 bits additions for usual displacements.
Circuit A (mm?2) | Technology Fc Nb of chips dm Comments
COLAVIN91 85* 1,2 pm 13.5 MHz 3 -16/+15 full-custom
URAMOTO93 125** 0,8 um 40 MHz 1 -16/+15 | half-pel precision
PROPOSED 80" ** 0.8 um 22 MHz 1 -128/+127 | half-pel precision

Table 3: Comparisons of some block matching circuits and proposed motion estimator architecture. These values
are obtained for real-time operation with 16x16 pixel block and CCIR 601 resolution. *[Colavin (1991)],

**[Uramoto et al (1993)] and ***estimated.

6. Conclusions

In this paper, a new motion estimator architecture
have been presented. Unlike in the block-matching
algorithms, searching for a match is not systematical,
but oriented by local image gradient. The number of
matches to be performed is reduced and a circuit with
moderate /O rate is obtained. Then, directly access to
an external memory is possible, without restriction for
displacement lengths. To improve the convergence
speed, the algorithm uses a multiresolution hierarchical
approach. Multiplexing and pipeline are necessaries to
allow a real time processing for standard video
frequencies. This architecture is suitable for image
temporal interpolation and implements a half pixel
precision vector estimation according to MPEG
recommendation for image coding.
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